教学工作计划是教师进行教学管理和教学评估的重要依据,有利于教师提高专业素养和教学能力。小编为大家精选了一些优秀的教学工作计划范文,希望对大家有所启发。
上海市小学数学新教材三年级第2单元:“用两位数除”小单元。
1、通过复习,进一步理解和掌握除数是两位数除法的计算法则,提高计算能力。
2、通过自主探索和共同探讨活动,引导学生理清知识脉络、学会分析归纳、有序整理的方法,提高学习能力。
整理知识结构,构建知识网络。
一、情景引入:
1、师:春天到了,勤劳的蚂蚁们在干什么呢?
7227÷53900÷45467÷538304÷279082÷7。
师:你们能估一估商是几位数吗?你有什么好办法来判断的?
2、揭题。
观察这些算式有什么相同的特征?
师:除数是两位数的除法是我们这个单元学习的内容,今天我们就来回顾与整理一下这个单元的内容。(板书:回顾与整理)。
二、知识整理:(通过改错训练引导学生回忆与整理有关知识)。
1、纠错1。
师:判断对与错。错在哪里?我们用哪些方法可以判断错与对?
(板贴:除到哪一位,商就写到那一位)(哪一位不够商1,就商0)(估计商是几位数,除数×商+余数=被除数)。
2、纠错2。
师:错在哪里?(板贴:余数要比除数小)(及时调商最关键)。
3、小结:看来小朋友们不仅掌握了除数是两位数除法的计算法则,而且掌握了检验的方法。理清了思路,我们去解决一些实际问题。
三、解决问题:
师:从图上获得了什么信息?能解决什么问题?
师:每人选择2条线路,来计算小巧所花的时间。
(抽5人板演)。
师:现在你知道每条线路需要多少时间?
师:我们一起来回顾一下这5道题的计算过程。
1、前2题有什么明显的特征?(0是怎么得来的?)。
2、第3题有什么特征呢?(同头无除商9、8)。
3第4、5题你又是如何试商的?
师:根据不同的题目选择适合的试商方法,这样计算又对又快?(选择合适的试商方法进行试商,能提高计算速度和准确率)。
四、拓展训练:
师:通过刚才的问题解决,老师发现小朋友不但会做,而且会说算理。
那接下来的题目你还能又快又准确的完成吗?
五、课堂总结:
通过今天这节课的复习和整理,你对除数是两位数的除法的计算,有什么话想对同学和老师说。
六、独立作业:
竖式计算并验算。
7416÷5623434÷7813066÷32。
循环小数是本课时的难点,学生又是第一次接触。感知是概念掌握过程的首要环节,从新课的引入开始,让学生感知循环现象。在探究循环小数特征时,让学生通过实际计算充分感知数学中的循环现象。上完这节课我反思如下:
一、创设情境,激发求知。
新课导入是否能激发学生的认知兴趣,是一节课中最关键的环节,直接影响着一节课的教学质量。上课一开始,我先根据一个故事,让学生发现其中的规律,说出“依次不断重复”,再让学生自己举出生活中的例子,加深感知。可以说教学中,我合理地创设和运用了情境,激发了学生的学习兴趣,有利于学生对学习内容的理解,教学效率的提高。虽然导入不错,但如果加入些更直观的教学效果会更好。如:图形按照一定的规律依次不断重复出现。
二、引导学生自主探索,参与知识形成的全过程。
数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识,本节课通过让学生算一算、想一想、观察、比较、总结出循环小数的特征。在学习过程中,调动学生的学习积极性,成为学习的主人,让他们动脑、动眼、动口研究问题,获取新知。再通过让学生自学课本,了解循环节和循环小数的简便写法以及有限小数、无限小数的区别,让学生自己发现新知,培养学生的阅读数学书的习惯和自学的能力。
三.小结草率,失去精彩。
本节课是个概念课,学习了不少的新知识,如:循环小数、有限小数、无限小数以及循环小数简写读写法等,由于准备不够充分,我只是形式上让学生说说今天都有哪些收获,如果好好准备的话学生会很有说头,这样草草的收尾,效果不好,是一个遗憾。
四、练习过少,拓展不够。
我这节课感觉都是在学新知,没有安排练习。如果可以针对循环小数的重点“依次不断重复”这几个关键词语可以出一些练习题,使学生能牢固的掌握循环小数的特点,那就更好了。同时也可以增加有限小数和无限小数区分的有关练习。循环小数的读法本无需掌握,教学时我让生读一读。但”循环节”也要作为知识拓展介绍给学生知道。
总之,课堂教学是教与学的双边活动,每个学生都应积极参与。但愿我可以经过不断的反思,取得一定的进步!
循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。这部分内容概念较多,又比较抽象,是教学的一个难点。
《数学课程标准》指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”建构主义教学论指出,复杂的学习领域应针对学生先前的经验和学习兴趣。新课开始,通过讲故事的方式,引起学生的兴趣,让他们体会生活中不断重复出现和无限的表象,我以学生身边的循环现象为导入点,让学生体验“循环”的含义,从而说出生活中的“循环现象”,将生活与数学融合在一起,使学生真正理解了“循环”含义,从而为进一步探究“循环小数”的意义架起桥梁。
接着通过计算小乌龟和小蜗牛的爬行速度两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复某个数字;另一种是从某位起几个数字依次不断重复出现,让学生观察辨别,由此引出循环小数的概念并介绍循环小数的简便记法。接着用想一想的方式组织学生讨论“两个数相除,如果不能得到整数商,所得到的商会有哪些情况”。
以前学生对小数概念的认识仅限于有限小数,到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。
从认识的过程来说,形成概念是从感性认识上升到理性认识的过程,即从个别的事例总结出一般性的规律;巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。好的练习设计能够巩固学生的知识,进而延伸知识,培养学生的创新意识。教学完新知后,我由浅入深设计了三个不同层次的练习,使不同层面的学生都学有所获。
1、理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
一、复习旧知,唤起经验。
(游戏)要求:一定发生的就立正,不发生的就坐着不动。
(1)太阳从东方升起。
(2)明天要上学。
(3)地球绕着太阳转。
(4)明天会下雨。
明天会不会下雨呢?都有可能,但可能性是多少呢?这节课我们就来研究可能性的大小。(板书课题)。
二、创设情境,引导发现。
举例:做游戏时用掷硬币的方法决定谁先开始,二个人每个人的可能性都是1/2。
1、教学例1。
同学在打乒乓球时是怎么决定谁先发球的?
