首页 > 范文大全 > 演讲稿

教学设计的问题(优质19篇)

教学设计的问题(优质19篇)



在编写教学计划时,需要充分考虑学生的实际情况和学习特点。随着教育改革的不断深入,教学计划的编写也发生了一系列的变化和创新。

《解决问题》教学设计

1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.

2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心.

感受“转化”策略的价值,会用“转化”的策略解决问题。

电子课件、实物投影。

预习效果检测分别出示两组图片。

(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。

学生得出:第一个图形:上面半圆向下平移5格。

第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。

教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。

师:你知道你刚才比较时运用了什么策略吗?

教师板书转化,将课题补全(用转化的策略解决问题)。

在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。

这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。

转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。

空间与图形的领域。

1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?

2、检查课本练一练,指名学生口答。

转化成什么图形可以使计算简便?怎样转化?

3、检查练习十四第三题。

4、试一试:1/2+1/4+1/8+1/16。

这道题你是怎样求和的?小组交流。

5、练一练4(课本练习十四1)。

每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。

三、当堂达标:完成补充习题对应的练习并交流反馈。

四、故事启迪,领悟转化的技巧。

数学家爱迪生求灯泡的容积的故事(幻灯片)。

有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。

爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。

听了这个故事,你明白了什么道理?

五、课堂总结:

多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。

《相遇问题》教学设计

教学目标:

1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

教学重点:

“求相遇时间问题”的特征和解题方法。

教学难点:

“求相遇时间问题”的特征和解题方法。

教学用具:

多媒体课件一套。

教学过程:

一、激趣引入,复习旧知。

1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?

2、口头列式1500/100=15分钟。

3、复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:时间=路程/速度)。

二、学习新课。

读题分析。

思考:这里的460米是几个人走的?

两人是怎样走的.?

一份钟两人一共行了多少米?

(第三问时:用课件演示帮助,学生理解)。

学生尝试练习。

评讲板演,理清解题思路,概括解题方法。

教师板书:60+55=115米。

460/115=4分钟。

综合算式:460/(60+55)。

=460/115。

=4分钟。

质凝:求相遇的时间应先求什么,再求什么?

你知道吗?相遇时他们各行了多少米?

揭示课题:求相遇时间。

2、试试。

三、变式深化。

1、对比练习。

比一比你能找到两题之间的联系吗?

2、变式应用。

四、小结。

今天这节课主要学习了什么内容?你获得什么本领?

五、课堂作业。

练一练的第2——5题。

板书设计:

60+55=115米。

460/115=4分钟。

综合算式:460/(60+55)。

=460/115。

=4分钟。

植树问题教学设计

教学目标:

1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。

2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。

3、感悟建构数学模型是解决实际问题的重要方法之一。

教学重难点:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。

教学过程:

1、猜。

s:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)。

s:可以种5棵,4棵,3棵。

2、画。

t:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的练习纸,把你的想法画在练习纸上。开始吧!

s独立画图,教师巡视指导。

t:画好了的请举手。我们找同学说说你是怎样画的。

顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)。

3、找规律。

s:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)。

t:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?

t:怎么求这个段数,能用式子表示一下吗?

s:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)。

t:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。

s:汇报t强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)。

4、列算式。

t:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?

s:独立列算式汇报说理由。

t:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。

5、解决问题。

t:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?

3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)。

s列式解答全班交流。

6、拓展延伸。

t:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?

s:剪绳子,锯木头,摆花。

t:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)。

7、总结。

t:这节课学得怎么样?

烙饼问题教学设计

人教版四年级上册第七单元“数学广角——烙饼问题”。

【教学目标】。

1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。

2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题。

4、使学生逐渐养成合理安排时间的良好习惯。

【教学重点】。

寻找合理、快捷的烙饼方案。

【教学难点】。

初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。

【教学准备】。

课件、三张圆纸片。

【教学过程】。

一、创设情境,导入新课。

课件多媒体出示图片:鸡蛋。

师:同学们,请看,这是什么?(鸡蛋)如果煮熟一个鸡蛋大约要用4分钟的时间,那么煮熟10个鸡蛋大约用多长时间呢?(学生作答)。

师:同学们,在日常生活中有许多事情都要讲究方式方法,才能达到事半功倍的效果。这节课我们就一起从数学的角度来研究烙饼的方法吧!

师:随机板书课题——烙饼问题。

二、自主探索,探究烙法。

(一)解读信息,理解烙饼规则。

课件出示情境:同学们,图中妈妈已经开始烙饼了,你们从图中得到了哪些数学信息?(生答)。

师:每次只能烙两张饼是什么意思?两面都要烙又是什么意思?(生答)。

(二)观察学习,探究两张饼的最佳烙法。

1、明确烙一张饼的时间。

师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)。

师:为什么是6分钟?(生答)。

师:根据学生的回答,老师用流程图把刚才这位同学的烙饼过程板书下来。

板书:一张:正反。

3分钟3分钟(6分钟)。

2、探究烙两张饼的最优方法。

师:同学们,想一想:如果烙两张饼,怎么烙?有几种可能?(同桌合作,用圆纸片代替饼进行实践并作好记录)。

汇报交流:学生回答并上台演示,教师板书。

第一种:12分钟。

板书:两张:(1)正(1)反(2)正(2)反。

3分钟3分钟3分钟3分钟(12分钟)。

第二种:6分钟。

板书:两张:(1)正(2)正(1)反(2)反。

3分钟3分钟(6分钟)。

师:同学们,通过合作演示同样烙两张饼出现了两种不同的答案,你们认为那种烙法最快?为什么第一种烙法多用了6分钟呢?(学生展开讨论)。

师生共同小结:就是说本来可以两张放在一起烙,而第一种每次只烙了一张,浪费了空间,也浪费了时间,所以多用了6分钟。

师:如果我们要尽快的把饼烙熟,你会选择哪种烙法呢?(生答)我们给第二种烙法取一个名字,就叫做“两饼同烙”。(板书)。

(三)动手操作,探究3张饼的最优烙法。

师:同学们,请看大屏幕,现在妈妈烙几张饼?(3张)瞧瞧小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢?(生答)。

