教学计划需要明确教学目标,确定适当的教学方法和教学资源,以及评价学生学习成果的方式。教学计划的执行是教学工作的重要环节,需要教师具备良好的组织和管理能力,能够有效地跟进和调整教学进程。
教学内容:人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学准备:课件平行四边形硬纸片剪刀透明方格纸。
教学过程:
一、情境激趣:
66。
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)。
二、实验探究:
1、猜想。
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验。
1)独立自主探究:
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里。
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:(1)数格子(把表格带到前面说)。
(2)剪拼。
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)。
是这样吗?师课件演示解说强调平移。
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)。
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)。
四、运用公式解决。
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)。
五、拓展练习。
1、求下列图形的面积是多少?
底15厘米,高11厘米。
(不仅准确计算出了结果,速度还很快,真不错。)。
2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)。
(能在实际问题的解决中恰当运用公式,了不起)。
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)。
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思。
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法。
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识。
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导。
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。
课例点评。
这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:
1、在情境中蕴含知识,孕伏思想方法。
这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。
2、在探究中体验知识,理解思想方法。
这节课沿着“提出猜想——思考验证方法——实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。
3、在反思中提炼知识,强化思想方法。
教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。
总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。
《平行四边形的面积》的教学是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,这部分知识的学习运用会为学生学习后面的三角形、梯形、圆等平面图形的面积乃至立体图形的表面积奠定良好的基础。由此可见,本课内容具有承上启下的作用。
二、学情分析。
学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的基础。但是小学生的空间想象力不够丰富,推导平行四边形的面积计算公式有一定的困难。因此本节课的学习就是让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生、发展和形成过程。
三、教学目标。
根据新课标的要求及教材的特点以学生的全面发展作为标准,我设定如下教学目标:
能力目标:通过操作、观察、比较等活动,初步渗透“转化”的数学思想,培养学生的观察、推导能力,发展空间观念。
情感目标:通过数学活动使学生获得成功的体验,增强自信心,培养学生的探索精神和实践能力。
教学重点与难点。
四、教学准备。
多媒体课件、三角板、剪刀、平行四边形。
五、教法与学法。
新课程标准指出:有效的数学活动不是单纯的依赖模仿与记忆,动手操作,自主探索与合作交流是学习数学的重要方式。本节课我采用情境教学法,引导探究法、直观演示法组织学生开展丰富多彩的数学活动。在重视选择灵活教法的同时,注重对学生学法的指导。我指导学生学习的方法为:自主探究法、动手操作法、合作交流法,猜想验证法。使教法和学法和谐统一。
六、教学程序。
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计了如下课堂教学环节:
(一)情景导入,引入新课。
1、情景引入。(出示课件)。
2、揭示课题。
[设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情,从而激发学生的主动思考。
(二)动手操作,探究新知。
本环节是学生获取知识,提高能力的一个重要过程。也是本课的重难点所在,我从以下四个方面引导学生主动参与实践活动,经历知识的形成过程。
1、猜一猜。
没有大胆的猜想就没有伟大的发现!我放手让学生猜测平行四边形的面积计算公式。有的学生可能会猜测平行四边形面积=边×邻边、也可能有学生猜测平行四边形面积=底×高。对学生的两种答案先不予以评价。
2、数一数。
师:两种猜想产生了两个结果,到底哪一个是正确的?
用最基本的直接测量法来验证。(数学书80页)。
是不是所有的平行四边形都可以剪拼成一个长方形呢?
3、剪一剪、拼一拼。
猜想——验证是学生探究数学的有效途径。
我先介绍学具筐,让学生动手剪一剪、拼一拼。
此环节给学生留下充分的思考、操作、发现的时间。在这期间教师参与学生的活动帮助有困难的学生。
接下来先在小组内交流,在足够的小组交流之后,开始全班汇报展示,达到智慧共享的目的。
预设:
课件演示(学生的认知是由浅入深的,通过动手实践他们已经验证了面积计算方法,就此结束,势必会使部分学生的转化要领模糊,为此,我充分尊重学生的主体地位,在学生动手、动脑、发现、比较、归纳之后利用多媒体课件直观演示剪、拼过程达到巩固推导过程的目的。)。
4、议一议。
读书可以培养学生的自学能力,当学生探究出面积计算方法后,让学生读书并提出疑问,学生经历这个过程思维更加完善。而且自学了字母公式,了解了例1的解题方法。
重温例1,在解决这个问题时,你想提醒同学注意什么?