提问:用猜左右的方法决定由谁先发球公平吗为什么。
学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半.
可能性是一半用分数怎么表示你怎么想到是。
追问:2表示什么,1呢。
小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有"对"或"错"两种可能,猜对与猜错的可能性相等,都是.用这种方法决定谁先发球是公平的。
2、同步体验。
拿出一个口袋。
(1)谈话:这里面原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几(学生肯定有疑问)。
(2)打开袋子(一红一蓝)问:有答案了吗你怎么想的。
(3)交流中明理:一共2个球,任意摸一个,有2种情况,摸到红球是1种情况,所以摸到红球的可能性是().
(4)再往袋中放入一个绿球,任意摸一个球,摸到红球的可能性是几分之几为什么。
(5)疑问:为什么摸到红球的可能性会不同呢这说明可能性的大小和什么有关。
(6)小结:一共有几个球,红球有一个,摸到红球的可能性是几分之一.
三、迁移和提升。
自学例2,并集体讲解。
“试一试”
“练一练”
四、实践与应用。
1、”非常6+1”,共有12只蛋,9只金蛋,如果你是第一个打进电话的人,你成为幸运星的可能性是多少?如果第一个人砸了一个蛋是金蛋,而你是第二个打进电话的人,你成为幸运星的可能性是多少?.
2、语文中的数学问题。
用分数表示可能性的大小:。
平分秋色、十拿九稳、天方夜谭、百发百中。
3、练习十八1-2。
四、全课总结,感受价值.
提问:今天我们学习了什么你有什么收获你觉得这些知识有什么用。
2002、9、26(领导听课)。
1.通过教学使学生理解的意义,了解循环节、纯、混。
2.培养学生观察、概括的能力。
3.培养学生自学的能力。
理解的意义和怎样找循环节。
怎样从竖式中找循环节。
投影。
一、铺垫孕伏:
:观察后继续填空,并说一说你为什么这样填?
()()()()()()()()()……。
(1)(3)(5)(7)(1)(3)(5)(7)()()()()……。
:1、你们所说的规律、顺序是什么?
2、“1357”的顺序可以变化吗?(板书:“依次”)。
3、在你们的生活中有这样的事吗?(四季、星期、从前有个“山”,山里有个“庙”,庙里有个“老头”……)。
导入:在数学领域中也有这样的规律,今天我们就一起来研究。
二、探究新知:
1.:106(1.66……)7.111(0.64545……)9.830(0.3266……)。
:(1)任选两题计算,有时间可做第三题。
(2)在计算过程中,你们发现了什么?
:“依次不断”、“重复出现”、“一个数字”、“几个数字”
2.总结概括的意义。
--------相同:都是从小数的小数部分起。
重复出现的数字。
不同:有的从小数部分第一位起。
有的不是从小数部分第一位起。
(2)它们的商怎样表示?有人知道它们的名字吗?()。
(3):用概括的语言说说什么是?
--------一个小数,从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现,这个小数叫做。(投影概念)。
3.了解循环节、纯、混。
(1)提问:你们还了解的哪些知识?给大家介绍一下。
(2)教师小结:
:一个的小数部分,依次不断重复出现的数字叫做这个的循环节。例如:1.66……循环节是“6”
o.64545……循环节是“45”
:循环节从小数部分第一位开始的。
:循环节不是从小数部分第一位开始的。(例如:板书)。
:写时,为了简便,小数的循环部分只写出第一个循环节。
如果循环节只有一个数字,就在这个数字上加一个圆点,
如果循环节有一个以上的数字,就在这个循环节的首位和末位的数字上各加一个圆点。(例如:板书)。
(3):刚才,我们了解了的有关知识,下面,我们通过练习来巩固一下这些知识。
:8.9÷3.7(计算,并指出它的循环节、判断纯或混、简写)。
:从竖式中,你怎样找循环节?
4.计算中遇到,可以根据需要取它的近似值。
:1.66……(保留一位小数)。
1.66……(保留两位小数)。
0.645……(保留两位小数)。
0.645……(保留三位小数)。
5.自学:有限小数和无限小数。
思考:(1)两个数相除,如果不能得到整数商,会有几种情况出现?
(2)什么叫有限小数和无限小数?
(3)是有限小数,还是无限小数?
三。作业:
p252、3、4。
:对于今天的学习,你还有什么问题?
混
概念取近似值。
教科书第71—72页的例1、“试一试”和“练一练”、练习十四的第1-3题。
1.教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心。
感受“转化”策略的价值,会用“转化”的策略解决问题。
会用“转化”的策略解决问题。
;学生每人一张例1的格子图。
一、创设情境,感知策略。
1.谈话导入。
(分别演示蝴蝶平移的过程,第二幅图顺时针和逆时针分别旋转一次,第三幅图从左往右顺时针平移一周的过程)。
提问:(1)蝴蝶是按怎样的顺序变化而来的?
(2)花环两次变化又是怎样形成的?
(3)最后一幅又是怎样变化的呢?