师:回答得很好。现在我们来分组动手烙一烙吧。看看怎样才能把3张饼最快的烙熟,在动手之前,我们先看清要求。(课件出示数学信息:探究要求)。

师:请小组长拿出3张圆纸片当作3张饼,小组进行合作,动手操作烙饼。(生操作,师巡视)。

学生展示自己的成果,教师板书。

第一种:3张(1)正(2)正(1)反(2)反。

3分钟3分钟。

(3)正(3)反。

3分钟3分钟(12分钟)。

第二种:3张(1)正(2)正(1)反(3)正。

3分钟3分钟。

(2)反(3)反。

3分钟(9分钟)。

师:同学们,请你们比较一下这两种不同的烙法,为什么都是3张饼一种需要4次,另一种需要3次?(同桌相互交流说说)。

教师引导归纳:常规的烙法,先把两张饼放进去,正反面烙完后,再烙第3张。第3张饼的两面得一面一面烙,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费空间,最省时间。所以我们在平时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实很快。这种烙法帮我们解决了数学难题,我们也可以给它取个名字叫“交替烙”或“轮流烙”(板书)。

师:同学们,不管做什么事情,我们都要事先做好安排、想好策略,这样就能节省时间和空间,提高办事效率。所以,日常生活中我们要合理安排时间,充分利用空间。

三、总结方法,探究规律。

师:下面我们来研究烙4张饼,条件不变。谁能不能动手摆摆就知道怎样烙最节省时间?大家先想一想,你来当小老师给同学们讲清楚。(实在想不出来的可以借助学具帮忙)。

1、反馈烙4张饼的方法。

师:如果烙4张饼,怎样烙?(生答)师板书4张分成2张2张。能不能说得更简单一些?(可以说2张2张烙)最少需多少时间?现在老师请一位同学上台烙一烙,大家帮他数一数烙饼的次数好吗?(观察后生答:4次12分钟)。

2、反馈烙5张饼的方法。

师:如果烙5张饼,怎样烙?你能不能很快说出烙5张饼最少烙几次?最少需多少时间?

生:上台演示、讲解:先烙2张再烙3张共5次,需15分钟。

3、出示烙6、7、8、9、10张饼的课件。

师:同学们,请你们仔细观察大屏幕上的表格,如果烙6、7、8、9、10张饼,分别至少要烙几次,需要多长时间?(生答完成表格)。

师:请仔细观察这个表格,你发现了什么?(引导学生归纳总结)。

得出:最短的总时间=烙饼的次数x烙每一面饼的时间(1除外)烙饼的次数=烙饼的张数(1除外)。

师:找到了规律我们解决问题就容易了。因此,在日常生活中,我们更应该合理地安排时间,才能去做更多的事情。

四、结合实际,实践应用。

师:同学们,我们已经找到了烙饼的规律,总结出了公式,我们就利用这个规律和公式来计算一下给我们班的每一位学生烙一张饼至少需要几次?最少需要多长时间?(同桌讨论,全班交流)。

五、课堂总结。

师:通过这节课的学习,你想说些什么?(同桌互说)。

师:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人!

《植树问题》教学设计

“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教学重难点:

掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教具学具:

绳子、挂图、泡沫、小树、题卡

教学过程:

1.小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)

透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。

2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:(1)计算一共需要准备多少棵树苗

(2)思考棵数与间隔数的关系。

点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。

3.汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1

(2)只种一端:棵数=间隔数

(3)两端都不种:棵数=间隔数-1

点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。

1、做一做:

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)

植树问题

两端都种:棵数=间隔数+1

只种一端:棵数=间隔数

两端都不种:棵数=间隔数-1

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)

只种一端:50÷5=10(棵)

两端都不种:50÷5-1=9(棵)

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

教学后记:

本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

解决问题教学设计

教学目标:

1、结合现实生活中的具体情境,让学生经历发现问题、解决问题的过程,学会用连乘的方法解决问题。

2、使学生学会分析连乘问题的数量关系,运用合理的解题思路解决问题。

3、培养学生多角度观察问题、解决问题的能力,让学生体会解决问题策略的多样化。

4、培养学生认真观察、积极思考、完整准确表达的习惯,初步形成综合运用数学知识解决问题的能力。

教学重点:使学生能正确分析并解决连乘问题。

教学难点:引导学生寻求解决连乘问题的解题思路,并体会找到中间问题的过程。

教学过程。

一、创设情境,复习导入。

师:同学们,我们先来做一个小练习,请大家看屏幕。(课件出示:在超市的一个货架放着各种包装的面包,爸爸买了其中一种面包4袋,一共多少钱?)。

师:读一读,你能解决这个问题吗?

(学生认真的观察思考,要求一共多少钱所需要的条件。学生会发现不能求出问题,因为不知道1袋面包的价钱)。

师:就是说,要求一共的钱数,需要知道哪两个条件?

