首页 > 范文大全 > 行政公文

人教版六年级数学教案(精选17篇)

人教版六年级数学教案(精选17篇)



教学方法是教师在教学过程中采用的教学手段和策略,以促进学生的学习和发展。看看其他老师编写的六年级教案,可以帮助您更好地设计和优化自己的教学安排。

六年级数学教案数学思考教案新人教六下

通过《比例尺》一课的学习,理解比例尺的意义,能正确说明比例尺所表示的具体意义。以下为您带来冀教版数学六年级上《比例尺》教案,欢迎浏览!

教学内容:

教学目标:

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教具准备:

多媒体课件或小黑板。

教学方法:

先学后教,当堂训练,目标教学法和小组合作学习融合。

学习过程:

一、板书课题。

同学们,今天我们来学习“比例尺”(板书课题)一起来看学习目标。

二、出示学习目标。

本节课我们的目标是。

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

同学们,有信心完成本节课的学习目标吗?为了能更好的完成学习目标,请看学习指导。

三、自研共探。

1、看一看(自学探究)。

认真看课本第48和第49页的内容,看图,看文字,重点看各色方框里的内容并思考。

(1)什么是比例尺?求比例尺的方法是什么?

(2)看课本48页右图下面的线段比例尺,想:怎样把它转化成数值比例尺?

(3)比例尺一般写成什么形式?

师:生认真看书自学,师巡视,督促人人认真看书。

2、议一议(合作交流)。

主要交流自学探究中的问题,先对子之间互说,最后小组内交流,统一答案或记录下没有解决的问题,以备下一步的展示。

3、说一说(汇报展示)。

以小组为单位进行自学成果的汇报。针对自学探究中的.问题,可以口答、板演、或提出问题。组间可以补充或质疑,教师尽可能的引导或解疑。

4、小结归纳。

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺。

比例尺实际距离。

图上距离。

求比例尺时,需要注意单位的统一,同时,比例尺是一个比,不能带单位名称。为了计算方便,通常把比例尺写成前项或后项是1的比。

师:通过刚才的展示,老师发现各个小组的自学效果的确很好。到底同学们运用知识解决实际问题的能力怎么样呢?下面请看检测题,比一比谁发言最积极,谁解决问题的能力最强!

四、巩固提升。

要求。

1、独立完成,对子讨论。

学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论。

2、组内交流,整合答案。

学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

3、分工合作,板演展示。

学法指导:由组长分工:板演、检查、预展(讲解者)。

4、汇报讲解,补充评价。

学法指导:各个小组按抽签顺序讲解展示,讲解时可以组内补充,也可其他组补充或质疑。展示后,其他组或教师给予评价。

操作指导:教师在预展时巡视各小组,指导并帮助小组快速分工,让每个学生尽快参与其中,没有得到展示机会的小组安排课后自改或小组对改。

五、全课总结。

同学们,今天我们学习了比例尺,求比例尺的方法是什么呢?

首先根据比例尺的意义确定比的前项和后项,写出比,图上距离和实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

下面我们就用今天所学的知识来做作业,比谁的课堂作业做得又对又快,字体又工整。

六、当堂训练。

1、必做题:课本练习八的1、2、3题。

板书设计:

比例尺。

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺。

比例尺实际距离。

图上距离。

文档为doc格式。

人教版六年级数学教案

1、理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

2、理解倒数的意义,掌握求倒数的方法。

3、理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4、掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能正确计算圆的周长和面积。

5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

6、能在方格纸上用数对表示位置,初步体会坐标的思想。

7、理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。

8、认识扇形统计图,能根据需要选择合适的统计图表示数据。

9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在。

日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理能力。

11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12、养成认真作业、书写整洁的良好习惯。

三、教学内容分析。

单元。

序号。

单元。

名称。

单元。

篇目。

单元教材简析。

(教学目标、重点、难点)。

教学。

时数。

位置。

分数乘法。

分数除法。

圆的认识。

百分数。

统计。

数学广角。

用数对确定物体的位置。

1、分数乘法。

2、解决问题。

3、倒数的认识。

4、整理和复习。

1、分数除法。

2、解决问题。

3、比和比例的应用。

4、整理和复习.