学生回答,师依次板书:平移,旋转,顺时针,逆时针。
二、合作交流,探究策略。
1.出示例1。
提问:这两种平面图形,我们以前学过吗?(没有)你觉得它们象什么呢?(生发挥想象力回答,但要说明的是平面图形。)。
2.引导交流。
提问:你能从图上准确地数出它们的面积分别是多少吗?(不能)面积会相等吗?请同学们4人一小组讨论,并可以在刚发下的作业纸上涂涂画画,验证你的结论。
小组交流,教师巡视,并指导。
3.指导验证。
师:你们组是怎么想的?指名回答。你在观察这两幅图的时候有什么发现吗?
学生说想的过程,并投影出示学生的作业纸。
(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)。
教师及时评价并用演示刚才学生说的过程。
提问:这两幅图经过旋转和平移后都变成了什么图形?(生:长方形。)。
提问:变成长方形后它们的面积相等吗?为什么?(生:相等,长和宽一样,所以面积一样。)。
教师再次演示变化过程,提问:在两幅图变化的过程中,什么不变?(面积)都把它变成了谁的面积?(生:长方形。)。
小结:因为我们无法一下子看出这两个平面图形的大小,但分别把它们转化成一个长方形后,我们就能比较这两个图形的大小了。在解决问题的过程中,我们经常会用到这样的策略——转化。(板书:解决问题的策略——“转化”)。
三、应用策略,归纳方法。
1.谈话:刚才,我们运用转化的策略把不规则的图形变成规则图形来比较大小。在有关平面图形的计算中经常会用到“转化”的策略。请同学们试着来解决以下问题。
(1)练习十四第2题的左边两幅图。
学生独立思考后口答,教师相机演示。
(2)“练一练”右边的图形和练习十四第3题的第一幅图。
提问:你能用比较简便的方法快速地求出图形的周长吗?
学生先独立思考,然后和同桌交流。
个别学生介绍自己的方法,教师相机演示。
小结:在解决这些问题的过程中,我们都用到了怎样的策略?(转化)我们要把复杂的图形转化未为简单的图形,具体地说又是用到了以前学习的哪些知识呢?(平移和旋转)。
四、回顾知识,体验转化。
1.谈话:其实我们以前学过的知识中,很多都运用了转化的策略,哪位同学来说说看。
指名回答,生可能会说:1.推导三角形公式时,把三角形转化成平行四边形。2.推导梯形时把梯形转化成平行四边形。3.推导圆面积时,把圆面积转化成长方形。4.计算小数乘法时把小数乘法转化成整数乘法。5.计算分数除法时把分数除法转化成分数乘法等等。
在学生说的过程中请学生说说推导的过程,并相应演示推导过程。
小结:看来,“转化”的确是一种非常重要的解题策略,在刚才的交流和演示的过程中,你觉得这种策略有什么优点?(学生交流后教师相机板书:化复杂为简单,化未知为已知,化不规则为规则------)。
五、拓展运用,提升策略。
1.出示试一试:计算1/2+1/4+1/8+1/16。
提问:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。(2)相邻的分数是什么关系?(后一个是前一个的1/2)。
师:我们一起来画图表示看看。师根据题目依次画图。
师:这题我们又可以怎样转化呢?学生看图解答。
指名回答。1-1/16=15/16。
(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)。
小结:在解决这个分数加法的计算题时,我们借助图形来分析问题,把复杂的算式变成了简单的算式。这也是运用了“转化”的策略——数形结合。(板书)。
3、出示:比较大小:16/17和35/36。
你准备怎样比?先和同桌说一说,再组织交流。体会:异分母分数大小比较,一般要通分后比较大小,通分很麻烦,现在只要转化成比较1/17和1/36的大小就可以了。
2.谈话:在解决一些稍复杂的实际问题时,有时我们也可以用“转化”的策略思考问题将复杂问题变得简单些。请同学们看这一题:
出示练习十四第1题。
(1)学生读题理解单场淘汰制的比赛规则并看懂图的意思。
(2)提问:什么是单场淘汰制?你能结合示意图来说说淘汰赛的过程吗?你会列式计算吗?(学生列式计算后进行解释。)。
(3)提问:如果不画图,有更简便的计算方法吗?(提示:不管第几轮,每场比赛都要淘汰几支球队?到决出冠军为止,一共要淘汰多少支球队?那么一共要比赛多少场?这样看来求比赛了多少场就转化成了什么问题?)。
(4)如果有64支球队,产生冠军一共要比赛多少场?
3.出示练习十四第2题的第3幅图。
学生先独立思考,然后指名学生交流自己的想法,教师及时评价并演示。
4.出示练习十四第3题的第2幅图。
要求图形中红色部分的周长是多少,你有什么好方法?
学生独立思考后解答(思路:转化成2个圆的周长),集体校对。
小结:谁来说说我们是怎样运用“转化”的策略来解决这两个问题的?
