首页 > 范文大全 > 行政公文

二倍角公式教案(优质12篇)

二倍角公式教案(优质12篇)



在教学工作计划中,教师需要明确每个教学阶段的目标,合理安排课程的进度和内容,并制定相应的教学方法和评估方式。为了方便大家编写教学工作计划,我们特地整理了一些教学工作计划的要点和注意事项。

完全平方公式教案设计

1、了解完全平方公式的特征,会用完全平方公式进行因式分解.

2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.

3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力.

学习建议教学重点:

《平方差公式》教案

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.

教学重点和难点:公式的应用及推广.

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道。

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形.希望推出公式:

a2-b2=(a+b)(a-b)。

2.(1)叙述平方差公式的数学表达式及文字表达式;。

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.

3.判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)。

=(100+2)(100-2)=(y2-4)(y2+4)。

=9996;。

(1)103×97;(2)(x+3)(x-3)(x2+9);。

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.请每位同学自编两道能运用平方差公式计算的题目.

例2填空:

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。

练习。

填空:

1.x2-25=()();。

2.4m2-49=(2m-7)();。

3.a4-m4=(a2+m2)()=(a2+m2)()();。

例3计算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。

=m4-14m2+49-n2.

1.什么是平方差公式?一般两个二项式相乘的积应是几项式?

3.怎样判断一个多项式的乘法问题是否可以用平方差公式?

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

二倍数教案

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)。

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看。

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1)自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试。

在下面数中圈出3的倍数。

284553873665。

(先自己圈,然后说说你是怎样判断的?)。

(四)活动四:练一练。

1、请将编号是3的倍数的气球涂上颜色。

361754714548。

(自己独立完成,在小组内说说自己的想法。)。

2、选出两个数字组成一个两位数,分别满足下面的条件。

3045。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)。

(五)活动五:实践活动。

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)。

三、总结。

通过这节课的学习,你有什么收获?

二倍数教案

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习。

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

学生回顾,交流,教师适当引导回顾。

根据学生回答,板书整理。

2.做练习与实践第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做练习与实践第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做练习与实践第12题。

学生先独立写出质数和合数,再指名口答。

追问:最小质数是几?最小的合数呢?

二倍数教案

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

二倍数教案

1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

教学重难点。

判断一个数是不是3的倍数。

课前准备。

小黑板、学具卡片。

教学活动。

一、引入新课,激发兴趣。

教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)。

教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)。

二、自主探索。合作学习。

1.先让学生猜一猜:3的倍数有什么特征?举例说明。

2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。

4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?

:每个数所用算珠的颗数都是3的倍数。

5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。

:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

三、运用结论。巩固拓展。

1.做“想想做做”第1题。

指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

2.做“想想做做”第2题。

提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

3.做“想想做做”第3题。

让学生独立填写,再在小组里交流:你能找到几种不同的填法?

4.做“想想做做”第4题。

学生涂完后,指名回答:9的倍数都是3的倍数吗?

5.做“想想做做”第5题。

各自组数,并把组成的数记下来。

指名报答案,全班学生评议。

6.补充题。

提问:你今年几岁?再过几年你的岁数是3的倍数?

四、

完全平方公式教案设计

引例讲解:将下列各式分解因式。

1、x2+6x+92、4x2-20x+25。

问题:这两题首先怎么分析?

生14:将9改写成32,6x正好是x与3的乘积的2倍。(学生回答,教师板书)。

生15:将4x2写成(2x)2,25写成52,20x写成2×2x×5。

x2+6x+9=x2+2×x×3+32=(x+3)2。

4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。

(联系字母表达式用箭头对应表示,加深学生印象。)。

生16:由符号来决定。

师:能不能具体点。

生16:由中间一项的符号决定,就是两个数乘积2倍这项的符号决定,是正,就是两个数的和;是负,就是两个数的差。

师:总之,在分解完全平方式时,要根据第二项的符号来选择运用哪一个完全平方公式。

例题1:把25x4+10x2+1分解因式。

师:这道题目能否运用以前所学的方法分解?就题目本身有什么特点?可以怎么分解?

生17:题目符合完全平方式的特点,可以将25x4改写成(5x2)2,1就是12,10x2改写成2×5x2×1。(此学生板演,过程略)。

例题2:把-x2-4y2+4xy分解因式。

师:按照常规我们首先怎么办?

