六年级教案是教师在备课过程中对教材内容进行解析、归纳和拓展的过程。掌握好教学内容和教学方法,是成功编写六年级语文教案的关键。
教学内容:
“学会”目标:使学生借助生活中常见的圆锥形实物图入手,提出问题,并能解决问题。
“会学”目标:使学生掌握从实物到抽象的一些基本方法,体验解决问题策略的多样性。
“乐学”目标:
1、通过让学生动手实践,有利于培养学生边观察。
边思考的良好习惯和迎难而上的精神。
2、使学生在主动参与数学活动中,获得成功的体。
验,提高学生学习数学的兴趣及能力。
教学重点:
知道圆锥各部分的名称,掌握它的特征。教学难点:
圆锥高的测量方法。
教学准备:
圆锥形纸筒、布、圆锥形实物、圆锥模型、木板、沙子、三角形、长方形、正方形硬纸片。
教学过程:
一、“魔术”导入。
1、出示一个圆柱,用这个圆柱的外壳套住一个圆锥。
师:只是一个什么形状的物体?他有什么特征?
3、同学们看一看,老师能不能把这个圆柱变成你们说的那样?
4、师:这个物体叫圆锥,这节课我们就一起来学习圆锥的有关知识。(板书课题:圆锥的认识)。
师:看到这个课题,你最想知道什么?(学生提出问题,师一一板书)。
二、自学。
1、老师出示圆锥形实物图。
师:观察这些物体的形状有什么共同点?
生活中,你还见过那些圆锥形的物体?
(学生回答后,老师及时鼓励,表扬同学们有很好的观察能力)小结:看来圆锥不仅给我们的生活带来了方便,还没花了我们的生活。
三、
探究(学生自学课本第24页的内容后交流一下问题)。
小黑板出示探究的问题:
1、圆锥有什么特征?
2、怎么画圆锥的平面图?
3、圆锥的高在哪里呢?他有多少条高?为什么?
4、怎么测量圆锥的高?
5、圆锥的侧面展开会是什么图形?
四、交流展示。
预设课堂:
1、学生:我们组通过看一看,摸一摸,知道了圆锥有一个底面和一个侧面组成,底面是一个圆形,侧面是一个曲面。(学生边回答边演示实物)。
2、学生:我们组讨论怎样画圆锥时觉得不太难画,就是不知道怎么说话法?
老师讲解画法,并示范,然后学生在练习本上画。
3、学生甲:我们组认为圆锥有无数条高。
乙:我们不同意,我们认为圆锥有一条高。
同桌配合,测量手中圆锥的高。(学生展示测量的过程)。
老师指出应从“零刻度”量起。
老师:我们来做一个实验,每个小组用沙子堆一个圆锥,想办法测量一下它的高。(学生合作实验,并进行交流展示)。
4、学生甲:我们组吧圆锥的侧面展开后是一个半圆。
学生已:我们组吧圆锥的侧面展开后是一个扇形。
老师:同学们可以回忆一下扇形的概念。学生得出结论:是扇形。
五、问题解决,运用新知。
1、轻松一下。
2、幸运考场。
六、总结。
这节课你学会了那些知识?还有什么问题?课后反思:
在实际生活中,学生对圆锥的认识都是感性的,而课堂教学是对圆锥进行理性的认识。在教学时,动手操作和探索研究圆锥的特征,是本节课的主题,并把“观察、猜想、操作、发现”的方法贯穿始终。通过课堂教学实验,不但提高了学生的学习兴趣,有培养了学生的操作能力,空间想象能力和抽象思维能力,同时有效的培养了学生的逻辑思维能力。
3、培养学生分析和解决实际问题的能力,发展学生的思维;。
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学。
关键培养学生分析和解决实际问题的能力。
教学。
重点复习分数乘除法应用题,掌握解题方法。
教学。
难点找准单位“1”
教具。
准备多媒体课件。
教学步骤教学过程教学课件演示教学意图。
一、基础训练导入。
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
常规性基本训练,复习找单位“1”训练:为新知识做铺垫。
二、根据看线段图列式。
师:谁来说说,根据线段图应该这么列式呢?出示线段图【教学课件演示】。
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习。
基础练习只列式不计算。
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
【教学课件演示】。
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习。
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。
五、巩固练习。
练习八的3-5题。
师:下面请同学们独立进行计算,完成练习八p118第3题和第4题。
(1)、读题,分别找到两道题的单位“1”,并说说这两道题有何不同?
(2)、根据题意分析数量关系,然后列式计算,全班讲评。
(3)、出示p118页5题。
提问:把谁看作单位“1”?