六、课堂小结。
今天我们学习的解决问题的策略是什么?“转化”随时随地都在我们身边,你认为在什么时候采用“转化”的策略能较好地解决问题?生回答。
七、课堂作业:完成补充习题相关内容。
解决问题的策略——转化。
平移转化成体积相等的长方形。
旋转(顺时针,逆时针)不规则——规则。
s三角形——s平行四边形复杂——简单。
s梯形——s平行四边形未知——已知。
s圆——s长方形不熟悉——熟悉。
------。
小数乘法——整数乘法。
分数除法——分数乘法。
循环小数是学生在学习小数除法的意义、小数除法的商的近似数的基础上进行教学的。这部分内容概念较多,又比较抽象,是教学的一个难点。课本的例8,出现了商的小数部分总是重复出现一个数字,而余数也总是出现某组数字,让学生初步感受到循环小数。例9通过计算两道除法式子,呈现出“商的小数部分从某位起重复依次不断出现一个数字或者某几个数字”。接着教材用想一想的方式让学生讨论“两个数相除,如果不能得到整数的商,所得到的商会有哪些情况”从而引出无限小数与有限小数。
1.我们班5(4)共有57名学生,我是这个学期才接手的,从这二个月的相处中知道,学生间的基础相差很大,两极分化很严重。平时和学生聊天中也知道,他们对数学课是比较感兴趣,苦就苦在成绩无法提高,为什么呢?我从学生上课的情况来看,认真听课的学生不是很多。交上来的作业大多书写都是很差的,甚至有不愿交作业的现象,而交上来的呢,有部分都不知道他们在写什么。考试的时候只求把试卷做完就行了,而不是求做得对做得好,常常粗心大意,不愿开动脑筋思考问题。
2.考虑到学生的这些情况,我想在教《循环小数》的时候,就先以讲故事开关引出循环的现象,从中激起他们的学习热情。而从学习了循环小数的概念下,又让生自己思考并以游戏比赛的形式让生以组为单位自己编循环小数,让生学以致用,从而让生感受到成功的喜悦。从中也可以培养学生概括能力和独立思考的习惯。
3.学生认知障碍点:循环小数的简便记法展开成省略记法的时有点困难。
1.知识目标:通过求商,使学生理解循环小数、有限小数、无限小数的意义,能正确区分有限小数与无限小数,了解循环节的概念和循环小数的简便记法。
2.能力目标:培养学生发现问题、提出问题、解决问题的能力,提高观察、分析、比较、判断、概括的能力,敢于质疑和独立思考的习惯。
3.情感目标:感受数学与现实生活的联系,培养学生学习数学的兴趣,从而激起他们的学习热情。
教学重点:理解循环小数的概念,了解循环小数的简便记法。
教学难点:理解循环小数的意义。
2.掌握循环小数的计算方法.。
理解和掌握循环小数等概念.。
理解和掌握循环小数等概念.。
(一)口算。
0.8/0.5=4/0.25=1.6+0.38=。
0.15/0.5=1-0.75=0.48+0.03=。
(二)计算。
21/3=15/3=12/3=10/3=。
教师提问:通过计算,你发现了什么?
(一)教学例7。
例710/3。
1.列竖式计算。
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)。
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.。
所以10/3=3.33……。
(二)教学例8。
例8计算58.6/11。
1.学生独立计算。
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6/11=5.32727……。
3.观察比较10/3=3.33……58.6/11=5.32727……。
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)。
教师板书:循环小数.像3.33……和5.32727……是循环小数.。
5.简便写法。
3.33……可以写作;
5.32727……可以写作。
6.练习。
1.5353……0.19292……8.4666……。
(三)教学例9。
例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)。
1.学生独立列式计算。
130/6=21.666……。
asymp;21.67(十克)。
答:小汽车大约装21.67千克汽油.。
2.集体订正。
重点强调:保留两位小数,只要除到小数点后第三位即可.。
3.练习。
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.。
28/182.29/1.1153/7.2。
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
(一)计算下面各题,哪些商是循环小数?
5.7/914.2/115/810/7。
(二)下面的循环小数,各保留三位小数写出它们的近似值.。
1.29090……0.0183838……。
0.4444……7.275275……。
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.。
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)。
1.使学生进一步理解乘数是两位数的连续进位乘法的算理,掌握两位数的进位乘法的计算方法。
2.培养学生的分析推理能力。
理解乘数是两位数的连续进位乘法的`算理。
掌握两位数的进位乘法的计算方法。
一、自主探索,领悟知识。
1.创设情景,提出问题。
一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。
(1)学生根据以上情景提出数学问题。
2.改变情景,引出新课。
改变条件:一共进72人。学生根据新情景提出问题。
(1)教师根据学生提出的问题有选择性地解答并板书:48×72。
(2)小组研究计算方法。
(3)小组汇报。
(4)教师根据情况,重点指出以下两个方面:
计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。
(5)练习:683745。
×34×82×46。
2.学习例4。
出示例题。
(1)让学生读题理解题意,再口头列出算式。
(2)让学生独立试做。
(3)请一名学生展示计算过程,并说一说算理。
(4)其他学生补充完整,必要时教师给予指导。
(5)练习215309。
×32×25。
二、巩固反馈,深化知识。
1.第11页的做一做。
2.判断。
(1)57(2)306(3)193(4)403。
×35×35×36×35。
25515301158215。
17112043791612。
196513570494816335。
板书:用两位数乘(连续进位)。
48×72=3456114×59=6726(分)。
48114。
×72×59。
961026。
336570。
34566726。
答:要用6726分。
教学目标:
1、会根据需要,求出商的近似值。
2、培养学生数感和灵活应用意识。
教学过程:
一、基础练习。
1、取p26,第10题,48÷2.3(保留一位小数)3.81÷7(保留两位小数)审题。求商的近似值的方法是什么?(一般先除到比需要保留的小数位数多一位,然后按“四舍五入”法取舍。也可观察保留位的余数与除数的大小关系进行判断)。
独立完成,请生板演。
二、巩固练习。
1、独立完成p2610剩余的题。
2、独立完成p2611再全班交流,如何比较。
3、p2613学生独立完成全班交流。如何处理结果?
小结:根据需要求商的近似值,求一个数是另一个数的几倍?一般保留整数。
你还能提什么数学问题?教师板书。
三、发展练习。
1、p26第12题。
请学生说说是如何思考的?肯定多种策略解决问题。
2、教师根据日常教学情况进一步补充针对性的练习。
教学内容:循环小数p27-p28。
教学目标:1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学过程:
一、自主探索,获取新知。
1、师谈活引入新课。
我班男生400米谁跑得最快?成绩如何?和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。
2、初步感受循环小数的特点。
观察竖式,你发现了什么?(组织学生小组内交流)。
可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。
师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。
师:那么商如何表示呢?你为什么使用省略号?(师板书)。
3、总结概括循环小数的意义。
出示:28÷1878.6÷11。
先计算,再说一说这些商的特点。(请生板演计算结果)。
学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。
4、巩固练习:下列哪些是循环小数?
