教案模板是教师在备课过程中为了指导教学而制定的一种规范化文档。接下来是一些经验丰富的教师整理的教案模板范文,供大家参考学习。
教学目标:
1、通过直观演示,个体操作,集体交流,帮助学生掌握平行边形的特性:易变形。
2、使学生初步认识平行四边形,初步体会平行四边形的对边相等的特征。
3、积极引导学生参与学习,帮助学生建立初步的空间观念和逻辑观念。
教学重点:理解平行四边形的特点和特性。
教学难点:运用平行四边形对边相等的特点解决画图、改图等问题。
一、导入。
1、问学生是否到齐?你们忘了小狮子,它说也要来。想得到它吗?今天做出你最好的表现吧。
2、数学大王出考题:复习各种已学过的立体图形和平面图形。
3、教师出示教具:三角形框架,长方形框架,
让学生说出名称,再把长方形框架拉成——平行四边形。
一、新课教学。
在主题图上找。
在学校里找。
学生说口令,老师把平行四边形框架移动,向左——向右——变大——缩小。
设疑:三角形也会听口令吗?摆弄框架。
通过对比,让学生说说自已的感受。
分组让学生推拉学具:三角形、平行四边形框架。
发现两图形特性:易变性和稳定性平行四边形:易变性。
三角形:稳定性。
介绍三角形稳定性在生活中的应用——建筑排山,木工修櫈。
介绍平行四边形易变形特性在生活中的应用。
提问:平行四边形由几条边围成?演示。板出上、下、左、右四边。
解释对边的定义。{-=小学教学设计网-}。
设疑:是否随意四条边就可以围成平行四边形?
把上下左右对边放在一起,比较两边的.长度。让学生发现它们两边相等。
根据对边相等这个特征,判断钉子板上哪个是平行四边形。
三、动手实践,深化认识平行四边形。
1、2人小组,合作,在钉子板上围出一个平行四边形,并互相判断。
课件演示在方格纸上画平行四边形的方法。
教师边示范,边让学生动手,尝试画投影所示相同的平行四边形。
示范把一张长方形纸剪成一个平行四边形。强调加重折痕(对折2次)。
分四人小组,按要求各剪一个平行四边形。
组长评选出每组一个剪得最好的平行四边形,由该同学贴在黑板相应位置展示。
设疑:为什么同样的一张纸,有些平行四边形大一些?有些小一些?
小组讨论,交流探究。
小结:浪费的越少,可用的越多。
行为教育:合理利用,减少浪费——包括:纸张、原料、介玻璃、建筑、时间。
四、课堂练习。
1.书本39第1题。
2.数出图中共有几个平行四边形。(小组共探)。
五、总结全课。
六、布置作业。
机动题:(2)心灵手巧的小裁缝——把不规则图形剪成最大的平行四边形。(小组共探,分工合作)。
尊敬的各位评委,老师们:
大家好!我是来自实验学校的杨小君,我今天说课的内容是人教版义务教育课程标准实验教科书八年级下册19、1、2平行四边形的判定第一课时。我将由教材分析,教学目标、教法、学法、教学过程、课堂评价这6个方面向大家介绍我的设计构思。
一、教材分析。
四边形是我们生活与生产实践中应用广泛的图形,平行四边形作为四边形的重要研对象,对以后特殊四边形的学习有重大作用。本堂课是在学习了平行四边形的定义和性质定理的基础上,进一步探究平行四边形的判定定理。因此它的作用与地位体现在以下三个方面:
1、是平行线与全等三角形知识的应用与延伸。
2、对以后矩形、菱形、正方形、梯形等特殊四边形的判定学习奠定基础。
3、.对加强学生逻辑推理能力和思维的严密性有积极的意义。
本节课的重点在于探究平行四边形的两种判定定理。难点在于理解和灵活运用平行四边形的判定方法。为了更好的突出重点,突破难点,关键在于通过问题情境的`设计,课堂实验研讨,引导学生发现,分析并解决问题。
学情分析。
初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。
二、教学目标分析。
《数学课程标准》中明确指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续和谐的发展。学生在获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步与发展。基于此,我将这节课的教学目标制定如下:
1、知识与技能——掌握平行四边形判定定理,并会运用判定定理解决相关问题。
2、方法与过程——探索两种组成平行四边形的方法。由此发现平行四边形的判定,体验教学活动充满着探索性和挑战性。
3、情感态度价值观——经过自主探究与合作交流,敢于发表自己的观点,有团结协作和合作意识。
三、教法分析。
在本堂课的教学中,我将主要采用两种教学方法:
1、引导启发——在本节课的教学中,教师所起的作用不再是一味“传授”,而是巧妙地创设问题情境,启发学生发现、解决问题,在学生思维受阻时给予适当引导。
2、激趣教学——学习本应是件快乐的事,为了让学生“乐”学,我将通过实验,抢答等游戏极大的激发学生的学习兴趣,提高学习的效率。
四、学法分析。
在合理选择教法的同时,还应注重对学生学法的指导,本节课主要指导学生以下两种学法:
1、自主探究——本节课的两条判定定理都是通过学生的动手操作、观察、猜想、推理等活动得出的,使学生亲历了知识的发生、发展、形成的全过程,从而变被动接受为主动探究。
2、合作学习——教学中鼓励学生积极合作,充分交流,帮助学生在学习活动中获得最大的成功,促使学生学习方法的改变。
五、教学过程分析。
为了更好的完成教学目标,我设计了以下教学流程:
流程1:复习定义性质,引发思考。
首先给出一些平行四边形的图片和图形,让学生说出平行四边形的定义和性质定理,然后在纸上写出定义和性质的逆命题。
这样设计的目的在于复习前面的知识,为新课奠定基础,向学生说明定义既是平行四边形的性质也可以作为判定平行四边形的方法。提问:除了定义,同学们还想知道其他判定平行四边形的方法呢?这就是我们今天要学的“平行四边形的判定”