结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的单位“1”可能是不同的。
【教学课件演示】。
加强解题思维的训练,沟通新旧知识,沟通解决问题的方法。
六、强化练习。
1、完成练习二十七的第7题:
渗透健康教育:
学生独立进行思考计算,请个别同学讲解回答。
2、练习二十七的第8题,练习二十七的第9题。
渗透健康教育:
绿色蔬菜含维生素u较多是抗癌、防癌的复合剂,对胃溃疡高血压、动脉硬化、视网膜出血、紫癜以及出血性肾炎等疾病有治疗效果多吃的蔬菜会对胃肠功能的恢复有所帮助。
【教学课件演示】。
强化数量关系的分析,强化方程的解法,体现解法的多样性、解法的最优化,提高学生自主意识和优化意识。
通过强化练习提升学习水平,让各种类型的学生都有所提高。
七、课堂总结。
今天你都学会了什么?有什么收获?今天我们学习了应用题,解答这类应用题要先找准单位“1”和相等的数量关系,再确定算法,然后列式计算,先找单位1,再看知不知,已知用乘法,未知用除法,比1多就加,比1少就减”。
【教学课件演示】帮助学生抓住解题的重点,已知单位“1”的用什么方法解,不知道单位“1”的又用什么方法解。帮助学生进行数学知识网络的建构。
八、作业:
练习二十七的第8、10题【教学课件演示】。
板书:
分数乘除法应用题复习。
根据条件分析单位“1”和找准对应分率。
用算术方法解:已知单位“1”用乘法,不知单位“1“用除法。
用方程解:单位“1”不知道或者题目的条件中含有“比另一个数多(或少)几分之几”。
1、进一步认识“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能解决“比一个数增加百分之几的数”或“比一个。
数减少百分之几的数”的实际问题,提高运用数。
学解决实际问题的能力,体会百分数与现实生活。
的密切联系。
【教学重点】。
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
【教具准备】。
多媒体课件。
【学具准备】。
【教学设计】。
教学过程。
教学过程说明。
一、导入。
1、我国有一个非常的科学家-----袁隆平,大家知道吗?(如果有学生知道,可以让学生说一说)。
2、他是我国杂交水稻研究领域的开创者和带头人,也是世界上第一个成功地利用水稻杂种优势的科学家,是联合国粮农组织国际首席顾问,被誉为“杂交水稻之父”。
3、因为杂交水稻比普通水稻的产量要高很多,所以我国杂交水稻的种植面积一年比一年增加。
二、百分数的应用。
1、生活中的百分数问题。
2、线段图。
教师提出要求:你能用线段图表示出年和年之间的数量关系吗?
※学生独立画图。
※展示学生的成果。
※教师评价。
25%=1/4。
20公顷。
2000年。
25%。
2001年。
3、学生自主解答问题。
4、班内交流。
办法一:20×25%=5(公顷)。
20+5=25(公顷)。
办法二:1+25%=125%。
20×125%=25(公顷)。
三、试一试。
1、生活中的折扣。
游乐场的套票原来每套30元,六一期间八折优惠,购买一套这样的套票能省多少元?
2、思考:八折是什么意思?
※学生自由发表自己的见解。
※教师评价。
※八折就是现价是原价的80%。
3、学生自主解答然后交流。
办法一:30×80%=24(元)。
办法二:30×(1-80%)。
=30×20%。
=6(元)。
四、练一练。
1、教科书p26练一练第1题。
2、教科书p26练一练第2题。
3、教科书p26练一练第3题。
五、课堂总结。
通过今天的学习你有什么收获?
从教材提供的情境开始讨论,从介绍“杂交水稻之你”袁隆平的事迹,引出问题,激发了学生的学习兴趣。
对某地2000年与2001年杂交水稻种植的情况介绍,引出“比一个数增加百分之几的数”的实际问题。让学生在已有的知识基础中通过类比解决这个问题。
学生自己通过各种方法自主解答。重点放在方法交流之中。
引导学生分析,要求购买能省多少元,先求什么。让学生有一个完整的解题思路。
【教学反思】。
本课重在学生利用已有知识来解决新问题的方法引导上。效果较好,而且学生能在交流中得到更多的数学信息,集思义益,博采众长,不仅从中学到了许多解题方法,而且也学会了如何交流。
一板书设计:
二教后反思:
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)。
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。
5、教学例2。
(1)出示×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。
1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)。
2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)。
三、作业。
练习二第1、2、4题。个人修改。
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用excel自动生成扇形统计图)。
喜欢的项目。
乒乓球足球跳绳踢毽其他人数。
设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课。
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
喜欢的项目。
乒乓、球足球、跳绳、踢毽、其他。
人数。
128569。
百分比。
30%20%12.5%15%22.5%。
设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。
三、合作交流,探究新知。
1.认识扇形统计图。
(2)乒乓球的30%又表示什么?