(在学生回答后教师课件出示:)。

师:知道这两个条件,就能求出总钱数。那你们刚才说哪个条件不知道?(学生回答后)。

师:我们就补充上这个条件。(课件出示完整题目:每袋面包12元,爸爸买了4袋,一共需要多少元钱?)。

师:现在能解决了吗?该怎么列式计算?(学生独立完成,全班反馈订正)。

(课件出示题目2:开学初,老师给咱班50个同学每人发5个作业本。)。

师:读一读,你能解决这道题吗?(学生会发现这道题没有问题,思考后回答)。

师:你能根据这两个条件,提出合适的问题吗?

课件出示:

(根据学生的补充,教师课件出示完整题目:老师给咱班50个同学每人发5个作业本,老师需要准备多少个作业本?)。

师:请同学们口头解答,同桌互相交流一下。(指名学生口答,课件出示算式)。

师小结:同学们,你们可真了不起,刚才的练习我们知道了要解决一个问题,要有两个条件;还知道了,如果告诉我们两个条件,可以提出问题,这是我们解决问题时所需要的重要本领。这节课我们继续学习“解决问题”。(板书课题:解决问题)。

设计意图:在课的开始,设计两道不完整的题目,一道是缺少条件,一道是没有问题,让学生补充条件、提问题。通过这一学习过程,帮助学生巩固乘法问题的数量关系,同时复习“要求几个几是多少用乘法计算”。通过分析法和综合法引导学生去思考问题,为学生分析、解决两步计算的乘法问题奠定了基础。

二、主体探究新知。

1、创设情境,引出问题。

课件出示课本例1情境图(图略)。

师:大家看,这是同学们在参加广播操比赛。仔细观察,图中告诉了我们哪些信息?(学生根据图说出题中的信息)。

师:通过刚才大家的交流,我们知道了题中告诉我们“每个方阵有8排,每排有10人,3个方阵”三个条件,提出了一个问题“一共有多少人?”。

设计意图:在这一教学环节,让学生经历一个从情境中收集信息、整理信息并且完整地用文字表述问题的过程。指导学生学会认真读题,仔细审题,明确题目中的条件和所求问题,理解题意。

师:认真分析题目中的条件和问题,你能解决这些问题吗?老师相信大家都会解决这个问题。先不忙着列算式,先说一说在分析和解决这个问题时,你是怎么想的?先自己想一想,说一说,然后在小组互相交流。(教师巡视,收集学生是如何分析的信息)。

师:哪个组派代表来说说你们小组是怎么分析的?(根据学生的回答,教师引导)。

师:大家的思路都非常的清晰,那老师要问问你们,为什么要先求1个方阵的人数?用哪两个条件就可以求出这个问题,为什么用这两个条件就能求出1个方阵的人数?3个方阵呢?(学生先自己思考,然后同组交流,集体反馈。教师可根据学生的回答,借助于点子图帮助学生理解为什么先求1个方阵的人数,求一个方阵人数为什么用乘法,怎样求3个方阵的人数。思路图整理如下)。

师:我们一起回忆刚才从要求的问题开始怎样一步一步找到解题思路的。(师生一起说)要求——总人数,就要知道——每个方阵的人数和方阵数。每个方阵的人数不知道就要先求它,用题中的——每个方阵有8排、每排有10人,就能求出每个方阵的人数,根据求出的——每个方阵的人数和有3个方阵,就可以求出总人数。请各自再试着说一说我们刚才是怎么分析的,然后同桌之间互相交流一下。(学生再次的整理思路,熟悉思维过程)。

师:根据刚才我们说的思路,怎样列算式?(学生独立列式解答,反馈后教师板书算式)。

设计意图:通过追问帮助学生理清思路、弄清楚题目中的数量关系。学生一般会有两种方法:一是想要求什么,必须知道什么条件,不知道的条件就是先求的;二是根据题中两个有关系的条件,想到可以求出什么,求出的这个问题,可能就是解决最终问题必需的条件。这两种思考方法其实就是解决问题时常用的分析法和综合法。在这里只给学生渗透这样的思维方式,不明确提出来。通过潜移默化的意识渗透和日积月累的思维训练,让学生逐渐具备独立分析、解决问题的能力,实现“授之以渔”的目的。

师:大家想一想,还有没有别的思路?(教师引导学生理解另外一种思路)。

师:可以看着点子图,和小组同学商量一下。(小组讨论,反馈小组意见,师生共同总结思路)。

师:我们一起来梳理一下,刚才这种解题思路。(师生共同叙述)。

师:根据这种思路这样列算式?用这种方法解决问题时,哪个地方要特别注意?(第一步的单位名称)。

《搭配问题》教学设计

1、通过观察、思考、动手操作、合作交流等情境活动,在具体的生活情境中,使学生初步掌握合理有序的搭配方法和策略。

2、结合生活实际,培养学生有序思考问题的能力,使学生养成不重复、不遗漏的全面思考问题的习惯,培养学生解决生活中数学问题的意识。

通过合作学习来解决问题,并且感知:要做到既不重复,也不遗漏,就必须按照一定的顺序去进行观察与操作。

训练学生有序的思考能力和全面思考习惯。

(一)、创设情境、引入新知。

1、这节课我们一起来研究一个有趣的数学问题——搭配中的学问。

2、什么是搭配呢?搭配中又有什么学问和奥妙呢?认真学完了这节课,你们就明白了!