流程2:创设情境,引出新课。
让学生用课前准备好的学具,完成活动1。
活动1的设计,是为了让学生动手操作,经历将两两相等的木条,作为对边得到平行四边形的过程,体验“发现”知识的快乐。
流程3:命题论证,得到判定。
证明这一命题是个难点,首先指导学生根据命题画出几何图形,写出已知求证。证明过程采用学生先独立思考。小组合作,再由教师引导,把证明平行四边形的问题逐步转化为证明线平行——角相等——三角形全等的问题。突破难点,体现划归的思想。
流程4:引发猜想,得到命题。
让学生继续动手,完成活动2.。得出命题2:对角线互相平行的四边形是平行四边形。在此活动中,教师应重点关注学生操作的准确性。
流程5:命题证明,得出判定。
命题2的证明,鼓励学生用类比的思维方法仿照命题1的证明,独立思考,小组内交流意见,教师关注学生能否用不同的方法从理论上证明自己的猜想和发现,以及学生使用几何语言的规范性与严谨性。
流程6:应用判定,小试牛刀。
这三个小题是对判定的直接应用,采用小组抢答的方式来完成,其他小组作出评价,既检验学生对新知识的掌握情况,又活跃了课堂气氛,同时让学生体验到成功的快乐。
流程7:例题讲解,练习巩固。
出示例题给予足够的时间让学生独立思考,小组合作,由不同的学生表述自己的思路,教师展示学生的不同方案,对于有创意的方案要大力表扬,然后引导学生从多种证明思路中,选择较为简洁的方法,规范板书。
然后出示练习题,1、2体学生独立思考口答完成填空,3小题小组合作探讨,整理思路,写出解题过程。
流程8:小结本课,布置作业。
引导学生多方面,多角度说出自己的收获,可以是知识方面的,也可以是数学思想方法,还可以是自己的感受,只要学生的收获,都应得到肯定。
六、课堂评价分析。
对于数学学习效果的评价,既要关注学生知识与技能的理解与掌握,更要关注他们情感与态度的形成与发展。在教学各环节中,我注重采用学生自我评价,学生互评,教师评价相结合,实现评价主体多元化;采用口试,课堂观摩,课后作业等多种形式,多层面了解学生,在学习过程中,从学生参与教学活动的程度,合作意识,思考习惯,发现能力几方面,及时调控教学进程。
总之,我这堂课的设计理念来自于建构主义思想,以学生为中心,强调学生对知识的主动探索,主动发现和对所学知识意义的主动建构,因此创设学习环境是主要任务,体现学生主动学习是这堂课的核心内容。
利用性质与判定的互逆,学生对四个判定定理的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的数学表达和语言能力。
今后应加强的方面:八年级按照课标不要求书写规范的证明过程,学生的几何证明题仍然是一个弱项,因此有部分学生仍然存在会分析,但是书写不规范,这在今后的教学中需要加强对学生的训练。
平行四边形在实际生活和工作中具有广泛的应用,因此它的判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。平行四边形的判定一节按照课本分为两个课时,前三个判定和定义判定为第一课时,第一课时主要探讨平行四边形的判定的四种方法,在探讨时由一个实际问题——玻璃片的问题引出四个判定方法的猜想,然后引导学生进行推理证明验证,从边、角、平分线三点来分别探讨,在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。在教学过程中,引导学生通过动手实践、猜想、论证的过程得出结论和方法,同时安排同学上台进行讲解、板书等方法,有利于锻炼学生的综合能力。
收获:通过玻璃片的实例引导同学探索、研究得出平行四边形的判定方法,学生对四个判定的掌握比较好,通过练习巩固,学生对判定方法的运用也比较熟练,而且由于要求学生对每一个判定都进行了口头表达过程和符号语言的书写练习,因此提高了学生的推理论证的能力和书写能力,在训练过程中大部分的学生都能说出或写出比较完整的证明过程。
不足:首先,由于学生不熟悉,课件不充分等原因,造成在教学过程中时间过于紧张,使得在教学中的部分环节没能得以体现,比如:学生的板演等,这对课堂教学的效果造成了一定的影响。另外几何证明题一直是学生的一个弱点,这在今后的学习中是一个需要改变和提高部分。在今后的教学中一定会努力学习,积极探索,完善自己的教学模式和方法,争取更好的成绩。
2、经历平行四边形识别条件的探究过程,使学生逐步掌握探究的方法和说理的基本技能。
3、在有关活动中发展学生合理推理意识。
二、教学重难点。
三、教学过程。
1、复习引入:什么是平行四边形?
学生回答后教师总结:两组对边分别平行的四边形是平行四边形,它是一个中心对称图形,它具有如下一些性质:(1)两组对边分别平行且相等;(2)两组对角分别相等;(3)两条对角线互相平分。
2、新课讲解:问:怎样判定一个四边形是平行四边形呢?
(1)当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定。
(2)借鉴“逆命题与逆定理”的方法,将平行四边形的性质的条件与结论相交换,形成性质定理的逆命题。
你能说出上述三条性质的逆命题吗?
学生通过小组合作整理出上述各性质的逆命题的文字表达。
逆命题a:两组对边分别相等的四边形是平行四边形。
逆命题b:两组对角分别相等的四边形是平行四边形。
逆命题c:对角线相互平分的四边形是平行四边形。
在教师得指导下,学生通过画图,观察,推理证明出上述三个命题都是真命题,由此得出这三个命题都是平行四边形的判定定理。
四、随堂练习:课后练习讲解证明。
五、课后小结:谈谈本节课的.学习收获和体会。
六、教后反思。