预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。
(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)。
(4)根据学生回答完成扇形统计图。
(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)。
(6)想想各个扇形的大小与什么有关系?
(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。
2.理解扇形统计图的特征。
(1)看图说说,在这幅统计图中你还可以知道哪些信息?
预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。
(2)说说这样的统计图有什么优势?
预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。
(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。
设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。
3.尝试练习。
出示教材第97页“做一做”的内容。
(1)你能看懂这张扇形统计图吗?统计的.是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)。
(2)说说从图上你得到了哪些信息?
(3)如果每天喝一袋250g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250g的关系,进而算出各种营养成分多少克。
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
比例的基本质性。
教学难点:
发现并概括出比例的基本质性。
教具准备:
多媒体课件。
教学过程:
一、旧知铺垫。
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4。
0.5:0.2和5:2。
1/2:1/3和6:4。
0.2:0.8和1:4。
二、探索新知。
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书。
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40。
内项:1.66o。
外项:2.440。
(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。
如:2.4:1.6=60:40。
外内内外。
项项项项。
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。(师作适当的补充)。
在比例里,两个内项的积等于两个外项的积。
板书。
两个外项的积是2.440=96。
两个内项的积是1.660=96。
外项的积等于内项的积。
(4)举例说明,检验发现。
0.6:0.5=1.2:1。
两个外项的积是0.61=0.6。
两个内项的积是0.51.2=0.6。
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:2.4/1.6=60/40。
3.440=1.660。
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)学生归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
4.填一填。
(1)1/2:1/5=1/4:1/10。
()()=()()。
(2)0.8:1.2=4:6。
()()=()()。
(3)45=210。
4:()=():()。
5.做一做。
完成课本中的做一做。
6.课堂小结。
(1)说一说比例的基本性质。
(2)你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)。
三、巩固练习。
完成课文练习六第4~6题。
补充习题。
一题多变化,动脑解决它。
(1)在比例里,两个内项的积是18,
其中一个外项是2,另一个外项是。
(2)如果5a=3b,那么,=,
(3)au8=9ub,那么,ab=()。
教学反思:
比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。
教学内容:
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣。
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用excel自动生成扇形统计图)。
喜欢的项目。
乒乓球足球跳绳踢毽其他人数。
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课。
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
喜欢的项目。
乒乓、球足球、跳绳、踢毽、其他。
人数。
128569。
百分比。
30%20%12.5%15%22.5%。
【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。
三、合作交流,探究新知。
1.认识扇形统计图。
(2)乒乓球的30%又表示什么?
预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。
(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)。
(4)根据学生回答完成扇形统计图。
(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)。
(6)想想各个扇形的大小与什么有关系?
(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。
2.理解扇形统计图的特征。
(1)看图说说,在这幅统计图中你还可以知道哪些信息?
预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。
(2)说说这样的统计图有什么优势?
预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。
(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。
【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。
3.尝试练习。
出示教材第97页“做一做”的内容。
(1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)。
(2)说说从图上你得到了哪些信息?
(3)如果每天喝一袋250g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250g的关系,进而算出各种营养成分多少克。
教学内容:
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。
四、巩固练习
3.练习十七2(机动)
――替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
二
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)。
1、经历了解税收的意义、解决有关税收实际问题的过程。
2、了解税收的有关知识,会解答有关税收的实际问题。
3、体会税收在国家建设中的重要作用,培养依法纳税的意识。
会解答有关税收的实际问题。
学生课前去进行各种税种的调查,初步了解它们的含义。
(一)谈话导入。
对,这个餐厅知法、守法,开发票对谁有好处?
开发票减少了餐厅的利润,但却增加了国家的税收,看来越来越多的人具有了纳税意识,今天我们就一起来学习有关纳税的'知识。
板书:纳税。
(二)了解纳税及其作用。
1、你知道哪些纳税的知识?
2、那今天这节课你还想学习哪些纳税方面的知识?
(什么是纳税?为什么要纳税?怎样纳税?……)。
3、要想更多更准确地了解这方面的知识,可以通过什么样的方法或途径来学习呢?