3、“营养配餐中心”的王师傅,交给我们三(5)班的同学一个任务,板书:配菜。

王师傅想在你们当中聘请一名优秀配菜师和两名优秀服务员,你们愿意参加应聘吗?

(二)、搭配菜谱、探究规律。

活动1:给星期一的菜谱配菜。

1、王师傅考大家来了,请看:

课件出示:星期一的菜谱。

荤菜。

肉丸子。

素菜。

白菜。

冬瓜。

2、星期一的菜谱里都有些什么菜啊?你们知道什么是荤菜,什么是素菜吗?

3、王师傅有个要求,请看:一个盒饭中含一个荤菜和一个素菜,你打算怎样配菜呢?

4、学生思考并与同座交流自己的想法。

5、还有别的搭配方法吗?你觉得这样一荤一素搭配好吗?

6、通过刚才的配菜,大家可以看出来,一个荤菜和一个素菜可以有几种搭配方法呢?在学生独立思考与交流的基础上,老师要注意有意识的引导学生学会用图例和方案这两种方法来表示出搭配的过程,但不必特别强求和硬性规定,让学生自由的选择,如果学生有其他有创新的方法,就推荐给大家。

活动2:给星期三的菜谱配菜。

1、星期一大家总结出有2种配菜方法,那么星期三呢,请看:

课件出示星期三的菜谱。

荤菜。

牛排。

素菜。

豆腐。

油菜。

2、如果你能用一荤一素的方法搭配好所有的菜,我王师傅将聘请你为本店的服务员。

(1)请同学在小组内试着配菜,并且把你的想法在小组上交流。

(2)哪个小组愿意把你们的配菜方法说给大家听。

(3)怎样搭配,才不会重复,又不会遗漏呢?

(4)怎样按着一定顺序搭配呢?有几种方法?

(6)其它同学也能按一定的次序进行配菜吗?把你的配菜方法说给同桌听一听。

(7)这两种搭配方法有什么相同和不同的地方?在教学过程中可以将这种配菜现象抽象为数学知识,以荤菜为准,每种荤菜和一种素菜都有2种搭配方法,有两种荤菜就有2乘2等于4(种)方法.

这次的活动都是2种要注意要回答这个问题时,要让学生发现如果你倒过来写这也只能算是一种方法,要注意学生理解成有4种搭配方法,这种错误的想法。

活动3:给星期五的菜谱配菜。

课件出示星期五菜谱。

荤菜。

肉丸子。

素菜。

白菜。

豆腐。

冬瓜。

2、谁能第一个配出所有的菜,王师傅将聘他为我店配菜部的经理。

3、请同学们试着配菜,然后说给大家听。引导学生以一种菜为准与另一种菜搭配.

思考:通过刚才的配菜,同学们发现了什么规律?

让学生自由发现,然后小结:可以用荤菜的数量×素菜的数量=几种配菜方法。

板书:1荤×2素=2种。

2荤×2素=4种。

2荤×3素=6种。

(三)、实践应用、解决问题。

活动1:搭配路线。

2、说说:一共有几条路可以走呢?

(1)你能用字母表示出几条路线吗?

(2)哪一条最近呢?你能帮小淘气选一条吗?

(3)回来时有几条路线呢?你能用字母把路线表示出来?

活动2:搭配服装。

其实,不仅菜要搭配,生活中还有许多需要搭配的地方,笑笑要去外婆家做客,那衣柜里有这样几件衣服:两件是上衣,叫上装,两条裤子和一条裙子叫下装,一件上装和一件下装,要配成一套衣服可以怎样搭配呢?一共有几种搭配方法呢?在配菜的过程中,先让让用序号来表示衣服和裤子,便于叙述.

2、请你和同桌一起试着配一配。

3、那么今天下午笑笑穿哪套衣服去做客合适呢?为什么?谁来帮忙选一选。

4、看来穿衣服也需要搭配,搭配适当,会使我们生活更美好,更加丰富多彩。

活动3:握手中的学问。

(四)、联系生活、课后延伸。

这节课有什么收获?你想利用今天所学的知识设计一些有关搭配的其它问题吗?

重叠问题教学设计

《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标,任妮《重叠问题》教学反思。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的引领的教学理念。具体说有一下特点:

1、在问题的解决过程中,注重图、算式、文字的有效结合。

本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合,教学反思《任妮《重叠问题》教学反思》。,既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。

2、在了解、尊重学生已有的知识经验的基础上来确定合理的教学目标。

本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示,其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的',学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。

总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!

《搭配问题》教学设计

国标本数学四年级下册第50~51页。

1、从学生的生活实际出发创设情境,了解生活中的一些简单搭配现象,通过操作提出不同的搭配方案。

2、学生在探索不同搭配方案的过程中发现一些简单的规律,初步体会有序思想和符号化思想。

3、学生在活动中增强探索数学规律的兴趣,积累积极数学学习情感。

学会有序地思考,掌握求两类事物搭配的方法。

探究两类事物搭配的规律并灵活运用知识解决问题。

一、联系生活情境,导入新课。

2、所以,后人为了纪念他,每年都举办“华罗庚数学金杯赛”,可参赛的对象只有六、七年级的同学。为了激发大家学习数学的热情,三(1)班开展了争创“数学小能手”的比赛,我们来看看都有哪些同学获奖了。(显示五位同学)男女生情况怎样?(3女2男)。