本节课以复习引入的方式,首先复习了平行四边形的定义和性质,唤起了学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
根据平行四边形的定义:在同一个二维平面内,由两组互相平行的对边组成的闭合图形叫平行四边形。
长方形和正方形都具有平行四边形的特征,长方形是四个角都是直角的特殊平行四边形,正方形是四个角都是直角,四条边长相等的特殊平行四边形。
长方形:长方形也叫矩形,是有一个角是直角的平行四边形,也可以定义为四个角都是直角的平行四边形。
判定方法。
1、对角线相等的菱形是正方形。
2、有一个角为直角的菱形是正方形。
3、对角线互相垂直的矩形是正方形。
4、一组邻边相等的矩形是正方形。
5、一组邻边相等且有一个角是直角的`平行四边形是正方形。
6、对角线互相垂直且相等的平行四边形是正方形。
7、对角线相等且互相垂直平分的四边形是正方形。
8、一组邻边相等,有三个角是直角的四边形是正方形。
9、既是菱形又是矩形的四边形是正方形。
本节课充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
《平行四边形的判定》是学生学习平行四边形的重要知识。一共分为4个课时。在学习平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的.亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。
一、教学重点、难点。
重点:简易方程的解法;
难点:根据实际问题中的数量关系正确地列出方程并求解。
二、重点、难点分析。
解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。
判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。
列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。
三、知识结构。
导入方程的概念解简易方程利用简易方程解应用题。
四、教法建议。
(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。
(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。
(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。
(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。
五、列简易方程解应用题。
列简易方程解应用题的一般步骤。
(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.。
(2)找出能够表示应用题全部含义的一个相等关系.。
(3)根据这个相等关系列出需要的代数式,从而列出方程.。
(4)解这个方程,求出未知数的值.。
(5)写出答案(包括单位名称).。
教学完《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以*会。
一、成功之处。
1、联系生活,以解决小区中实际问题贯穿全课。
本课以停车位面积大小的问题,让学生引入到对平行四边形面积计算方法的探索中,通过猜测、转化、验证等得出平行四边形面积计算公式,并运用公式去解决小区中的实际问题。整节课在实际情景中学习新知,理解新知,巩固并运用新知。所创设的生活情景取材于学生的数学现实中,使学生感到亲切、有趣,使教学活动更富有生气和活力,更能使学生体验数学来源于生活,扎根于生活,应用于生活。
2、重视学生的自主探索,让学生经历数学学习的过程。
学习任何知识的途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,我设计了三个层次引导学生进行探究新知,首先是让学生根据已有知识和经验大胆猜测,接着亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现平行四边形和长方形之间的关系,最后归纳出平行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。
3、渗透数学方法,发展学生的数学能力。
在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索平行四边形面积的计算方法时,先引导学生能不能把一个平行四边形变成一个长方形呢?通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透‚转化‛的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解‚转化‛思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。
二、存在不足。
1、为了学生的思维不受限制,使孩子们的主动性得到尽可能的发挥,在探究平行四边形面积公式时,我是让学生自己发现,自己总结,但由于学生紧张,而自己的引导和激励性语言又没有及时跟上,致使个别学生操作速度慢,跟不上课堂节奏,活动氛围不活跃,这方面的组织与调控能力我还要继续加强。
2、用数方格的方法数长方形正方形的面积在前面已经学过,因此在备课中我认为学生对数长方形‘平行四边形的面积应该是轻车熟路,很快数出来,但在实际教学中发现一些学生对数平行四边形的面积方法不熟,这块内容的教学多耽误了两分钟,以致于后面的练习有些仓促。因此,备课时一定要认真备各层次的学生水平,该引导时就引导,该放手时就放手。