生齐答:提取负号。〔教师板书:-(x2+4y2-4xy)〕以下过程学生板演。

师:如果是这道题:4xy-x2-4y2怎么分解呢?(教师改变刚才题型)。

提示:从项的特征进行考虑,怎样转化比较合理?四人小组讨论。

生18:同样还是将负号提取改变成完全平方式的形式。

师:从这里我们可以发现,只要三项式中能改写成平方的两项是同号,且另一项为两底数积的2倍,我们都能利用这个公式分解,若这两项同为正则可直接分解,若同为负则先提取负号再分解。

练习题:课本p21练习:第1题,学生板演,教师讲解,学生板演的同时,教师提示注意点、多项式的特征;第2题,学生口答。

例题3:把3ax2+6axy+3ay2分解因式。

师:先观察,再选择适当的方法。(学生板演,教师点评)。

练习:课本p22第3题分两组学生板演,教师评讲、适当提示注意点。

师:这一堂课我们一起研究了完全平方式的有关知识,同学们先自查一下自己的收获,然后请同学发表自己的见解。(学生小声讨论)。

生甲:我学到了如何将完全平方式分解因式,遇到三项式中有两项符号相同且能化成平方的形式,另一项为这两个数的积的2倍的形式,如果能化成平方项是负的,首先将负号提取再分解。第二项是正的就是两数的和的平方,第二项是负的就是两数差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同时根据第二项的符号来选用合适的公式。

教师布置课堂作业:课本p23习题8.2a组4~5偶数题。

课外作业:课本p23习题8.2a组4~5奇数题。

下课!

《完全平方公式》教案

(2)切勿把“乘积项”2ab中的2丢掉.

今后在教学中 ,要注意以下几点:

1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.

《公式联想表达》的教案

(4)(1-5y)(l+5y)。

例3计算(-4a-1)(-4a+1)。

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习。

1、口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

三、小结。

1、什么是平方差公式?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

四、作业。

1、运用平方差公式计算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

《公式联想表达》的教案

授课班级:三明四中初三(5)。

11。

教学目的:

1、由”公式“引发联想,培养学生发散思维能力。

2、学会多角度思考问题,提高学生口头表达能力。

教学重、难点:

引导学生多角度思考问题。

教学过程:

一、课前三分钟:

[生]按照号数轮流《我看abc-------》。

(话题训练:就26个英文字母之一展开合理想象)。

[生]点评。

二、活动过程:

(一)导入:打出课件:

数字笑话:

b、0对5说:”你该把肚皮收收了!

c、0碰到9,(大吃一惊):“哎,兄弟,怎么截肢了?”“。

d、学生猜:

0碰到(),很同情地说:”哎,怎么拄上双拐了!“。

师:瞧,”0“多有意思!(创见)。

这节课我们也好好表现一下,怎么样?

打出课件:

--------作文活动课。

(二)、准备阶段:

师:我们先做一个小小的练习,造一个句子。

”我由_____想起了_________“。

下面请同学们把造好的句子念出来给大家听听,好吗?

[生]发言。

师:赞评。

(二)酝酿阶段:

打出课件:

w=x+y+z。

师:知道这是什么?

[生]:一个公式。

师:数、理、化有关这方面的公式多吗?请举例一下。

[生]:多------。

师:大家思考一下,看看你能否对这个公式有个认识。

[生]:思索。

w代表成功。

x代表勤奋y代表方法z代表惜时。

课件显示:

成功=勤奋+方法+惜时。

让我们齐读一遍,共同感受一下它深刻的内涵。

[生]:齐读。

(三)、成熟阶段:

师:一个简单的公式能够表达出如此深刻的含义,这多么有趣啊!

下面我们来试试进行公式演化的训练,并由此进行联想。

打出课件:

1+1=1。

师:这个公式从数学上讲能成立么?

[生]:不能。

[生]:思考讨论。

提问回答:

师:评议。

备份课件打出:

a、一个南半球加上一个北半球就是我们的整个地球。

b、两根筷子合力能夹起一个鸡蛋。

c、一对夫妻只生一个孩子。

d、两个人的力量加在一起就是集体的强大力量。

师归纳:这说明只要我们转换思维方式,展开丰富联想,一定能赋予一个简单的公式许多生动有趣的含义。

那么就请大家展开丰富联想,列出你们感悟最深的公式来吧。

[生]:思考。

[生]:发言交流。

师:对学生的发言作点评。

插入课件一:

中考有7门,我语文成绩不好,若再不努力追赶,即使其他成绩再好,也是白搭,这叫”前功尽弃,一切趋于零。”所以我必须要加倍努力学好语文迎头赶上。

师问:这位同学的公式好不好?好在哪?

[生]评:这位同学联系自己的'实际情况,为自己所列的公式赋予了很实在的内容,可谓恰如其分。

课件二:

13。

一个和尚有水吃,三个和尚没水吃。启示我们要团结和作,齐心协力。

师问[生]评:的确很不错。联想十分巧妙又有意义。

师:好,我们再来听听同学们的发言。

[生]:交流。

师:评。

(四)、归纳小结:

打出课件:

想象是作文的翅膀。

读书是作文的向导。

生活是作文的源泉。

听了同学们的发言,真令我感叹不已。本来枯燥无味的公式却能让大家赋予丰富的内涵,同学们的想法很了不起啊!