1、认识圆、

2、圆的周长。

3、圆的面积。

1、百分数的意义和写法;

2、百分数和分数、小数的互化;

3、用百分数解决问题等内容。

扇形统计图。

合理存款。

鸡兔同笼问题。

教学目标:

1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2.使学生能在方格纸上用数对确定位置。

重难点:

运用两个数据准确表示物体位置。

关键。

利用方格纸正确表示列与行。

教学目标:

1.理解分数乘法的意义,掌握分数乘法的计算方法,会进行分数乘法计算。

2.理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。

3.理解倒数的意义,掌握求倒数的方法。

4.会运用分数乘法解决一些简单的实际问题,体会数学与日常生活的联系。

重点。

1.分数乘法的计算方法。

2.求一个数的几分之几是多少的问题。

难点:

分数乘分数的计算方法。

关键。

理解“一个数乘分数的意义,就是求一个数的几分之几是多少”的道理。

教学目标:

1.理解分数除法的意义,掌握分数除法的计算方法,会进行分数除法计算。

2.会用方程或算术方法解答已知一个数的几分之几是多少求这个数的实际问题。

3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4.能运用比的知识解决有关的实际问题。

重点:

1、分数除法的计算;

2、分数除法问题的解答;

3、比的意义和基本性质的理解与运用。

难点:

理解分数除法计算法则的算理;比的应用.

教学目标:

1.认识圆,掌握圆的基本特征,理解直径与半径的相互关系;学会用圆规画圆。

2.理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

教学重点:

1、学生认识圆,知道圆的各部分名称.。

2、掌握圆的特征及在同一个圆里半径和直径的关系.。

3、初步学会用圆规画圆,培养学生的作图能力.。

4、亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

教学目标:

1.使学生理解百分数的意义,了解它在实际中的应用,会正确地读、写百分数。

2.使学生能够进行小数、分数和百分数的互化。

3.理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

4.使学生在理解、分析数量关系的基础上,能正确地解答有关百分数的问题。

重点:

百分数的意义和写法,百分数和分数、小数的互化,百分数的应用。

难点:

百分数的应用。

教学目标:

通过实例,认识扇形统计图的特点,知道扇形统计图可以直观地反映部分数量占总数的百分比,能从扇形统计图读出必要的信息。

重点。

认识扇形统计图,理解扇形统计图的特点。

难点:

综合应用所学的知识解决日常生活中相关的问题。

教学目标。

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

3、在解决问题的过程中培养学生的逻辑推理能力。

重难点。

尝试用不同的方法解决“鸡兔同笼”问题。

关键。

在解决问题的过程中培养学生的逻辑推理能力。

2

12。

14。

12。

10。

2

2

将本文的word文档下载到电脑,方便收藏和打印。

小学六年级人教版数学教案

1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

2.会在方格纸上用“数对”确定物体的位置。

3.发展空间观念,初步体会到数形结合的思想。

4.体会生活中处处有数学,提高运用知识解决实际问题的能力。

【教学重点】。

使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

【教学难点】。

在方格纸上用“数对”确定位置。

【教法】。

情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

【学法】。

积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

【教学准备】。

多媒体课件。

【教学过程】。

一、谈话导入。

1.师生谈话。

这位同学的座位是在第3排,大家知道这位同学是谁吗?

2.导入新课。

今天这节课,我们就一起来学习确定位置的方法。

板书课题:用数对确定位置。

二、探索新知。

1.教学例1。

(1)出示例题1教学图。

让学生观察图,说说张亮同学坐在第几列?第几行。

(竖排叫做列,横排叫做行)。

(2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

(3)让学生用数对表示王艳和赵强的位置。

王艳(3,4)赵强(4,3)。

(4)小结。

确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。

2.完成第3页的“做一做”。

课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

(电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

3.教学例2。

(1)认识方格图。

出示动物园示意图。

指导学生观察图。

这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

(2)用数对表示图中各场馆的位置。

提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

【大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】。

你们能用数对表示其他场馆所在的位置吗?

【熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】。

(3)根据数对标位置。

在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

三、巩固运用。

1.小游戏:看谁反应最快。

老师说出一组数对,相应的同学要在3秒内起立。

2.做一做。(课件出示)。

四、课堂总结。

这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

五、板书设计。

用数对确定位置。

竖排叫做列从左往右。

横排叫做行从前到后。

张亮坐在第2列第3行(2,3)。

(列,行)。

人教版六年级数学教案

1.1知识与技能:

(1)使学生认识圆锥,掌握圆锥的特征及各部分名称。

(2)使学生会画圆锥的平面图形及掌握测量圆锥的高的方法。

(3)培养学生的实验能力,发展学生的空间观念。

1.2过程与方法:

经历圆锥的认识过程,体验探究发现的学习方法。

1.3情感态度与价值观:

感受数学与实际生活的联系,激发学生学习数学的兴趣,培养学生积极参与,自主学习的精神。

教学重难点。

2.1教学重点。

掌握圆锥的特征,认识圆锥的高。

2.2教学难点。

掌握圆锥高的测量方法。

教学工具。

多媒体课件,圆柱形铅笔,圆锥实物及模型,直尺,直角三角形硬纸。

教学过程。

一、回顾强化。

老师啊先给大家准备了个谜语,看谁能快速的猜出谜底来,请看屏幕。出示谜语“身体长得细又长,天生美丽黑心肠,上平下尖纸上爬,越爬越短越伤心”(猜一学习用具)。

师:不错。谜底就是老师手上拿的铅笔。

课件出示一支圆柱形铅笔。

师:同学们这支铅笔是什么形状的?

生:是圆柱体。

师:你能说说它具有什么特征吗?

预设。

生1:圆柱有三个面,有上下两个底面,是完全相同的两个圆。

生2:圆柱有一个侧面是曲面。

生3:两个底面之间的距离叫做圆柱的高,有无数条高。

生4:圆柱侧面展开是长方形。

二、创设情境,激情导入。

师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细的看老师的操作(师拿出一支圆柱形铅笔用转笔刀削铅笔)。

师:想想被削的这一端会发生什么变化?(。

生:越来越细,越来越尖。

师:老师如果把削成的笔尖部分切下来,会是什么形状叫呢?同学们请看屏幕。

课件:把削成的笔尖部分(圆锥体)垂直切下来。

师:同学们知道被切下来的是什么几何形体吗?

生:是圆锥体。

师揭示课题:

师:不错,我们把象这样的几何形体叫做圆锥体,简称圆锥,今天我们就来学习《圆锥的认识》。

板书课题《圆锥的认识》。

三、探究体验。

1、列举,提出问题。

同桌同学互相讨论。

(出示一组生活中圆锥的例子,丰富学生的感知)。

师:刚才我们共同找出了一些生活中的圆锥,接下来再让我们共同欣赏课本带给我们的精彩画面(教材23面图),请同学们按照老师的样子用铅笔沿着实物的轮廓把你找到的圆锥体描画出来。

学生描画课本中圆锥的轮廓。

师:在日常生活和生产劳动中,同学们还知道哪些物体的形状是圆锥体的?

生1:陀螺的下半部分。

生2:盖房子用的铅锤的形状是圆锥体的。

生3:……。

……。

师:看来圆锥形的物体给我们生活的带来了不少的便利,我们只有对它了解的更多,才能更好的得用它。

2、引导观察圆锥的特征。

师:下面请同学们拿出圆锥体模型,看一看、摸一摸、同桌同学互相说说你的感觉。

学生手拿圆锥体模型观察、想。

同桌交流、讨论。教师深入小组和学生一起进行探讨。

师:谁愿把你们的研究成果告诉给大家。

生汇报师板书:(预设展示过程)。

圆锥的特征。

生1:我们发现圆锥上面细,下面粗。

生2:圆锥有一个尖尖的部分,摸起来很扎手。

师:我们把它叫做顶点。

(学生讲到此点时,配合图片在图上标出,再请一个同学上台指出黑板上老师画的圆锥的顶点并标出来,其他同学在答题纸上标出圆锥的顶点)。

生3:圆锥有一个弯曲光滑的面。

师:我们可以把它叫做侧面。这个面是曲面。

(学生讲到此点时,配合图片在图上标出)。

师:同学们回顾下圆柱的侧面展开是什么图形?

生:长方形。

师:那么圆锥的侧面如果把它展开来会是个什么形状呢?

师展开一个圆柱的侧面,让学生观察。

生:圆锥的侧面展开是个扇形。

生4:圆锥有一个圆形的面,我们可以把他叫做底面。

(学生讲到此点时,配合图片在图上标出,再请一个同学上台指出黑板上老师画的圆锥的底面并标出来,其他同学在答题纸上标出圆锥的底面)。

3、师引导观察圆锥的高。

探究测量圆锥高的方法。

a﹑认识高。

请同学们带着这个问题阅读课本第24页例1的前半部分。

师:连接这两个点所得到的线段我们也可说成是从圆锥的顶点到底面圆心的距离。下面我们把书翻到24页找到圆锥高的定义,把这一句话齐读一遍。

师:通过我们对圆锥的高的了解,想一想圆锥的高有几条?(。

生:一条。

师:为什么只有一条?