(看书、查资料、上网、去税务局或向税务局的亲戚朋友了解这方面的知识……)。
4、让学生自由说一说。
纳税就是根据国家各种税法的规定,按照一定的比率,把集体或个人收入的一部分缴纳给国家,纳税是件利国利民的大事,只要人人都有纳税意识,我们的国家一定会更加繁荣、富强!
5、说得很好,同学们通过刚才的学习已经了解了什么是纳税,为什么纳税,可作为小学生,光了解这些还不够,还应争当小纳税人,学会怎样纳税!
教师介绍上网查询内容,纳税有哪几个步骤?
在这几个步骤中,哪个与数学密切相关?要运用到哪部分数学知识?
(百分数、百分数的计算)。
究竟怎样运用这部分知识呢?谁知道如何纳税?怎样计算税款?
(应纳税额与各种收入的比率叫税率。应纳税额=各种收入×税率)。
板书公式:各种收入×税率=应纳税额。
应纳税额简单的说就是指什么?(应交的税款)。
各种收入呢?是一定的吗?税率是一定的吗?你了解哪些税率(不同的税率)。
那我选这个3%的来还!为什么不行?(根据税种选择税率来还。)。
那你会哪种税种的计算方法?(消费税、营业税……)。
都会算了吗?看这道题会算吗?(例1)。
板书:230×5%=11、5(万元)。
230是什么?5%是什么?230×5%表示什么?
可能说,什么是应纳税所得额。
师:谁能帮助他?个人所得税怎样计算?
师:对,只要有工资收入的公民都有可能要交个人所得税!
(出示:个人所得税图表)。
能看懂吗?什么意思?
帮我算算好吗?(猜猜我的工资收入?)。
板书:2100+380—20xx=480(元)。
480×5%=24(元)。
谢谢大家,我一定会依法纳税的!
(三)练一练。
练一练1—4题。
(四)总结。
如果没有,那老师这有几个话题想和同学们一起探讨!
主题。
1、你能为自觉纳税设计一句广告语吗?
2、如果我是税务稽查员,如何防止偷税、漏税行为?
3、我们能为纳税做些什么?
板书设计:
纳税。
各种收入×税率=应纳税额。
230×5%=11.5(万元)。
教材第110页第3题,练习二十五第8~13题。
1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。
2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。
3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。
重、难点:解决三角形相关问题,画一个图形的轴对称图形。
1.复习三角形的特性。
指名说一说三角形有什么特性,并举例说明三角形特性在。
现实生活中的.应用。
2.复习三角形三边之间的关系。
指名说一说三角形三边有什么关系。
强调:三角形任意两边的和都大于第三边。
3.复习三角形的分类。
三角形可以分为哪几类?你是怎么分的?
4.完成教材第110页的第3题。
二、复习轴对称、平移。
1.举例说明生活中常见的轴对称图形。
2.说说轴对称图形的特点。
3.平移。
三、复习观察物体。
在同一角度观察物体,最多能看到物体的几个面?
四、课堂练习。
完成教材练习二十五第8~13题。
五、课堂小结。
我们这节课复习了什么内容?你有什么收获?
六、同步训练。
教学至此,敬请选用《新领程》相关习题。
1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的`意识。
抽取问题。
理解抽取问题的基本原理。
一、教学例。
1、猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2、实验活动。
(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3、发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做。
第1题。
(1)独立思考,判断正误。
(2)同学交流,说明理由。
第2题。
(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习。
完成课文练习十二第1、3题。
对于一些组合图形的面积和周长的计算学生容易出错。
学情分析。
还需加强概念的教学,从而提高上课效率。
学习目标。
进一步巩固已学的知识,了解学生掌握知识的情况,便于查漏补缺。
导学策略。
导练法、迁移法、例证法。
教学准备。
投影仪、自制投影片、
教师活动。
学生活动。
1、测试。
2、评析。
3、总结。
考试。
听老师讲解题目。
教学反思。
学生的概念不是理解的很透和解题习惯不好是失分的重要原因。
百分数的应用。
一、单元教学的目标。
1、在具体情境中理解增加百分之几或减少百分之几的意、义,加深对百分数意义的理解。
2、能利用百分数的有关知识以及方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的.密切联系。
二、教学内容:百分数的应用、运用方程解决简单的百分数问题。
三、教学重点:能运用所学知识解决有关百分数的实际问题。
四、教学难点:运用方程解决简单的百分数问题。
掌握解决此类问题的方法。
理解题中的数量关系。
1、把下面各数化成百分数。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的`百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%。
方法二:14121.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14。
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/xingzhenggongwen/39334.html