教案模板是教师备课的一种重要工具,它能够规范教学过程,提高教学效果。以下是小编为大家收集的教案模板范文,供大家参考和借鉴。
本课是小学六年级数学广角的内容。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于利用学生已有的认知,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下可取之处:
兴趣是最好的老师。课前“抽扑克牌”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。比如:任意点13个同学起来,至少有2个同学在同一天过生日。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,特别是在学生叙述的过程中,学生用比较凌乱的语言的进行描述,教师指导不够,因为数学语言精简性直接影响着学生对新知识的理解与掌握,也就是没有很好地强化理解“总有”“至少”的含义。
“电脑算命”看起来挺玄乎,只要你报出自己出生的年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。
其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。
抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果。这是因为如果每一个抽屉里最多放有一个苹果,那么两个抽屉里最多只放有两个苹果。运用同样的推理可以得到:
原理1把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
原理2把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。
如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于1.1×=21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦!
在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的.抽屉数为60×360×12=259200。
所谓“电脑算命”不过是把人为编好的算命语句象中药柜那样事先分别一一存放在各自的柜子里,谁要算命,即根据出生的年月、日、性别的不同的组合按不同的编码机械地到电脑的各个“柜子”里取出所谓命运的句子。这种在古代迷信的亡灵上罩上现代科学光环的勾当,是对科学的亵渎。
教学过程:
一、创设情景,导入新课。
师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。引导学生观察游戏结果--不管怎么坐,总有一个座位上至少坐了2位同学。
师:为什么?(学生回答)。
师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。
师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!
二、探究新知。
(一)教学例1。
1、出示题目:把4枝铅笔放进3个文具盒里。
(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)。
2、理解“至少”
师:“至少”是什么意思?如何理解呢?
(最少2枝,也可能比2枝多)。
师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。
3、自主探究。
(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。
(2)全班交流,学生汇报。
第一种方法:
(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。
教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)。
第二种方法:
师:还有别的思考方法,来验证我们之前的猜测吗?
假设法:(学生汇报)。
师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。
4、优化方法。
那么把5枝铅笔放进4个文具盒里,会怎样呢?
那么把6枝铅笔放进5个文具盒里,会怎样呢?
那么把7枝铅笔放进6个文具盒里,会怎样呢?
那么把100枝铅笔放进99个文具盒里,会怎样呢?
(学生解释说明,师课件演示)。
师:你们为什么都用第二种方法,而不用列举法呢?
5、发现规律。
师:通过刚才我们分析的这些现象,你发现了什么?
(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)。
6、出示做一做:7只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一个鸽舍里?
(1)学生独立思考,可以自己想办法解决。
(2)全班汇报,解释说明。
(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)。
(二)教学例2。
1、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?
2、学生利用学具探究。
3、学生汇报,教师课件演示。
如果把我们的这种思维方法用式子表示出来,该怎样列式?
5÷2=2…..1(3)。
4、拓展:把7本书放进2个抽屉里呢?
把9本书放进2个抽屉里呢?用式子怎么表示?
7÷2=3….1(4)。
9÷2=4…1(5)。
师:同学们观察这些板书,你发现了什么规律吗?
(商+余数)(商+1)。
5、做一做:8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?
学生独立思考,汇报交流。板书式子:8÷3=2…2(2+1=3)。
教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.