学生评议。
5、介绍简便记法。
如5.333…还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。
(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)。
7、理解有限小数和无限小数的意义。
师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?
学生小组讨论,汇报。
师适时抛出有限小数,无限小数的概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。
学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。
二、学生小结。
三、巩固练习。
课后小记:。
课题八:循环小数练习。
教学目的:
1、学生进一步巩固对循环小数概念的理解。
2、能比较两个(含)循环小数的大小。
学具准备:计算器。
教学过程:
一、主动回顾,知识再现。上节课我们学习了什么知识?
二、单项训练,夯实基础。
1、进一步理解循环小数的概念。
完成p30.1。
全班练,指名板演,哪些题的商是循环小数,如何判断的?
2、进一步掌握循环小数的写法,完成p30.2。
你如何表示商?(自己选择表示方法),全班交流校对。
3、求循环小数的近似值。完成p30.3。先请学生说说取近似值的方法,再让学生独立完成。
三、深化练习。完成p30.6先观察这些小数的特点,再试一试.
请学生说出判断大小的过程,教师适时评价。
1、想到把这些简便记法的循环小数还原。
2、2、1.23o1.233,只还原到第三位小数。
师小结:需要先观察,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习p3045。
课题九:用计算器探索规律。
教学内容:用计算器探索规律p29。
教学目标:
1、能借助计算器探求简单的数学规律。
2、培养学生观察、归纳、概括、推理的数学能力。
3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。
教学过程:
一、激发学生兴趣。
1、使用计算器,小组合作。
2、小组汇报,展示过程,讨论发现。
教学目标:
知识与技能:
初步认识循环小数,能用计算器探索并指出一个循环小数的循环节。
过程与方法:
结合具体事例,经历竖式计算、观察、讨论并用计算器计算等,认识循环小数的过程。
情感态度价值观:在借助计算器进行数学探索的活动中,获得成功的体验,感受数学中蕴藏着许多的奥秘。
教学重点:
经历发现、了解循环小数的过程,了解循环小数的含义,能指出哪些商是循环小数。
教学难点:
循环小数的语言描述。
教学流程:
一、趣味故事导入主题。
小故事——《讲不完的故事》。讲故事,说规律。
二、小组合作,探究新知。
(一)小组尝试研究。
1、竖式计算。
6.21÷0.03=8.4÷0.56=。
1)试着列竖式进行计算。
2)在计算10÷3时,余数1不断的重复出现,商中的'3也不断的xx,商的位数是xx的。(填有限或无限)。
在计算83÷11时,余数xx,商中xx。
3)用计算器计算。
58.6÷1138.2÷2.7。
《循环小数》课上尝试小研究。
1、用计算器计算。
1÷9=2÷9=3÷9=4÷9=。
我的发现:xx。
2、不用计算,你能写出下面算式的的得数吗?用计算器进行验算。
5÷9=6÷9=7÷9=8÷9=。
3、直接写出下面算式的得数?
10÷9=11÷9=12÷9=13÷9=。
14÷9=15÷9=16÷9=17÷9=。
(二)小组合作学习。
小组合作要求:
组长负责组织和分工,人人说一说自己的学习收获,在组内交流自学中不清晰的地方。发言要有顺序,当一人发言时其他成员要认真倾听。小组内解决不了的问题记下来,在班级展示时,交流解决。
(三)班级展示汇报。
1、同组内交流完了吗,哪个小组先来和大家一同分享你们的研究结果?
要求:下面的同学也要认真听,看看你同不同意他们的研究方法。一会说出你想问他们的问题,或者对他们的研究方法做出自己的评价。或者对他们的研究方法进行补充。
2、组长带领全组同学,对老师指定的尝试小研究的内容进行交流汇报。
在交流汇报的基础上,组长组织全班同学进行评价、补充、质疑。
组长:哪个同学对我们小组的汇报有评价、补充或提出不懂的问题?
其他组的学生进行评价、补充、质疑。
(四)教师点拨提升。
1、教师适时点拨引领:
1)10÷3中余数1重复出现,所以商3不断重复出现;
2)循环小数是从小数的某一位起;循环小数是无限小数。
3)怎样确定商是循环小数呢?循环小数的表示方法。介绍循环节。
2、互相纠错,小组内同学互相检查尝试题做得是否正确,错误的加以改正。
三、挑战自我。
一、请同学们判断下面哪几个数是循环小数,为什么?
0.9993.14159260.5477453.212121。
5.027276.416416。
二、判断。
1、9.666是循环小数.
2、0.88保留三位小数是0.880。
1、认真看课本27页,观察400÷75的竖式计算,说说你的发现。
2、思考:这个竖式如果继续除下去,会是怎样的情况。你怎样表示出它们的商?
五分钟后,比一比看谁能做出类似的题目,并能说出自己的发现。
1、学生看书,教师巡视,注意帮助学困生。
2、统计了解学生自学情况。
3、学情检测。
(1)出示检测题:
计算后观察商的特点:
28÷18=78.6÷11=。
5.7÷9=20÷3.7=。
(2)请四名同学板演,其他同学自己做,做好后与板演的同学对比,找出不同。
1、更正板演题。
评思路、评方法、评步骤、评结果、评规范。
2、讨论。
(1)循环小数的特点:
(2)循环小数的意义:
3、训练:指出下列哪些是循环小数?
1.55…5.314162…。
1.53533530.19292…。
0.547754…16666。
1.5353…0.6333…。
5.405405…1.2108108…。
认真看课本28页的“你知道吗?”
思考:
1、循环小数中,依次不断重复出现的数字叫什么?
2、数字上面的小圆点叫什么?