[设计意图:让学生深刻理解本课的重难点,培养了学生的逻辑思维,让学生不仅学会了知识,更重要的是学会了学习。所谓“授之以鱼不如授之以渔”,学生经历了知识的形成过程,情绪是高昂的、思维是深刻的、心理是快乐的]。
(三)分层训练巩固内化。
课堂练习是数学教学的主要环节之一,是学生形成技能,发展智力的有效方法。我本着“重基础、验能力、拓思维”的原则,设计如下几个层次的练习。
1、基础练习:算出下面每个四边形的面积。
(使学生加深对所学知识的认识,正确分清平行四边形的底和高。)。
2、提升练习:
(在第一题的基础上,增加了学生动手测量的要求。体现了“重实践”这一理念同时也使学生理解平行四边形的面积必须是底和对应的高相乘突出对应)。
3、扩展练习:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
1、重点:平行四边形面积公式的推导及应用。
平行四边形纸片、剪刀及电脑课件、
一、创设情境,导入新课。
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽。
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)。
齐读学习目标:
二、自主学习。
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)。
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了。
三、动手操作,验证猜想。
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)。
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
a、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)。
b、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报。
师:如果用字母s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成s=a×h,也可以写成s=ah或s=ah(师板书)。
四、当堂检测。
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()。
a:8×3b:8×6c:4×6d:4×3。
通过做此题,你想提醒大家注意什么?
五、拓展提升。
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1、4cm。
2、5cm。
通过做此题,你发现了什么?
六、课堂小结。
说说本节课,你收获了什么?
七、板书设计:
略
熟读唐诗三百首,不会做诗也会吟。以上这5篇五年级数学平行四边形的面积教学设计是来自于的平行四边形的面积教学设计的相关范文,希望能有给予您一定的启发。
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
(一)创设情境,设疑引入。
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢。
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知。
1、数方格感知平行四边形和长方形之间的关系。
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)。
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法。
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)。
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法。
3、建立联系,推导公式。
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)。
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)。
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)。
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)。
(三)巩固应用,内化新知。
前面的花坛题:
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知师:同学们,通过今天的学习,你有什么收获呢?
通过实践――理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。
教学目标:
通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。
教学过程:
一、看一看:得出平行四边形与长方形的关系。
1、让生看p69,观察方格纸上的长方形和平行四边形,并填写:
每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是()平方厘米;平行四边形的面积是()平方厘米。
2、观察并讨论:这个长方形和平行四边形有怎样的关系?
在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。
二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。
1、出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。
2、让生小组讨论,尝试。
3、检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。
(1)沿着平行四边形的一条高,剪下来,移到右边拼拼。
(2)比一比:这两个图形有什么关系?什么变了,什么没变?
这两个图形形状变了,但面积相等。
(3)、请你量一量长方形的长与宽,算出它的面积。
4、总结得出。
长方形的面积=长×宽。
如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:
s=ah。
5、例:有一块平行四边形的草地,底是18米,高是10米,这块草地的面积是多少?
(1)让生独立做。
(2)检查:18×10=18(平方米)。
(3)注意:面积单位。
6、看书,质疑。
三、练习。
底(厘米)。
50。
12.5。
100。
9
高(厘米)。
40。
8
36.4。
4
面积(平方厘米)。
12米。
24米40厘米15米。
25米。
50厘米。
3、有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?
4、有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?