3、设疑:学校五月份将评选校级“数学小能手”,假如在这5位同学中选1名男生和1名女生参赛,你准备怎样选?(学生说一说)。

4、刚刚你们说的每一种选法其实都是一种搭配,除了他们说的这些,还有没有其它搭配的方法呢?今天这节课我们就来探索事物搭配的规律。(板书:搭配的规律)。

设计意图:在设计这节课时,我把教学内容重新组织了一下。我以最近的华杯赛谈起,充分利用多媒体创设情景,以评选“数学小能手”为线索,使学生感受到数学就在身边,学习是一种乐趣,从而增强学生学好数学的信心,从中尝试到成功的喜悦。

二、合作探究,初步感知搭配,体会有序思想。

1、分类:既然要选择1男1女参赛,而图中男女混合在一起,眼花缭乱不易分辩,看来有必要先把他们……(演示分类),这样男女生就一目了然了。

2、合作探究:那下面我们就来动手找一找,看看有几种搭配方法?同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。

3、全班交流:一组汇报,其余同学一边观察,一边思考对他们的搭配有什么见解?(请搭配方法不同的同学上台展示:无序、有序)。

4、比较方法:通过刚才的观察和思考,你更喜欢哪一组同学的搭配方法?他们在搭配时注意到了什么?(有顺序的搭配)怎样的顺序呢?(先选女生,分别与男生搭配;先选男生,分别与女生搭配)。

师:是呀,正是因为他们在搭配时注意到了一定的顺序,所以会把这六种搭配方法毫无遗漏的记录下来。而且这样搭配更有条理。在数学上,这样思考的方法叫有序思考。(板书:有序)那么像这样有序地搭配、有序地思考有什么好处呢?(不重复不遗漏)。

5、小结:看来先固定一类人的方法确实不错。老师也想来尝试一下。把3位女生和2位男生进行搭配,可以先选女生有序搭配(演示);也可以先选男生有序搭配(演示)。

6、你们能像刚才这样,先选定一类人,把男生和女生进行有序地搭配吗?请同学们按新的想法进行有序地搭配。

设计意图:在教学过程中,把学习的主动权交给学生,给学生比较充裕的时间去自由观察、思考、选择,用说一说、想一想、写一写等形式对有几种搭配方法展开讨论和交流,并在相互启发和独立思考的过程中,得出共有六种搭配方法,通过不同搭配方法的比较,感悟有序搭配的好处,体验成功的乐趣,培养与他人的合作意识及主动探究精神。在方法、练习上,放手让学生自由选择自己喜欢的方法,真正体现了学生是学习活动的主人。

三、创新表示,体会符号思想。

1、讨论:教师发现你们刚才在摆学具和记录的过程中,花费的时间比较多,而且在解决实际问题时,并不是都会有学具给你摆,为了节约时间,有没有更好的方法呢?同桌可以商量商量。

2、尝试:请大家用自己想到的、更加方便的方法在作业本上有序地表示出这些搭配方法吧。(学生表示,展台展示,学生说说每种符号各表示什么)。

3、比较:这么多的方法,你更喜欢哪一种呢?为什么?(简洁方便)看来,用简单的图形、字母或数字来表示实物的方法更简单明了呀。

4、归纳:老师是用简单图形表示的。用三角形表示女生,用长方形表示男生。把3位女生和2位男生搭配,可以先选女生有序搭配,也可以先选男生有序搭配。

设计意图:教师紧紧利用学生的动手制作成果,创设再次动手操作情境,体验符号在记录中的作用。由于是自己劳动所得,学生兴趣盎然,一个个优秀的设计方案让你耳目一新、赞不绝口。整个过程,充分体现了学生的主体作用,使学生真正成为学习活动的发现者、研究者、探索者。品尝到了成功的喜悦,激发学习的动力源泉。最后我想用三句话来表达心中的`感悟:那就是,当学生有兴趣时,他们学得最好;当学生自由参与探索与创新时,他们学得最好;当学生有更高的自我期待时,他们学得最好。

四、尝试运用规律,解决生活中的问题。

(3)小结:有时,当搭配的结果很多时,要注意选择最合适的搭配方案。

设计意图:借助真实的生活情境,请学生帮助设计行走路线,有效地激发了学生参与的热情。让学生通过表述具体路线有困难,自然而然想到用符号帮忙。既巩固了有序思考的方法,又渗透符号在数学中的作用,会运用数学方法解决问题。

2、通过变化,体会总结搭配规律。

(2)师:如果有10种搭配方法,你认为笔和书签可以各买多少?(学生交流)。

小结:通过刚才的这些变化,你发现搭配的方法数与什么有关?(与笔和书签的数量有关)那笔和书签的数量之间有怎样的关系呢?(笔的数量与书签数量的乘积就是搭配的方法数)。

(3)揭示课题:一种事物的数量与另一种事物的数量相乘所得的积就是两种事物搭配的方法数,这就是我们今天要研究的搭配中的规律。

设计意图:从实物图形到数学建模来解决问题,通过变式对比练习,强化学生对搭配规律的理解。从中找到事物中蕴含的数量关系,并运用数学方法来解决。

五、全课小结。

通过学习,你有什么收获与体会呢?(想问题要有序思考、乘积即搭配方法)。

六、联系生活运用。

1、思考一下在我们实际生活中,你有没有遇到过有关搭配的问题?