三、反思中的所悟。
结合新课标,如何上好数学课,当中还有许多值得自己思考的问题。通过这个课例,感悟到要上出‘活泼‘愉快’实用的课来,就要求我们教师用学生的眼光理解教材,用新课标理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
学具。
一、质疑引新。
1、显示长方形图。
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究。
(一)、铺垫导引。
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形。
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)。
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索。
学生实验操作。
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳。
问:
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)。
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式。
学生自学p44~p45有关内容。
集体交流:s=a×h。
s=a·h。
s=ah。
教师强调乘号的简写与略写的方法。
三、深化认识。
1、验证公式。
学生利用公式计算p43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式。
a)例题。
学生列式解答,并说出列式的根据。
b)做练一练。
四、巩固练习。
底5厘米,高3。5厘米底6厘米,高2厘米。
2、计算下面图形的面积哪个算式正确?(单位:米)。
3×83×64×86×83×44×6。
面积:56平方厘米。
底:8厘米。
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法。
五、总结全课(电脑显示、学生口答)。
把一个平行四边形沿着高剪成两部分,通过()法,可以把这两部分拼成一个()形。这个长方形的()等于平行四边形的(),这个长方形的()等于平行四边形的(),因为长方形的面积=长×宽,所以平行四边形的面积等于(),用字母表示平行四边形的面积公式()。
本节课选自人教版初中数学八年级下册第十八章18.1.2的内容《平行四边形的判定》。本课主要让学生掌握平行四边形判定的四种方法,会应用平行四边形的判定方法。在此之前,学生已经学习过平行四边形的性质,为本节课的学习打下了良好的基础。同时,本节课的学习也为今后进一步学习特殊的平行四边形等相关知识起到了铺垫的作用。
教学。
过程相对而言比较顺畅。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
理解并掌握平行四边形的四条判定定理,会用判定定理解决相应问题。
(二)过程与方法。
经历探究和证明平行四边形判定定理的过程,提升逻辑推理能力和解决问题的能力。
(三)情感、态度与价值观。
体会方法的多样性,激发学习兴趣,感受几何思维的真正内涵。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平行四边形的判定定理。教学难点是:平行四边形判定定理的证明和应用。
依据新课程改革精神与学生认知发展现状,突破难点有效实现知识的巩固,我将采用讲解法、启发引导法、练习法等教学方法,并在教学过程中有意识的培养学生的合作探究能力、自主探究能力,使之真正意义上成为学会学习的人。
下面我将重点谈谈我对教学过程的设计。
(一)导入新课。
首先是导入环节。我采用复习导入的方法,请学生回忆平行四边形的定义及性质,然后提问怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?由此引出今天学习的内容《平行四边形的判定》。
从简单的回顾中引入新课,既复习了旧知,又为探索新知做好铺垫,同时使学生感受到知识之间的联系。
(二)探索新知。
接下来是教学中最重要的新知探索环节,我主要采用讲解法、启发法等。
接下来组织学生进行实验验证。实验一:取两长两短的四根木条用小钉钉在一起,做成一个四边形,其中两根长木条长度相等,两根短木条长度相等。如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。通过动手操作直观感受,学生能初步得出结论:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
紧接着继续提问学生:你能根据平行四边形的定义证明它们吗?如何证明“对角线互相平分的四边形是平行四边形”?先请学生将命题翻译成符号语言,指出已知和待证结论。接着我给出提示:观察两条对角线将平行四边形分割成什么样的图形?如何判定其中一组对边平行?判定平行需要的条件怎么得到?给出思路引导后,组织学生小组合作完成证明。学生完成后,我规范证明过程的书写。由于时间所限,我会直接告诉学生两组对边分别相等或两组对角分别相等的四边形也是平行四边形,证明留给学生课后完成,并明确平行四边形的判定定理与相应的性质定理互为逆定理。