四、总结。
五、课堂作业。
p715。
1.掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
课前布置预习第87,88页内容,完成预习单(如下图)。
一、创设情境,导入新课。
1.课前交流与小故事。
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……。
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形。
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:平行四边形。
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)。
一、说教材。
《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经掌握了长方形和正方形的面积计算、面积概念和面积单位,以及认识了平行四边形,清楚了其特征及底和高的概念的基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。为了更好地体现《数学课程标准》的理念,通过学习来解决生活中的实际问题,让学生感受到数学就在身边,人人学有价值的数学。
根据以上对教材的理解与内容的分析,按照新课程标准中掌握4~6学段空间与图形的要求,我将本节课的教学目标定为:
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
根据新课程标准中的教学内容和学生的认知能力,我将本节课的教学重点定为:
二、说教法、学法。
根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:
1、教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学。
习数学的兴趣和积极思维的动机,引导学生主动地探索。
2、动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。
3、满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积计算方法,提高学生的思维能力。
4、联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。
三、说教学过程。
第一环节:创设情境、激趣导入。
通过创设情境:小兔乐乐想从三快草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出平行四边形草地的面积。
这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
第二环节:活动探究,获取新知。
学生独立思考,动手操作,尝试用不同方法计算平行四边形的面积。根据这些方法,展开其中的割补法,通过转化—找关系—推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出平行四边形面积的计算公式。
这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。
第三环节:练习应用,巩固提高。
课后练习和一些变式的习题。
紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。
第四环节:联系生活,深化应用。
让学生做应用题。
这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。
作业:
自编一道有关平行四边形面积的应用题。富有实践性和应用性,鼓励学生利用数学知识解决生活中的实际问题。
总结:主要让学生清楚:要求平行四边形的面积,必须知道它的底和高或量出底和高。
板书设计:
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、培养学生的合作意识,初步渗透平移和转化的思想。
一个长方形、一个平行四边形,ppt课件一套。
平行四边形、剪刀、三角板。
一、以旧引新,激起质疑。
1、同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?
2、老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)。
二、动手操作,探究方法。
(一)利用方格,初步探究。
1、下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!
3、谁来说说你数的结果?学生汇报。
你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。
(二)动手操作,推导公式。
1、动手操作。
b、静静地想,想好了吗?
c、动手操作,把这个平行四边形变成以前学过的图形。
d、谁来说说,你把平行四边形变成了什么图形,怎么变的?
2、合作探究。
b、小组讨论。
c、汇报。
(三)指导点拨,总结方法。
我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。
孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!
例1、读题后独立解答一生板演。
三、解决问题,拓展延伸。
1、练习十五1题。
2、练习十五3题。
4、你能算出芸芸家这块菜地的面积吗?
四、全课小结,完善新知。
这节课你有什么收获?
这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!
读书破万卷,下笔如有神。以上就是给大家分享的10篇五年级数学平行四边形的面积教学设计,希望能够让您对于平行四边形的面积教学设计的写作更加的得心应手。
结合本节课所学知识特点和学生的思维特点现拟定如下目标:
1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。
3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。
4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。
3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。
一、创设情景,引出课题。
1、创设情景。
同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)。
2、引出课题。
提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。
二、新课。
(1)多媒体出示p80图和表格。
(2)读一读数方格时要注意的地方。
(一个方格代表1平方米,不满一格都按半格计算)。
(3)让学生在电脑上填写表格。
(4)提问:观察表格的数据,你发现了什么?
(5)学生汇报。
(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。
(1)猜想。
如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。
(2)验证。
a、动手操作。
剪——平移——拼,把一个平行四边形变成一个长方形。
b、讨论:
1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?
2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?
(3)汇报并点拨(在投影上展示)。
a、把平行四边形分成一个三角形和一个梯形。
(5)提问:用字母怎样表示这个公式?s、a、h各表示什么?
(6)齐读公式,加深印象。
3、教学例题。
(1)出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?
(2)读题,分析已知条件和问题。
(3)独立完成。
(4)在黑板上展示并评析。
三、巩固练习。
1、填空。
(1)我们可以把一个平行四边形通过分割和平移转化一个(),这个()的()和平行四边形的底相等,()的()和平行四边形的高相等。所以平行四边形的面积=()×(),用字母表示s=()×()。
(2)要求平行四边形的面积,必须知道()和()。
2、一个平行四边形的停车位的底长5m,高2、5m,它的面积是多少?(由学生在多媒体课件上输入答案)。
3、选择题。
(a)6×8(cm2)。
(b)6×4、8(cm2)。
4、提高练习。
(1)如图所示这个平行四边形的高是多少?