(三)结论。
师:同学们,真的非常厉害,刚才我们一起探究的这种现象,就成为“抽屉原理”
课件出示。
三、拓展应用。
“抽屉原理”在现实生活中引用也是非常广泛的。下面,老师再带大家做一个小游戏。扑克牌游戏。
1、理解最简单的抽屉原理及抽屉原理的一般形式。
2、引导学生采用操作的方法进行枚举及假设法探究。
经历抽屉原理的`探究过程,初步了解抽屉原理。
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。
教学内容:
教科书第68、69页例1、2。
教学目标:
1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
教学重点:分配方法。
教学难点:分配方法。
教学方法:列举法、分析法。
学习方法:尝试法、自主探究法。
教学用具:课件。
教学过程:
(一)游戏引入。
1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
(二)揭示目标。
理解并掌握解决鸽巢问题的解答方法。
1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
(1)理解“总有”和“至少”的意思。
(2)理解4种放法。
2、全班同学交流思维的过程和结果。
3、跟踪练习。
68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
(1)说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
(2)尝试分析有几种情况。
(3)说一说你有什么体会。
1、出示例2。
把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
(1)合作交流有几种放法。
不难得出,总有一个抽屉至少放进3本。
(2)指名说一说思维过程。
如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
2、如果一共有8本书会怎样呢10本呢?
3、你能用算式表示以上过程吗?你有什么发现?
7÷3=2……1(至少放3本)。
8÷3=2……2(至少放4本)。
10÷3=3……1(至少放5本)。
4、做一做。
11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
1、鸽巢问题怎样求?
小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
2、做一做。
69页做一做2题。
(一)小结。
鸽巢问题的.解答方法是什么?
物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。
(二)检测。
1、填空。
(1)7只鸽子飞进5个鸽舍,至少有()只鸽子要飞进同伴的鸽舍里。
(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放()本书。
(3)四年级两个班共有73名学生,这两个班的学生至少有()人是同一月出生的。
(4)任意给出3个不同的自然数,其中一定有2个数的和是()数。
2、选择。
(1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于()元。
a、60b、61c、62d、59。
(2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于()元。
a、3b、4c、5d、无法确定。
3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?
完成课本练习十二第2、4题。
板书。
物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。
抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的.思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。
又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
学生的数学学习过程就是利用学生已经学过的只是和现在有的经验基础,然后理解更高更深更复杂的知识。数学强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的.运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说这节课。
本单元共三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。今天我讲的是例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。因此,这节课在本单元起着引领指航的重要作用。
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
教学难点:理解抽屉原理中“总有”“至少”的含义。
我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
本节课共四个教学环节:游戏导入——探究新知——解决问题——游戏深化。
下面我分别说说这样设计的意图。
通过“抢椅子”游戏,体验不管怎么坐,总有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,我这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论或囫囵吞枣,让学生不但知其然,更要知其所以然。课上我让学生通过列举法、数的分解法及假设法探究总结出了结论:3本书,放到2个抽屉里,不管怎么放,总有一个抽屉里至少有2本书。这是本课的重点,接着引导学生把每种分法中得书最多的旁边作个记号,得出每种分法中有一名学生得2本、3本即2本书以上,再让学生用一个词语表示这种意思,那就是“至少”的意思,再反过来理解“总有”“至少”的意思。这样既突破了本节课的难点,也加深了对抽屉原理的理解。
在此基础上,我让学生把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?先摆放、再讨论能不能只摆一次就能得出结论。然后得出只要先平均分,再把余下的再平均分就能得到“不管怎么放,总有一个盒子里至少有2枝铅笔。”