3、像5.3…可以简写成多少?
4.7.14545…也可以简写成多少?
五分钟后,看谁说得准确,写得漂亮。
1、学生看书,教师督促学生专心看书。
2、了解学习情况。
3、出示检测题:
用循环节表示出下列循环小数:
1.55…=0.19292…=。
1.5353…=0.6333…=。
5.405405…=1.2108108…=。
指名板演,其他同学仔细观察,为评价作好准备。
看写得是否准确规范,学生评,师生评。
1、必做题:
计算下面各题,除不尽的'用循环小数的简写表示商,再保留两位小数写出它们的近似值。
(1)6.64÷3.3(2)2.29÷1.1。
(3)4÷37(4)38.2÷2.7。
2、选做题:
1、故事导入:
师:你从这个故事中发现了什么规律?(这个故事总是在依次不断地重复同一个内容。)。
师:不错,大家已经发现这个故事的一个特点了。板书:依次不断地重复。
师:谁能根据这个特点接着老师的故事继续往下讲?(让几个学生继续讲这个重复的故事。)。
(引导学生讨论后回答:讲不完。)。
师:如果老师让你们照这样不断重复地一直讲下去,不叫停止,想一想,你们要讲多少遍?(引导学生讨论后回答:循环、无限。)。
生:要讲很多很多遍。
生:要讲无数遍。
师:像这样讲的遍数是“有限的”还是“无限的”?
生:是无限的。
师:你们刚才讲的遍数呢?
生:是有限的。
2、举实例,引入主题。
(其实在日常生活中,也有许多类似的现象。)。
师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说?
(1)、一年四季春夏秋冬的循环。
(2)、白天与黑夜的循环。
(3)、周一至周日的循环。
(4)、1月到12月的循环。
(5)、钟表从1走到12的循环。
师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友——循环小数。(板书课题)这就是今天我们要学习的内容。下面,就让我们再次一起走进知识的海洋——循环小数。
0.75÷2.5=28÷18=。
78.6÷11=1.5÷7=。
1、个别演版。
2、讲评,统计作对人数。问个别学生计算错在哪里?(目的:学生要养成认真计算的好习惯,做题是这样,做任何事情都是这样。)。
3、观察你的计算过程和计算结果,你有什么想对同学和老师说的吗?(小组讨论,个别发言)。
同学们说的真不错!接下来就请同学们用自己刚才的小发现来完成下面的判断题。
(1)、一个小数,从某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。()。
(3)、循环小数是无限小数,无限小数也是循环小数。()。
(4)、循环小数8.3742742…也可以写成8.3742。()。
(5)、7.80=7.8()。
讲评:(1)、强调重点字词。
(2)、是5位小数,是有限小数,不是循环小数。
(4)、让学生明确循环小数有两种表示方法。一种是一般写法,一种是简便写法。
(5)、个别学生上台展示自己比大小的方法:先写成一般形式,再比大小。
你的方法真不错,那就让我们利用这位同学的方法完成下面的练习。
1、0.330.31.231.2331.451.45。
2、从大到小排列。
0.60.60.6060.60…0.06。
(1)、学生独立完成。
(2)、个别演版,把自己比的方法展示出来。
(3)、统计做对的人数,个别说说自己的错因。
提醒学生注意:要看清题目要求是从大到小,还是从小到大。
要用“”连起来。
比的结果里要写题目里给的原数。
同学们,通过我们刚才的思、说和做,解决了许多问题,那就让我们来互相说说这一节课学习的感受吧!
生:我知道小数按照小数部分的位数可以分为有限小数和无限小数,循环小数是无限小数的一种。
生:我知道循环小数就是数字在一个小数的小数部分有规律的无限的重复。
生:我们在写一个循环小数时,虽然在小数部分只写了几个数字,但是后面的省略号表示这是千军万马,浩浩荡荡的。
生:我感觉循环小数是一望无际的。
同学们的表述太精彩了!接下来,让我们放松一下:请欣赏美丽的图案。
吗?
你能利用今天学习循环小数的现象设计一种花边?
教科书第58页的“用数学”。
1.使学生会用学过的数学知识解决简单的实际问题。
2.培养学生用不同的方法解决同一个问题的能力。
3.初步感受数学在日常生活中的作用。
引导学生通过分析数量关系选择正确的计算方法解决问题。
教具学具准备。
课件,实物投影仪,展台,屏幕,练习用的图片。
教师:同学们,鹿老师组织了一个旅游团要到大森林里去游玩。你们想参加吗?
生:想。
师:坐上我们的小火车,准备出发了。(放音乐;火车开了。学生以小组为单位做律动)。
出示课件:美丽的大森林。
师:瞧,美丽的大森林到了,有这么多可爱的小动物,你们喜欢吗?
生:喜欢。
师:今天小动物们要请喜欢数学的同学去他们中间玩,你们谁想去呀?
生:……(争先恐后地说想去)。
生:行。
师:我们先去看看草坪上的小动物都有什么问题呀?(课件拉近第一幅画面,并演示)。
师:你都看到了什么?
生:我看到了草地上原来有9只小鹿在吃草,后来走了3只。(课件出示:大括号和9只)。
师:那你能帮助小鹿提出一个数学问题吗?
生:草地上还剩几只鹿?(课件出示:?只)。
师:你的问题提得真好。谁能用学过的数学知识解决这个问题呢?先请你们集中五人的力量分小组研究一下。研究完以后,把算式写在小黑板上。然后进行汇报和订正。
师:哪个小组愿意来展示一下你们小组研究的结果?
生:我们组列的算式是:9—3=6,草地上还剩6只鹿。
师:谁有问题要问他们?(引导学生提问题)。
生提问:请问你们为什么要用减法计算?