5、拓展练习。
清溪镇碧月湾地产将以165万元人民币价格出售如图所示的一块地。现市场价是0、4万元。
(1)这块地值得买吗?
(2)如果“我”要购买,你有什么建议?
四、质疑。
五、这节课你有什么收获?
长方形的面积=长×宽。
s=ah。
s=ah。
=6×4。
=24(cm2)。
答:(略)。
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课。
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽。
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)。
齐读学习目标:
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习。
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)。
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了。
(2)猜想:平行四边形的面积=_________________________。
三、动手操作,验证猜想。
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)。
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
a、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)。
b、转化成的长方形的长相当于原平行四边形的,转化成的长方形的相当于原平行四边形的()。
(6)交流汇报。
师:如果用字母s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成s=a×h,也可以写成s=ah或s=ah(师板书)。
四、当堂检测。
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()。
a:8×3b:8×6c:4×6d:4×3。
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升。
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1、4cm。
2、5cm。
通过做此题,你发现了什么?
六、课堂小结。
说说本节课,你收获了什么?
七、板书设计:
略
1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
一、创设情境,激趣导入。
学生汇报。
(多媒体出示一块长方形的地,一块平行四边形的地)。
学生汇报。
师:你们准备怎样解决呢?
师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)。
多媒体出示方格和长方形的长与宽,学生求出长方形的面积。
学生小组交流。
二、动手实践,探索新知。
学生汇报,教师引导:
(多媒体出示格子,并说明一个方格表示1平方厘米)。
师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。
师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)。
学生猜测。
师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。
学生动手实践,合作交流。
学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)。
教师用课件演示剪——平移——拼的过程。
师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:
1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?
2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
学生汇报,教师归纳:
经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。
学生汇报,教师板书:
此主题相关图片如下:
s=a×h。
师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)。
三、练习深化,巩固新知。
此主题相关图片如下:
2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?
此主题相关图片如下:
3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
此主题相关图片如下:
四、知识应用,总结评价。
师:生活中还有哪些地方应用到我们今天所学的知识呢?
学生交流。
学生交流。
以小课题研究的方式进行学习,每位同学都经历了观察、猜想、思考、计算、实验、推理、联想、概括、争辩、获得共识的过程。在研究阶段,有的学生用的时间长,几天都找不到一点眉目;有的学生有的时间少,几十分钟就能有初步的想法,真实反映了学生之间的差距。面对多数同学认为平行四边形的面积等于邻边乘邻边的惯性思维,教师给了学生充足的探究空间,让他们自己暴露思维痕迹,自己纠正。这个过程是常规课堂40分钟所不能给学生的。通过这样的探究过程,学生找到了平行四边形面积计算公式的来龙去脉,并获得了选择方法来验证猜想、解决问题的基本经验。通过这样的方式,学生经历了研究过程,能逐步养成独立思考、善于质疑和自主探究的习惯,达到学习的理想境界。
2、每位学生展示了不一样的精彩。
在常规教学中,由于每节课只有40分钟,我们很难看到每一位学生对问题的独特见解,基本上是几位学习尖子生展现自己的想法,大多数同学当观众与听众,跟着尖子生走。整堂课下来,虽学会了相关内容,却往往不是自己思考、探究的成果。这些数学优秀的同学,展现的也并不完全是自己的思维,因为他们善于预习,会发现教材给我们提供的各种思路。而这些思路,很多时候是教材编者的思路,并不一定是孩子的思维方法。我们给了每个孩子真正的思考时间,便发现了每个人与众不同的思维和方法。
3、每位学生在辩析中有所发展。
在课前,每位学生都做了深入的研究,而且他们的研究方法各不相同,所以当他们在课堂上展现出来,出现了一幕幕精彩的质疑争辩场景。面对别人的研究成果,孩子们不断质疑,争辩,讨论,直至所有的结论得到所有同学的认可。在这样的学习过程中,孩子们逐步养成全面考虑问题和善于从别人身上取长补短意识,达到共识、共享、共进的境界。
4、每位学生都提高了学习效率。
经过几天的时间,学生才推导出公式,有的学生甚至走了很多弯路,这样的学习效率不是很低吗?教师必须掌握学生研究进程,对他们的研究情况有所了解,并提供有针对性的帮助,这样教不是很费力吗?然而,通过几天的研究,学生的能力却得到切实的开发,更重要的是增强了学生的学习兴趣,他们乐此不疲,各显神通,累并快乐着。而且,学生不仅推导出平行四边形的面积计算公式,对公式有了更深刻的理解,也推导出了三角形的面积计算公式,自然而然地探究了后面要学习的内容,建立起这些知识之间的纵横联系!随着对平行四边形面积计算公式的研究,三角形面积计算公式也一并解决了,可谓是提高了学习效率。更关键的是,学生获得了“能够带走”的方法和经验,这无疑会提高学生学习其他内容时的效率。对教师而言,学生自己能探究得到的,教师也就不用事必躬亲,劳神费力了!这不也是一种解放吗?而且是体现了教学艺术的解放!