数学来源于生活又服务于生活,此环节我选择了贴近学生生活的喜闻乐见的事物,让学生在满怀激情中解决问题。练习题的设计遵循了“让学生接触这类问题——逐步熟悉这类问题——然后归纳这类问题的基本型——这类问题的变式型。即给出了抽屉数,引导学生逆向思维去求物体数,这一问题是抽屉原理的逆思考问题,拓宽了学生的思维空间。
课的开始是游戏导入,结束时必须让学生没有遗憾的离开课堂,所以我在出示了几道关于出生年、月、日的练习题,在解决这几个问题时,我把问题逐步深化,比如:四(3)班有43名同学,至少有多少人在同一个月出生?我校有1603名学生至少有xx人同日出生。最后我又给学生做了一个游戏:有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?这一类问题正是下节课要学习的抽屉原理(二)的知识,学生的思维向纵深发展了,不但解决了问题还受到了相信科学不迷信的情感教育,落实情感教育标。
“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课借助把4本书放进3个抽屉里的操作情境,介绍了一类较简单的“抽屉原理”。
本课通过直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考思考问题的意识。
本节课我安排了四个教学环节:
第一环:创设情境,诱发兴趣。
在这个环节中,安排了一个小游戏:任意抽取五张扑克牌,不看牌判断五张牌中同种花色的至少有2张,让学生猜猜。为什么老师可以这样判断?由此引发学生的兴趣,营造一个愉快的学习氛围,为学习新知创设良好的情境。
第二环:自主参与,探索新知。
在这个环节中,教学时先放手让学生自主思考,采用实践操作的方法进行“证明”,然后再进行交流,引导他们对“列举法”、“假设法”两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题。
第三层:应用新知,解决问题。
让学生借助直观和假设法最核心的思路“有余数除法”形式,使学生更好的理解抽屉原理解决问题的'一般思路。小学生不要求学生用反证法进行严格的证明,鼓励学生借助学具、实物操作、或画图的方式进行说理。
第四层:引导学生总结规律。
在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。
今天听了唐老师上的《抽屉原理》一课,深有感触,我一直认为抽屉原理是在奥数书上出现的,因为初中也一直没把它列入必修项目,没想到在小学六年级的数学广角里出现了,而且小学生也能听明白,看来我们有时多了解一下小学课本,也可以为小学知识再现时多一份准备。我对唐老师这堂课有下面几点粗浅的看法:
唐老师整堂课给我的感觉就是内容较充实,知识一层层地加深,一环连一环。这可见唐老师的教学功底确实很扎实。他先是出了三颗棋子放两个杯子,几种放法?然后再四颗放入三个杯中,再五颗放四个杯子中,都有几种分法?进一步引入了平均分,得出了“抽屉原理”,并由一个知识链接介绍了创始人狄利克雷。紧接着唐老师又把数字改变,5颗放入2个杯中,7颗放入3个杯子,9颗放入2个杯中,6颗放入4个,让学生充分应用了平均分的方法计算,总有一个杯子中至少放几颗?后面又是扑克游戏、请你判断、实践应用等习题的运用,让学生把做这类题的算法深深印在脑海中,而且在每次的练习中都能让学生用数学语言去说,去学。
唐老师整堂课都贯穿了让学生“摆一摆”,两同桌通力合作,共同探究,找出摆棋子的多种方法,并把方法记下,这样答案就不言而喻了,一目了然。学生在“摆一摆”的过程中去慢慢体会平均分所得出的“抽屉原理”。
一点建议:唐老师这堂课肯定也花了不少精力去准备了这么多道题,但我觉得整堂课学生似乎真正思考的时间并不多,学生摆棋子也只是匆匆忙忙的,因为我都有点应接不暇了,更何况初学的学生。所以我觉得唐老师可以在习题上、变化不大的题方面减点,让学生有更多的时间思考一下为何要这样分,变老师的为自己的,这样才会记忆深刻。另一方面我觉得在“摆一摆”方面,可以先出二道有变化的习题让学生同时摆,摆完这题再摆下一题,这样学生可能在操作方面不会疲于应付,而会去更多一份思考,从而更调动了学生的积极性。
《抽屉原理》共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。让学生经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:
理解“抽屉原理”,并会用“抽屉原理”解决简单的实际问题。
本节课共三个教学环节:游戏导入——探究新知——解决问题——课堂小结。
下面我分别说说前3个环节。
第一环节——游戏导入。
通过“抢椅子”游戏,体验不管怎么坐,一定有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
第二环节——探究新知。
此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,让学生不但知其然,更要知其所以然。课上我让学生通过小组合作摆一摆,说一说,让每一个学生都参与到知识的探究中来,让学生实际到讲台前演示,并对数进行分解法,把学生得出的结论进行汇总,最后由学生总结出了结论:5根小棒放进4个杯子,一定有一个杯子里至少有2根小棒。例2是让学生明确数量、抽屉和结论三者之间的关系,特别是对“一定有一个杯子里至少有小棒的根数”是除法算式中的商加“1”,而不是商加“余数”,我适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”,引导学生总结归纳这一类“抽屉问题”的一般规律。
第三环节——解决问题。
此环节是对学生学习效果的检验,在设置习题方面采取层层深入,有一定的梯度,由学生很容易找到抽屉的题型过度到抽屉隐藏在题目中,逐渐提高难度,所选择的题力争与实际生活相结合。
整节课,我始终注意调动学生的学习兴趣,通过小组讨论,动手操作,学生演示,幻灯示范,抓住学生的思维,让学生通过我的引导来完成本节课的学习。
7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友中才能保证有两人选的玩具相同。
8、有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。
加分题:每题20分。
2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。
5、从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.