生解答:因为原来草地上有9只小鹿,跑了3只,求草地上还有几只就是求还剩几只。这3只小鹿是从9只里面跑掉的,所以用从9只里面去掉3只,就是剩下的6只。
生提问:9-3为什么等于6?
生解答:因为9能分成3和6。或因为3+6等于9,所以9-3=6。
师小结:同学们真是太聪明了,这么快就帮助小鹿解决了问题,你们数学学得真好。老师真是太高兴了。
过渡:看着这幅画面,你还能发现什么数学问题?(引导学生看草地上的蘑菇)。
学生可能出现三种情况:
1.生提问:草地上一共有8个蘑菇,左边有6个,右边有几个?
师:谁能解决这个问题?
生解答:8-6=2。
生提问:你为什么用减法?
生解答:因为知道了一共有8个蘑菇,左边有6个蘑菇,从8个里面去掉左边的6个就是右边的2个,所以用减法。
师引导:还有发现不同问题的吗?
2.生提问:草地上一共有8个蘑菇,右边有2个,左边有几个?
师:谁能解决这个问题?
生解答:8-2=6。
生提问:你为什么用减法?
生解答:因为知道了一共有8个蘑菇,右边有2个蘑菇,从8个里面去掉右边的2个就是左边的6个,所以用减法。
师引导:还有发现不同问题的吗?
3.生提问:左边有6个蘑菇,右边有2个蘑菇,一共有几个蘑菇?
师:你发现的问题真好,同学们听清楚了吗?我们再请他说一遍,好吗?
(生说,课件依次出示:6只,大括号,?只)。
师:这个问题我们请同学们分小组来解决,好吗?
请一个小组来汇报。提要求:要说清楚你们小组采用的是哪种计算方法,为什么?怎样列的算式。
生汇报:我们小组采用的是加法,因为这个问题得求总数,我们只要把左边的6个和右边的2个合起来就行了,所以用加法。列的算式是:6+2=8。
(课件出示鸭子图。)。
师:你会解决这个问题吗?不告诉别人,自己把算式写在纸上。
学生独立完成,然后集体订正。
师小结:大家帮助小鸭子解决了问题,听它们在谢你们呢?(课件演示鸭子叫)。
课件演示声音:小鸭子的问题解决了,我们还有问题呢?
师:这是谁的声音呀?(课件出示猴子图)原来是小树林里的猴子们等急了,你们能解决猴子们的问题吗?自己完成。
学生写出算式,然后集体订正。
(一)做题小竞赛。
师过渡:同学们,你们还想不想继续帮助小动物们解决问题呀?
生:想。
学生独立做题。
集体订正。(指名直接说算式,集体判断,最后挑出一个题让学生说一说想法)。
(对全做对的同学进行奖励。)。
学生随意说。(教师相继进行热爱大自然,保护小动物的教育)。
让我们开启小火车回家吧。
(二)完成教科书第62页的第13、14题。
让学生独立完成,然后在小组里订正。最后集体订正。
(三)请学生想一想在日常生活中能用数学知识解决哪些实际问题。
学生随意说。
师:数学知识真重要呀,他能帮我们解决这么多实际问题,我们一定要学好它。
1.理解和掌握循环小数的概念.。
2.掌握循环小数的计算方法.。
教学重点。
理解和掌握循环小数等概念.。
教学难点。
理解和掌握循环小数等概念.。
教学过程。
一、铺垫孕伏。
(一)口算。
0.8/0.5=4/0.25=1.6+0.38=。
0.15/0.5=1-0.75=0.48+0.03=。
(二)计算。
21/3=15/3=12/3=10/3=。
教师提问:通过计算,你发现了什么?
二、探究新知。
(一)教学例7。
例710/3。
1.列竖式计算。
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)。
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.。
所以10/3=3.33……。
(二)教学例8。
例8计算58.6/11。
1.学生独立计算。
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6/11=5.32727……。
3.观察比较10/3=3.33……58.6/11=5.32727……。
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)。
教师板书:循环小数.像3.33……和5.32727……是循环小数.。
5.简便写法。
3.33……可以写作;
5.32727……可以写作。
6.练习。
把下面各数中的循环小数用括起来。
1.5353……0.19292……8.4666……。
(三)教学例9。
例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)。
1.学生独立列式计算。
130/6=21.666……。
asymp;21.67(十克)。
答:小汽车大约装21.67千克汽油.。
2.集体订正。
重点强调:保留两位小数,只要除到小数点后第三位即可.。
3.练习。
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.。
28/182.29/1.1153/7.2。
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
三、课堂练习。
(一)计算下面各题,哪些商是循环小数?
5.7/914.2/115/810/7。
(二)下面的循环小数,各保留三位小数写出它们的近似值.。
1.29090……0.0183838……。
0.4444……7.275275……。
四、布置作业。
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.。
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)。
1、故事导入:
师:你从这个故事中发现了什么规律?(这个故事总是在依次不断地重复同一个内容。)。
师:不错,大家已经发现这个故事的一个特点了。板书:依次不断地重复。
师:谁能根据这个特点接着老师的故事继续往下讲?(让几个学生继续讲这个重复的故事。)。
(引导学生讨论后回答:讲不完。)。
师:如果老师让你们照这样不断重复地一直讲下去,不叫停止,想一想,你们要讲多少遍?(引导学生讨论后回答:循环、无限。)。
生:要讲很多很多遍。
生:要讲无数遍。
师:像这样讲的遍数是“有限的”还是“无限的”?
生:是无限的。
师:你们刚才讲的遍数呢?
生:是有限的。
2、举实例,引入主题。
(其实在日常生活中,也有许多类似的现象。)。
师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说?