教学目的:
探索平行四边形的特征,初步认识平行四边形;知道平行四边形易变形的特性。
通过动手操作与实验,让学生在做中学,培养创新意识和实践能力及初步的空间观念。
创设互相协作的学习情境,使学生感受到生活中处处有数学,激发学生学习数学的兴趣。
教学重难点:
教学准备:
生:钉子板、七巧板、剪刀、平行四边形图片、小棒。
教学过程:
创设情境,引入新课。
小朋友,你们觉得我们的学校漂亮吗?今天陈老师带大家去参观一所漂亮的学校好吗?现在我们就一起去参观这所学校。
出示课件:请小朋友仔细观察这所学校,你能找到哪些图形朋友?
(根据学生的发言课件出现长方形、正方形及平行四边形图片。)。
生:长方形对边相等,四个角都是直角。
生1:我发现了长方形的一组对边变倾斜了,它们的对边还是相等的。
师:你观察得真仔细。
生2:我发现了平行四边形有两个钝角和两个锐角。
刚才小朋友通过观察发现了平行四边形的这些特点,但这是用眼睛看的,是不是准确呢?你们想通过做实验来验证吗?这节课我们就一起来验证平行四边形的特点。
小组实验。
汇报:小组派代表说说你是用什么办法验证平行四边形的特点?
生1:我用笔把平行四边形的一条边画在纸上,再用它的另一条对边去比,发现了两条对边重合在一起,另外一组对边我也用相同的办法去做,我们发现了平行四边形的对边相等。
师:真聪明,真是一个好办法。
生2:我用剪刀把平行四边形的一条边剪一条细线下来,再用这条细线去和它的对边相比,发现这两条边重合在一起,我也发现了平行四边形的对边相等。
师:另外一组对边也用相同的方法证明相等,是吗?(生:对)真棒,谁还有不同的方法?
生3:我用尺子量,也发现了对边相等。
生4:我用剪刀沿平行四边形的对角线剪下来,变成了两个完全一样的三角形,把两个三角形重合在一起,我发现了它的对边相等,一组对角也相等。
生5:我用活动角先量平行四边形的一个角,再去量另一个对角,发现它的对角相等。
生6:我用剪刀把平行四边形的一个角剪下来,把这个角和它的对角比,发现两个角重合在一起,另个一组对角也用相同的方法来做,我们发现了平行四边形的对角相等。
师:能想出这么棒的办法来,真不简单。
生7:我用铅笔把一个角画在纸上,再拿它的对角来比,它们也一样大。
师:这个办法真不错。(板书:对角相等)。
用七巧板拼出平行四边形。
三、生活中的平行四边形及其特性。
今天我们交上平行四边形这位朋友了,生活中你在哪儿见过平行四边形这位朋友?
生1:学校楼梯的扶手。
生2:我家的地砖是平行四边形的。
生3:我们画画时经常画平行四边形。
课件:老师也找了一些平行四边形,请看屏幕:(出现伸缩铁门)你发现了什么?