一.说教学内容。
二.说教学目标。
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
三.说教学理念。
1、用具体的操作,将抽象变为直观。
“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。
2、充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生手去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
3、适当把握教学要求。
我们的教学不同于社会上的辅导培优机构,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“抽屉”和“物体”。
四.教法和学法:
以学生为课堂的主体,采用创设情境,提出问题,让学生大胆猜测、动手操作、自主探究、合作交流。
五.说教学流程.
(一)、游戏激趣,初步体验。
今天在学习新课之前,老师和大家玩一个“抢凳子”游戏。(下面有2把椅子。3个同学玩抢凳子的游戏,要求每个人都要坐到凳子上,结果会怎样?)。
(二)、操作探究,发现规律。
1、提出问题:把4支笔放进3个文具盒中,可以怎么放?
2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。
(1)先请列举所有情况的学生进行汇报,一、说明列举的不同情况,二、结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)。
学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支笔被放进了同一个文具盒。
(2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?
学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。
在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。
(3)初步观察规律。
4、发现规律,初步建模。
我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)。
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。
5、用有余数的除法算式表示假设法的思维过程。
(2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?
6、再次发现规律。
观察板书,你有什么发现吗?让学生通过对除法算式的观察,得出“只要物体个数比抽屉个数几倍还多,总有一个抽屉至少有商+1个这样的物体。”的结论。
7、介绍课外知识。
介绍抽屉原理的发现者——数学家狄里克雷。
【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】。
(三)、巩固练习。
《导学练案》自我测评第一题。
(四)、归纳小结,强化思想。
对于本节课的学习,你的感受如何?
(五)板书设计。
只要物体数量比抽屉的数量多,
总有一个抽屉至少放进2个物体。
只要物体个数比抽屉个数几倍还多,总(至少数=商+1)。
有一个抽屉至少有商+1个这样的物体。
各为评委、老师,大家好:
我说课题目是《抽屉原理》(板书),这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说说这节课。
本单元共三个例题,例1、例2的内容,教材通过几个直观的例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。例1和例2既可以用一课时完成,又可以分两课时完成,而我选择后者,有如下思考。
数学广角的内容蕴含着丰富的数学思想方法,广角的教学目的主要在于让学生受到数学思想方法的熏陶,发展数学思维能力,因此对大多数学生而言,学起来是存在一些思维难度的。而抽屉原理是数学广角这个皇冠上的明珠,比十一册上的《鸡兔同笼》的学习更具挑战性。在《抽屉原理》中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度,尤其是对“至少”的理解,它不同于以往数学学习中所说的含义,这里的“至少”是指在物体个数最多的抽屉中找到最少的物体个数,这对学生而言是一种全新的思维方式,他们很可能一时转不过弯。另外,让学生用精炼准确的语言来表述自己的思考也是一个难点。