(1)、一年四季春夏秋冬的循环。
(2)、白天与黑夜的循环。
(3)、周一至周日的循环。
(4)、1月到12月的循环。
(5)、钟表从1走到12的循环。
师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友——循环小数。(板书课题)这就是今天我们要学习的内容。下面,就让我们再次一起走进知识的海洋——循环小数。
0.75÷2.5=28÷18=。
78.6÷11=1.5÷7=。
1、个别演版。
2、讲评,统计作对人数。问个别学生计算错在哪里?(目的:学生要养成认真计算的好习惯,做题是这样,做任何事情都是这样。)。
3、观察你的计算过程和计算结果,你有什么想对同学和老师说的吗?(小组讨论,个别发言)。
同学们说的真不错!接下来就请同学们用自己刚才的小发现来完成下面的判断题。
(1)、一个小数,从某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。()。
(2)、9.66666是循环小数。()。
(3)、循环小数是无限小数,无限小数也是循环小数。()。
(4)、循环小数8.3742742…也可以写成8.3742。()。
(5)、7.80=7.8()。
讲评:(1)、强调重点字词。
(2)、是5位小数,是有限小数,不是循环小数。
(4)、让学生明确循环小数有两种表示方法。一种是一般写法,一种是简便写法。
(5)、个别学生上台展示自己比大小的方法:先写成一般形式,再比大小。
你的方法真不错,那就让我们利用这位同学的方法完成下面的练习。
1、0.330.31.231.2331.451.45。
2、从大到小排列。
0.60.60.6060.60…0.06。
(1)、学生独立完成。
(2)、个别演版,把自己比的方法展示出来。
(3)、统计做对的人数,个别说说自己的错因。
提醒学生注意:要看清题目要求是从大到小,还是从小到大。
要用“”连起来。
比的结果里要写题目里给的原数。
同学们,通过我们刚才的思、说和做,解决了许多问题,那就让我们来互相说说这一节课学习的感受吧!
生:我知道小数按照小数部分的位数可以分为有限小数和无限小数,循环小数是无限小数的一种。
生:我知道循环小数就是数字在一个小数的小数部分有规律的无限的重复。
生:我们在写一个循环小数时,虽然在小数部分只写了几个数字,但是后面的省略号表示这是千军万马,浩浩荡荡的。
生:我感觉循环小数是一望无际的。
同学们的表述太精彩了!接下来,让我们放松一下:请欣赏美丽的图案。
吗?
你能利用今天学习循环小数的现象设计一种花边?
1、复习6以内数的组成,能正确地记录6以内数的分合形式。
2、练习5以内的加减运算,能看算式报出答案。
3、能大方地在集体面前回答问题。
1、经验准备:幼儿已学过6的组成和5的加减。
2、幼儿用书1-21页。
(一)游戏:碰球。
——鼓励幼儿前一已有经验大方地在集体面前回答。
——师幼共同玩“碰球”的游戏。
1、教师出示数字卡片“5”,请幼儿看数字卡片,要求幼儿口报的数字和老师报的数字合起来是“5”。
2、游戏2—3遍后,可更换出示数字“6”。“4”,提醒幼儿口报的数字要和老师报的数字合起来与卡片上的数字一样多。
(二)游戏:开快乐火车。
——师友共同玩游戏,鼓励幼儿快速地报出算式卡片上的得数,要求既要算得快,又要算的对:嘿嘿,我的火车就要开,幼儿:几点开?教师出示算式:你们猜?幼儿:()点开。
(三)幼儿操作活动。
——看分合式填空格。引导幼儿观察圆点和数字分合式。启发幼儿在空格中填写相应数量的圆点或数字,并说一说分合式。
——看算式进行5以内加减运算。
——看图列算式。
——算式与答案连线。
(四)活动评价。
——鼓励个别幼儿大方地在集体面前介绍自己的活动与记录,其他幼儿对照检查自己的操作活动。
——展示幼儿的操作材料,表扬画面整洁、正确的幼儿。
教学目标:
1、使学生理解除数是一位数,商是整十、整百数的口算方法,学会正确、熟练地进行计算。
2、引导学生将掌握的口算乘法知识迁移到口算除法中去,培养学生迁移类推的能力。
3、培养学生的语言表达能力。
教学重点:
能正确进行口算。
教学难点:
掌握口算除法的思维方法,理解算理。
教具准备:
口算卡片、小棒。
教学过程:
一、学前准备。
1、口算。
教师出示口算卡片,学生抢答。
2、口答。
60里面有几个十?800里面有几个百?240里面有几个十?
3、把6根小棒平均分成3份,每份是多少根?
二、探究新知。
1、学习教材第11页例1。
(1)教师:我们来帮助小朋友解决问题吧。
教师板书:60÷3。
(2)尝试解答60÷3。
(3)交流、汇报计算方法。
(4)动手操作。
请同学们拿出6捆小棒,分一分。
(5)说说谁的.方法最简单,你喜欢用哪种方法进行口算。
(6)同桌交流60÷3的口算过程。
教师指导,帮助学习有困难的学生。
2、学习600÷3=。
(1)板书:600÷3=。
师:这道题应怎样想呢?
(2)尝试口算600÷3=。
(3)提问:谁能说出600÷3的口算方法。
3、学习教材第12页例2。
板书:120÷3。
(2)观察被除数与刚才所学例题中的被除数有什么不同。
(3)引导学生独立口算。
(4)说一说思考的过程。
三、课堂作业新设计。
1、教材第11页“做一做“。
(1)集体看“做一做“。
(2)观察每组中上下两题的异同。
(3)找出其中的运算规律。
(4)独立完成。
(5)验证其运算规律是否正确。(当被除数扩大到原来的10倍,除数不变时,商也扩大到原来的10倍)。
2、教材第13页练习三的第1―3题。
(1)独立完成。
(2)边做边口述口算过程。
四、思维训练。
1、列式并写出得数。
(1)6000除以3的多少?
(2)3600除以4的多少?
2、抢答。(口算卡)。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/yanjianggao/556212.html