2、生活中搭配的现象可真多,饮食的搭配可以让我们吃的更好、更有营养;服饰的搭配可以让我们显得更美、更有精神。那下面我们就一起来体验一下服饰的搭配,做一次小小服装设计师。(演示书本51页第2题)。

设计意图:服饰的搭配是生活中常见问题,通过对上装与裙子、上装与裤子的搭配方法的探究,让学生感觉数学就在身边,再运用规律来解决问题,真切体会到“数学源于生活,用于生活”。激发学生学习数学的热情。

七、拓展延伸。

1、谈话:搭配的规律,我国古人很早就开始运用了,《田忌赛马》的故事不陌生吧?一开始他们是怎么比的呢?(齐威王和田忌用上等马—上等马,中等马—中等马,下等马—下等马)。

2、我们今天也学习了搭配的规律,如果任选齐威王的一匹马和田忌的马搭配比赛,共有多少种不同的搭配方法呢?哪9种?(学生交流——口述回答——演示)。

3、田忌连输了三场,觉得很郁闷,垂头丧气地准备离开赛马场,可是后来在一位高人的指导下,又进行了一次比赛,却赢了齐威王,你知道他运用了什么方法吗?把你想到的方法用连线快速地记录下来。(学生动手操作记录)。

4、(学生汇报方法,多媒体演示)。揭晓:这位高人便是我国古代著名的军事家—孙膑。

5、我们发现,齐威王在第二次比赛是太自信、太大意了,他在第一场赛马后没发现问题,假如他看出了田忌的想法,那么在第二次比赛中途还有没有取胜的方法?(讨论方法,学生口述)。

设计意图:巧妙的利用《田忌赛马》的故事,分层进行练习。既激发了学生学习数学的兴趣,引起学生参与思考,参与研究的热情,又为搭配规律的运用做了深入细致的铺垫。同时渗透了数学思维方法的训练和思想教育。

《搭配问题》教学设计

1、使学生了解生活中的一些简单搭配现象,通过操作提出不同的搭配方案。

2、使学生在探索不同搭配方案的过程中发现一些简单的规律,初步体会有序思想和符号化思想。

3、使学生在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。

4、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程;培养学生的合作意识和人际交往能力。

自主探究,掌握有序搭配方法,并用所学知识解决实际生活的问题。

怎样搭配可以不重复、不遗漏。

课件、小衣服的学具图片、记录纸、作业纸。

“石头,剪子,布”游戏。

一、创设情境,初步感知搭配。

(多媒体显示无锡的风景图片)无锡有许多的旅游景点,吸引着越来越多的中外游客。小红和爸爸妈妈也想来无锡玩。

为了这次旅游,妈妈给小红准备了2件上衣:(出示学具)一件绿色的和一件黄色的,还准备了3条裙子:粉红色的,蓝色的和大红色的。

用什么颜色的上衣配什么颜色的裙子呢?请同学们给她提些建议吧。

学生口述,教师操作。

小结:像这样,一件上衣配一条裙子,就是把上衣和裙子进行搭配。(板书:搭配。)。

二、合作探究,体会有序思想。

1、合作探究。

同桌合作,把所有的搭配情况都找出来,让小红自己挑。

合作要求:同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。

2、汇报过程。

请同学汇报搭配过程,教师演示过程。

小结:同学们都找到了六种不同的搭配方法。

3、比较方法。

通过刚才的仔细观察,你觉得你更喜欢哪一组同学搭配的方法呢?为什么呢?

学生交流,体会有序的好处。

小结:有序地搭配可以做到既不重复也不遗漏。

(板书:有序,不重复,不遗漏。)。

4、理解不同的搭配方法。

(1)谁能具体地说说看,这一组是怎样有序搭配的呢?

学生交流。

小结:这组同学是先拿上衣有序搭配的。

(2)除了先拿上衣有序地搭配,还有其他的方法吗?

学生讨论,发现也可以先拿裙子进行有序搭配。

请两位学生合作完成先拿裙子的有序搭配。

5、小结。

(电脑演示)把2件上衣和3条裙子进行搭配,可以先拿上衣有序搭配,也可以先拿裙子有序搭配。

三、创新表示,体会符号思想。

小红的爸爸为了这次旅游,准备了3条领带和3件衬衫。

1、讨论表示方法。

同桌讨论。全班交流,教师提示连线的方法。

2、在作业纸上表示。

请同学们用自己喜欢的方法在作业纸上有序地表示出这些搭配的方法。

汇报展示学生作业,简要评析。

小结:同学们想到的方法真多,有画实物的,有画简单图形的,还有用字母或数字表示的。

3、比较方法。

这么多的表示方法,你更喜欢哪一种呢?为什么呢?

小结:看来,用简单的图形、字母或数字等符号表示的方法更简洁明了。

4、小结。

(电脑演示)电脑小博士就是用简单图形表示的,它用梯形表示领带,用长方形表示衬衫。把3条领带和3件衬衫进行搭配,可以先拿领带有序搭配(电脑连线),也可以先拿衬衫进行有序搭配(电脑连线)。

四、通过变化,体会搭配规律。

1、如果领带的条数不变,衬衫减少一件,搭配的总数是多少呢?

交流。(板书:3×2=6。)。

2、如果衬衫的件数不变,领带增加一条,搭配的总数又是多少呢?

交流。(板书:4×3=12。)。

3、通过刚才的变化,你有没有发现,搭配的总数和什么有关系?有什么样的关系呢?

讨论交流。

小结:领带条数与衬衫件数的乘积就是搭配的方法数,这就是搭配的规律。(板书完成课题:搭配的规律。)。

五、尝试运用规律,解决生活中的问题。

(电脑演示)穿上漂亮的衣服,小红和爸爸、妈妈高高兴兴地来到了无锡。

打开地图,他们准备从火车站出发,经过五爱广场,到锡惠公园去玩。

(1)从火车站到锡惠公园,一共有多少种不同的走法呢?