再看看课本,根据例1、例2理出了《抽屉原理》的知识序列。例1描述的是物体数比抽屉数多1的情况,例1的做一做代表的是物体数不到抽屉数的2倍,比抽屉数多2、多3一类的情形,例2描述的是物体数比抽屉数的非1整数倍多1的情况,例2的做一做代表的是物体数比抽屉数的非1整数倍多,且不止多1的情形。可见,例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,他们才可能顺利地进行例2的学习,否则,此内容的学习将只是优生炫酷的天地,他们可能一开课就能说出原理,而其他学生可能一节课下来还弄不清什么是“总有一个”、什么是“至少”,怎样才能很快知道“至少”是几个物体。因此,我选择将例1、例2分成两课时完成。可能有老师说,这样本课的教学内容容量太少了,基于这一点,我在第四个环节有说明的。
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点是:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
我把:理解抽屉原理中“总有”“至少”的含义作为本课的教学难点。
我之所以这样确定教学目标和重难点,是因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
第四个方面是:以学定教,与课堂对话。
本节课共我设计了四个教学环节:游戏导入——探究新知——反思、呈现——解决问题(游戏)。
下面我分别说说这样设计的意图。
第一环节——游戏导入。
由于只把例1作为本课的教学内容,我在设计的时候对例1的教学进行了一些铺垫和补充。在导入部分,设计了猜至少有几个学生是同月生的游戏,拉近数学与生活的关系,激发学生的探究欲望。在例1的教学后加入了5枝铅笔放入4个盒子的问题,目的在于通过两个不同的实例让学生较充分地感受、体验、发现相同的现象,有利于学生进行抽象、概括,使结论的得出更有说服力。然后拓展到7枝铅笔放入5个盒子,8枝铅笔放入5个盒子,9枝铅笔放入5个盒子,这一类余数是2、是3、是4的问题的探究,完成对抽屉原理第一层次的认识。
第二环节,探究新知。
根据学生学习的困难和认知规律,我在探究部分设计了三个层次的教学活动,这三个层次的教学活动由形象思维逐步过渡到抽象思维,层层递进,培养学生的逻辑思维能力。
第一个层出:实物操作,把4枝铅笔放入3个盒子(板书),解决3个问题:
1、怎样放。
知道排列组合的方法,明确如果只是放入每个盒中的枝数的排序不一样,应视为一种分法,并引导学生有序思考,为后面的列举扫清障碍。
2、共有几种放法孕伏对“不管怎样放”的理解。
3、认识“总有一个”的意义。
通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。
第二个层次:脱离具体操作,由抽象到数,进行数的分解——思考把5枝铅笔放入4个盒子(板书包括6支5盒),又会出现怎样的情况,学生直接完成表格。这一层次达成三个目的:
1、理解“至少”的含义,准确表述现象。
通过观察表格中枝数最多的盒子里的数据,让学生在“最多”中找“最少”,学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒”时,总有一个文具盒里至少放入2枝铅笔的结论。
2、理解“平均分”(板书)的思路,知道为什么要“平均分”。
抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个文具盒里至少是几枝的方法——就是按照盒数平均分,只有这样才能让最多的盒子里枝数尽可能少。
3、抽象概括小结现象。
通过“4枝放入3个盒子”、”5枝放入4个盒子”和练习题“6枝放入5个盒子”,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”(板书),初步认识抽屉原理。
(三)学生自选问题,探究“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”(板书789物体5抽屉)。
这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。
教学流程的第三个环节,将本节课研究过的所有实例进行总体呈现,让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体(板书)。
在最后的练习环节以游戏的形式出现,我设计了几个需要应用“抽屉原理”解决的简单的实际问题,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是“待分的东西”,什么是“抽屉”,同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。
平均分。
4支铅笔放进3个文具盒。
5支4个。
6支5个。
当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体。
7个物体5抽屉。
8个物体5抽屉。
9个物体5抽屉。
﹕﹕。
﹕﹕。
“……,不管怎样放,总有一个抽屉,至少放进2个物体。”
这是这节课的板书设计。
谢谢大家!我的说课完毕。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/yanjianggao/502812.html