作文就是表现生活的,要表现生活,就必须要认识生活,而认识生活,靠的是我们对生活的感悟。善于感悟的人,联想、想象力一定是很强的,那么他写作能力也就不言而喻了。

四、布置作业:

写作:以本节课的内容或你所列的公式为题,写一篇不少于500字的文章。

[教后记]:

*学生是课堂的真主人,留给学生充足的活动空间。

*重视学生思维能力的发展,尤其是要重视培养学生创造性思维。

*有序循进地开展教学,捕捉带规律性的思维激发点,吸引学生主动参与的积极性。

*注重锻炼学生口头表达能力和归纳总结能力,提高学生深刻思想内涵的赋予,既教作文又育作人。

*重视培养学生良好的思维习性,自主联想自主表述、思维训练的科学性。

作者邮箱:zhangqin@。

完全平方公式教案

1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

3、了解完全平方公式的几何背景,培养学生的数形结合意识。

4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

探索讨论、归纳总结。

一、回顾与思考。

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

右边是两数的平方差。

2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

二、情境引入。

活动内容:提出问题:

用不同的形式表示实验田的总面积,并进行比较。

活动内容:

1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引导学生利用几何图形来验证两数差的完全平方公式。

3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

结构特点:左边是二项式(两数和(差))的平方;

右边是两数的平方和加上(减去)这两数乘积的两倍。

语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

五、巩固练习:

一、学习目标。

1、会推导完全平方公式,并能运用公式进行简单的计算。

三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

四、学习设计。

(一)预习准备。

(1)预习书p23—26。

(2)思考:和的平方等于平方的和吗?

1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。

1、(5—x2)2等于;

答案:25—10x2+x4。

解析:解答:(5—x2)2=25—10x2+x4。

2、(x—2y)2等于;

答案:x2—8xy+4y2。

解析:解答:(x—2y)2=x2—8xy+4y2。

3、(3a—4b)2等于;

答案:9a2—24ab+16b2。

解析:解答:(3a—4b)2=9a2—24ab+16b2。

数学教案-运用公式法

九九乘法表是小学生学习数学时一定要学习的内容,为小学生抄写一份九九乘法表也是不少家长的功课之一。其实用excel作一份乘法表也是一个不错的选择。it168曾经发表过一篇利用vba编程实现“九九乘法表”的文章,它就为我们指引了一条很不错的制作乘法表的道路,令我们很受启发。

在excel中,除了用vba编程来制作乘法表以外,我们还可以直接利用公式来写乘法表,效果也是不错的。下面我们以excel2007为例来说明。

一、建立乘法表。

首先我们在excel中建立一份空的表格,在b1:j1单元格区域分别填写数字1至9,在a2:a10单元格也分别填写数字1至9,得到如图1所示表格。

图1excel2007填写基本数字。

图2excel2007填充单元格。

在此公式中其实只用到了一个if函数。所写乘法表中被乘数是b1:j1中的数据,而乘数则是a2:a10单元格中的数据。我们所用公式的意思可以这样理解:首先判断被乘数是否小于或等于乘数,如果是,那么就输出结果,如果不是,那么在此单元格中就输出空值。

二、为乘法表格添加表格线。

感觉那乘法表有些简陋?不要紧,我们为表格加上表格线就好了,

当然,只为那些有内容的单元格添加表格线。办法吗?首先隐藏不必要的辅助数据,然后再用条件格式的方法为乘法表添加表格线。

先点击a列列标选中a列全部单元格,点击右键,在弹出菜单中点击“隐藏”命令,然后再点击第一行的行号,选中全部第一行的单元格,再点击右键,在弹出菜单中点击“隐藏”命令,这样,辅助数据就不见了。

现在,我们再选中b2单元格,然后点击功能区“开始”选项卡“样式”功能组“条件格式”按钮,在弹出的菜单中点击“新建规则”命令,打开“新建格式规则”对话框。然后在“选择规则类型”列表中选择“使用公式确定要设置格式的单元格”命令,然后在“为符合此公式的值设置格式”下方的输入框中输入公式“=b2“””,如图3所示。

图3excel2007编辑格式规则。

再点击下方的“格式”按钮,打开“设置单元格格式”对话框,在“边框”选项卡中设置单元格的边框格式,如图4所示。当然,我们还可以做出其它的设置。确定后,b2单元格就会添加有边框了。

图4excel2007设置单元格格式。

再选中b2单元格,然后点击功能区“开始”选项卡“剪贴板”功能组中“格式刷”按钮,然后“刷取”b2:j10单元格区域复制格式,那么,在乘法表中非空的那些单元格就会自动添加边框线,而没有内容的那些单元格则不会有任何变化。如图5所示。

图5excel2007添加边框线。

好了,不多说了,有兴趣自己试试吧。

将本文的word文档下载到电脑,方便收藏和打印。

相关内容

热门阅读
随机推荐