生:铁门能伸缩。
师:这个铁门为什么能伸缩?我们再来做一个实验。
汇报。请两个小朋友把你们拼的三角形和平行四边形拿上来拉拉看。
生:三角形拉不动,平行四边形一拉就变形。
师:老师在这个平行四边形的对角再摆一根小棒,变成了什么?
生:变成了两个三角形。
师:你再拉拉看,你发现了什么?
生:这样平行四边形就拉不动了。
小结:三角形不易变形,比较稳定;平行四边形不稳定,容易变形。(板书:易变形)铁门能伸缩就是应用了平行四边形容易变形的特性。
小结:平行四边形不稳定的这种特性在生活中还有广泛的应用,小朋友回去先去调查一下,下节课我们再来交流。
课堂小结:这节课你学会了什么?你最开心的是什么?
生2:我和平行四边形交上朋友了,我很开心。
生3:我学会了用很多种方法证明平行四边形边和角的特点。
生4:在玩七巧板的游戏中,我们小组互相合作,拼了7个平行四边形,获得了第一名,我真高兴。
《义务教育教科书》人教版数学课本五年级上册87——88页。
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习的平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)。
学生数方格并来验证自己的猜想。
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)。
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)。
4、观察比较,推导公式。
s=a×h。
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
然后找到转化前、后图形之间的联系。(寻找—联系)。
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)。
1、解决实际问题。
2、出示如下图。
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)。
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)。
王大爷:43×23李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】。
s=a×h。
教学目的:1.通过剪拼摆等活动,让学生主动解决实际问题。
3.培养学生的初步的空间观念。
4.培养学生积极参与,团结合作,主动探索的精神。
教学难点:公式推导的过程。
透明的方格纸和剪刀。
教学过程:
s:数方格的方法。(教师揭示并演示)。
t:那这样的数方格的方法你有什么想说的吗?
s1:麻烦。s2:不够精确······。
s:······。
2.动手操作推倒公式。
t:那出你准备好的平行四边形,看看能不能将它们转化成我们以前学过的图形?
(先独立思考有了想法小组交流)。
s:······。
汇报:t:你是怎么样做的呢?哪个小组愿意来给大家展示一下。
s:拼成三角形,梯形,长方形······。
t:通过同学们的亲身探索操作,将平行四边形转化成了许多我们学过的图形。
知识转化:t:大家观察一下,哪种图形的面积我们会计算呢?
s:长方形。
t:请大家拿出来一张平形四边形纸片,将它转化成为长方形吧!智慧老人现在有几个问题留给大家思考,便于同学发现其中的规律。
请看小黑板:
1.你们是怎么样转化的?
2.与原来的平行四边形的关系是怎么样的?(面积对应的高与底)。
s2:面积是一样的.(学生板书)。
s3:长方形的面积是长乘宽长方形的面积=长乘宽(学生板书)。
t::哪个小组与他们的观点一致,有需要补充的吗?
s:我们是沿着另一条高折的也拼成了长方形。
t:同学们,听出来这两组同学的方法,虽然有不同的地方,但有一个共同点就是沿着高剪.
t:为什么要沿着高剪开的呢?
s:长方形有四个直角,所以我们必须沿着高来剪这样才能形成直角.
s:(学生板书:s=ah)。
小结:t:通过图形的转化,我们推出了平行四边形的面积计算公式,那我们以后再求平行四边形的面积的时候只要知道平行四边形的哪些条件(底和高)我们知道了平行四边形的底和高,我们就可以求平行四边形的(面积).
s:3×4=12(平方米)答:得买12平方米的草皮.
23。
33。
t:这道题告诉我们一个怎么样的问题?
s:对应边与对应高之间的乘积.
2.课本24页试一试说说自己的方法.
3.练一练。
总结:这节课你都学会了什么?有怎样的收获呢?
你对自己的表现满意吗?给自己来打一下分数满分是10分的话.
(1)1平方米=平方分米=()平方厘米。
(2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积()。
转化后长方形的长与平行四边形的()相等,宽与平行四边形的()相等。
(4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是()。
2、判断。
(3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积()。
3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?
24厘米。
50厘米。
升级跷跷板。
4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/xingzhenggongwen/164724.html