学生交流。

(2)这么多的走法,选哪一种呢?

学生交流。

小结:当搭配的结果很多时,要注意选择最合适的搭配。

xx公园里有许多的有奖游戏,小红的运气真不错,她得奖了。来到领奖处,让我们听听领奖处的叔叔跟她说了什么。

(电脑录音)“小朋友,恭喜你得奖。你可以选一个木偶,配上一顶帽子,或者配上一条围巾作为奖品。领奖之前我可要先考考你喔。现在有三种木偶,二种帽子,三条围巾,你一共有多少种选择呢?”

学生交流不同的算法。

在同学们的帮助下,小红拿到了喜爱的奖品。小红一家人继续在xx公园快乐地游玩。

同桌商量,试着玩一玩。

汇报:请一组来玩。

交流玩法:一位同学连续出三次石头、石头、石头,另一位同学依次出石头、剪子、布。就这样连续地玩下去。

同桌两人玩一玩,然后交换一下角色,再玩一玩。

小结:原来游戏中也有数学问题,在这个游戏中一共有9种不同的搭配。

六、全课小结,引导延伸。

今天,我们一起寻找了搭配的规律。通过学习,你有什么收获与体会呢?

小结:只要我们时常能用数学的眼光观察生活、思考问题,就会有更多新发现。

植树问题教学设计

教学内容:

教学来源:

人教版小学数学教材第九册第七单元《植树问题》。

五年级学生。

备课人:

张金玲。

基于标准:

数学广角的教学目标可概括为以下几点:

1、感悟重要的数学思想方法;。

2、运用数学的思维方式进行思考,增强分析和解决问题的能力;。

3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

教材分析:

《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

学情分析:

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

学习目标:

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

评价任务:

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单。

【教学过程】:

一、导入新课。

1、猜谜语,直观认识间隔。

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。

同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)。

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。

你发现什么了吗?(生说)。

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标。

1、例题探究。

说起植树问题我们就先从植树谈起吧。请看例题。

a、从题中你能知道哪些信息?谁来说一说?生说,师画。

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

b、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)。

方法2:1000÷5=200200+2=22(棵)。

方法3:1000÷5=200200+1=21(棵)。

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。

三、自主探究,发现规律。

1、化繁为简探规律。

是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

植树问题教学设计

1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

理解“植树问题(两端要种)”的特征,应用规律解决问题。

让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

课件。

一、初步感知间隔的含义。

1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。

2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的'关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。

二、探究规律,解决问题。

1、找出两端都种树的规律。

植树问题情景1,师出示:例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。

走进生活:

(一)目标检测:

1、排列在同一条直线上的16棵树之间有()个间隔。2、从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。

(二)闯关题。

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

3.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

5.15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

实地考察。

两端要栽:棵数=间隔数+1;

《搭配问题》教学设计

1、在搭配活动中,初步掌握搭配的规律,训练学生有序思考的能力。

2、通过观察、动手操作、合作交流等活动方式,掌握搭配的方法。

3、在活动中培养学生学习数学的兴趣和用数学的思维来解决问题的意识。

教学重点:结合具体情境,能够进行有序的思考,掌握搭配的方法。

教学难点:使学生有序的思考问题,做到即不重复又不遗漏。

教学过程:

同学们,搭配在我们的生活中有广泛的应用。其实还有很多的各种各样的数学问题每天都发生在我们的身边,只要我们留心观察,善于动脑筋,找规律,就能够解决生活当中的问题。

搭配中的学问,有序,不重复,不遗漏。

鸽巢问题教学设计

教学内容:教科书第68、69页例1、2。

教学目标:

1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

教学重点:分配方法。

教学难点:分配方法。

教学方法:列举法分析法。

学习方法:尝试法自主探究法。

教学用具:课件。

教学过程:

一、定向导学(3分)。

(一)游戏引入。

1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

(二)揭示目标。

理解并掌握解决鸽巢问题的解答方法。

二、自主学习(8分)。

1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)理解“总有”和“至少”的意思。

(2)理解4种放法。

2、全班同学交流思维的过程和结果。

3、跟踪练习。

68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

(2)尝试分析有几种情况。

(3)说一说你有什么体会。

三、合作交流(8)。

1、出示例2。

把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。

不难得出,总有一个抽屉至少放进3本。

(2)指名说一说思维过程。

如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

2、如果一共有8本书会怎样呢10本呢?

3、你能用算式表示以上过程吗?你有什么发现?

7÷3=2……1(至少放3本)。

8÷3=2……2(至少放4本)。

10÷3=3……1(至少放5本)。

4、做一做。

11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

四、质疑探究(5分)。

小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

2、做一做。

69页做一做2题。

五、小结检测(10)。

(一)小结。

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测。

1、填空。

(1)7只鸽子飞进5个鸽舍,至少有()只鸽子要飞进同伴的鸽舍里。

(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放()本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有()人是同一月出生的。4、任意给出3个不同的自然数,其中一定有2个数的'和是()数。

2、选择。

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

六、作业(6分)。

完成课本练习十二第2、4题。

板书。

抽屉原理。

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

鸽巢问题教学设计

一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。

一、情境导入,初步感知。

兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。

二、教学时以学生为主体,以学定教。

由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的'同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。

三、通过练习,解释应用。

四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。

不足:

1、学生们语言表达能力还有待提高。

2、课堂中教师与速较快。

将本文的word文档下载到电脑,方便收藏和打印。

相遇问题教学设计

1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

“求相遇时间问题”的.特征和解题方法。

“求相遇时间问题”的特征和解题方法。

多媒体课件一套。

1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?