接着我会提出一个思考题:如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?并给出思路引导:先想想平行四边形的一组对边有什么性质?写出逆命题是否成立,能否作为判定方法?请学生稍作讨论,得出猜想:一组对边平行且相等的四边形是平行四边形。然后继续小组合作证明。我会鼓励学生使用不同方法,可以直接应用前三条判定定理。学生不难完成证明并得到平行四边形的第四个判定定理:一组对边平行且相等的四边形是平行四边形。紧接着我会引导学生分别从边、角、对角线等方面梳理平行四边形的判定方法,及时巩固。
在本环节中,引导学生合作探讨,再结合老师的适时引导以及讲解,帮助学生深刻的理解。全面发挥了学生的主观能动性,提高了学生的学习兴趣。
。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的`侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。
两组对边分别平行的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形;
两条对角线互相平分的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形。
通过平行四边形的性质,理解并探索并掌握平行四边形的判定条件,并能根据条件判定平行四边形。
【过程与方法】
经历平行四边形判别条件的探索过程,逐步掌握平行四边形判定的基本方法;在与他人交流的过程中,能合理清晰地表达自己的思维过程。
【情感态度与价值观】
主动参与探索的活动中,发展合情推理意识、主动探究的习惯,激发学习数学的热情和兴趣。
【重点】平行四边形的判定方法。
【难点】平行四边形判定方法的应用。
(一)导入新课
出示下图:学生观察下图,并提出下列问题。
(二)生成新知
通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。
提问1:你能写出两个实验中的已知条件和求证条件吗?
提问2:根据你写的已知条件,你能得到求证的条件吗?
提问3:通过上面的两个问题,最后你得到什么结论呢?
引导学生总结归纳出结论:
两组对边分别相等的四边形为平行四边形;
两组对角线分别相等的四边形为平行四边形;
对角线互相平分的四边形是平行四边形。
出示例题,通过对角线互相平分的四边形的平行四边形的是平行四边形为例,讲解并验证:
如图所示,在四边形abcd中,ac,bd相交于点o,且oa=oc,ob=od。求证:四边形abcd是平行四边形。
引导学生总结归纳出具体解题步骤:
(三)应用新知
1.在平行四边形abcd中,ac、bd相交于点o。
(2)若ac=10cm,bd=8cm,那么当ao=________cm,do=________cm时,四边形abcd为平行四边形。
(四)小结作业
小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
教学难点:
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡。
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究。
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1。
六、课堂小结,反思回顾。
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,平行四边形的判定方法3的学习,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。
本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题。
将本文的word文档下载到电脑,方便收藏和打印。
本节课充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习了平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。
1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。
2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。
3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。
4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。
5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。
1、培养了学生的动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。
2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。
3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。
4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。
1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。
4、对学生的学习与练习的方法指导还不足,应该多些方法性的引导。
总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/xingzhenggongwen/219530.html