2、口头列式1500/100=15分钟。

3、复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:时间=路程/速度)。

1、例6教学。

读题分析。

思考:这里的460米是几个人走的?

两人是怎样走的?

一份钟两人一共行了多少米?

(第三问时:用课件演示帮助,学生理解)。

学生尝试练习。

评讲板演,理清解题思路,概括解题方法。

教师板书:60+55=115米。

460/115=4分钟。

综合算式:460/(60+55)=460/115=4分钟。

质凝:求相遇的时间应先求什么,再求什么?

你知道吗?相遇时他们各行了多少米?

揭示课题:求相遇时间。

2、试试。

1、对比练习。

比一比你能找到两题之间的联系吗?

2、变式应用。

今天这节课主要学习了什么内容?你获得什么本领?

五、课堂作业。

练一练的第2——5题。

60+55=115米。

460/115=4分钟。

综合算式:460/(60+55)=460/115=4分钟。

相遇问题教学设计

相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

设计思想:

(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。

(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

理念:

(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。

(1)知识与技能:

了解相遇问题的应用题的基本结构,掌握解题方法。

(2)过程与方法:

经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。

(3)情感态度与价值观:

a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

b:培养学生在生活中提出数学问题的意识。

重点:了解相遇问题的应用题的基本结构,掌握解题方法。

难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

(一)创设情境

1、复习旧知,引发联想

画面演示,画外音叙述:

这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?

这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?

请学生谈谈对这两道题的想法。

2、学生表演,理解概念

刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。

屏幕上依次闪动出现:相对、同时、相遇、相距

(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。

(2)老师叙述,学生表演。

两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。

提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。

(二)尝试探索

1、出示例题

2、提出问题

看到例题,你会想到什么问题?

师生对问题进行筛选,重点解决下面几个问题:

(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?

(2)4分钟的时候会出现什么情况?

(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)

3、列式讨论

(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。

主要有两种思路:

第一种:65×4+70×4

第二种:(65+70)×4

4、认识速度和

5、质疑

“对这道题还有什么不同的想法或问题吗”

(三)巩固发展

1、基本练习

2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。

3、游戏

再请两位同学表演,并提问两人相对而行可能出现什么情况?

(1)两人相遇;

(2)行走一段未相遇;

(3)相遇后继续行走。

给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。

教师一边叙述,一边出示5分钟时间的牌子。

解决问题教学设计

教学目标:

知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。

过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。

情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。

教学重点:学会解决含有两个未知数的问题。

教学难点:分析数量关系。

教学准备:多媒体课件。

教学模式:多媒体教学。

教学过程:

一.准备题。

1.想一想,填一填。

(1).学校科技组有女同学人,男同学人数是女同学的3倍。

男同学有人;

男女同学共有()人;

男同学比女同学多()人。

(2).校园里栽了棵柳树,栽的松树是柳树的2.5倍。

松树栽了()棵;

柳树比松树少栽()棵。

2.解下面的方程。

二.引入新课。

多媒体出示图片:破坏生态环境的后果,引发学生感想。

出示植树造林图片,感受大自然的美。

三.探究新知。

1.观察主题图。

你从中知道了哪些信息?说说看。(师板书条件)。

想一想:可以提出什么数学问题?(师补充板书)。

2.引导学生分析问题,解决问题。

(1).学生自由读题,理解题意。

(2).引导学生画线段图,分析数量关系。

种树面积:

种草面积:共12.5亩。

提问:题中有两个未知数,怎么办?怎样设未知数?

启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和。

1.5亩。

教师:借助线段图,会解决这个问题吗?试试看。

(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。

3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。

四.巩固练习。

同学们知道地球的形状吗?

1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。

2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。

五.深化练习。

1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。

让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。

2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。

2.数学小博士。

六.全课总结。

引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。

七.布置作业。

教后反思:

一、教材的处理。

数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。

二、本节课目标完成情况。

在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。

三、课件的应用。

解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。

四、教学中的不足。

1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。

2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。

3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。

总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。

《解决问题》教学设计

知识与技能:.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。

过程与方法:在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。

情感、态度与价值观:通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。

1、读一读,思考:

(1)题目中知道了:

(2)“3千米以内7元”的意思是:

(3)“不足1千米按1千米计算”的意思是:

2、自主尝试。

(1)问题中的收费标准是分两段计费的,3km以内是一个收费标准,为一段;超过3km又是一个收费标准,又为一段。

(2)超过3km部分,不足1km要按1km计算,也就是要用“进一法”取整千米数。

3、思考:根据提示自主解答?

(1)、3千米以内的部分应付:

(2)、超过3千米的部分应付:

(3)、总的`应付:

4、列式计算。

1、练习四第6题。

某市自来水公司为鼓励节约用水,采取按月分段计费的方法收取水费。12吨以内的每吨2.5元,超过12吨的部分,每吨3.8元。

(1)小云家上个月的用水量为11吨,应缴水费多少元?

(2)小可家上个月的用水量为17吨,应缴水费多少元?

2、练习四第7题。

3、练习四第8题。

通过探究学习,我的收获是。

相关内容

热门阅读
随机推荐