生:因为圆锥只有一个顶点和底面只有一个圆心。

b﹑测量高。

师:由于圆锥的高在它的内部,那么我们怎样测量圆锥的高呢?

引导学生先想一想,然后利用老师给大家准备好的圆锥,同桌同学共同探究圆锥的高的测量方法。(以同桌为单位进行操作。教师适当引导指正。)。

学生汇报,师通过幻灯小结.

生1:测量时,圆锥的底面要水平地放;。

生2:上面的平板要水平放在圆锥的顶点上面。

师:通过刚刚的测量,所以我们今后在表示圆锥高的时候,高还可以表示在圆锥的外面。(师演示)。

4、虚拟的圆锥。

(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将一个直角三角形绕。

着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥。并说一说圆锥的顶点、高和底面圆心及底面半径。

四、应用反馈。

1、教材第32页“做一做”。

组织小组内同学相互指出各个圆锥的底面、侧面和高,教师巡视指导。

然后集中进行讲解。

2、教材第35页练习六第2题。

组织学生独立思考后指名汇报。

3、课外练习。

(1)、幻灯出示练习题:将下面图形分类,说说每类图形的名称和特征。

学生同桌交流,进行分类。

(2)、联系前面所学的圆柱,请同学们在答题纸上写写圆柱和圆锥的联系和区别。

(学生汇报结果)。

预设:

生1:圆柱是由两个底面和一个侧面三部分组成。圆柱的底面都是圆,并且大小一样。圆柱的侧面是曲面。一个圆柱有无数条高。

生2:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。

4、幻灯出示生活中的数学。

课后小结。

1、同学们,通过这堂课的学习,我们对圆锥有了个初步的认识,知道了圆锥的一些特征。

2、总结圆锥的特征:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。

六年级数学教案数学思考教案新人教六下

本单元内容是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认识负数。以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触到了一些负数,有了初步认识负数的基础。在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。

在实际生活中存在很多相反意义的量,比如,气温的零上和零下,存折上现金的存入和支取,水位高度的上长升和下降,海拔高度的高于海平面和低于海平面,等等。为了表示这样两种相反意义的量,还用学生原有的数概念知识就不够了,这样就自然引入了负数的认识。教材首先通过学生熟悉的生活情境如气温、存折中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义,接下来通过用负数表示日常生活中的简单问题加深对负数意义的理解。在此基础上,再让学生在直线上表示出正数和负数,初步建立数轴的模型,形成数的比较完整的认知结构,然后借助数轴对气温进行排序让学生初步辨别正数、0和负数之间的大小关系。

二、教学目标。

1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

三、教学重点:理解负数的意义,体会数轴上正、负数的排列规律。

教学难点:会在数轴上比较正数、0和负数的大小。

四、突破措施。

1、通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,老师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起已有的生活经验,激发学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,老师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2、把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。关于数的大小比较,特别是两个负数的比较,这里还不是抽象的比较,只要能借助数轴来比较就可以了。

五、本单元内容可安排2课时进行教学。

人教版数学六年级教案

教学目标:

1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。

2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。

3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。

重点难点:

理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。

教学流程:

一、知识扩充。

(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)。

师:(出示一组信息)2001年12月,中国银行给工业发放贷款18636亿元,给商业发放贷款8563亿元,给建筑业发放贷款2099亿元,给农业发放贷款5711亿元。

(让生思考,从信息中想到了什么?)。

设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。

效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。

二、创设情境。

师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?

生:放在银行里,不但安全还可以使自己的用钱更有计划。

师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?

(生走入老师创设的情境,感受存款的乐趣。)。

(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)。

设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。

效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。

三、合作学习。

师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。

(生找出本金、存款种类后,再谈一谈自己有什么新发现。)。

出示表格。

(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息=本金×时间×利率。)。

生:1000×3.6%×5=180元。

师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到2012年。(出示利息清单。)。

利息清单。

生总结:税后利息=本金×利率×时间×(1-20%)。

设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。

效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。

四、深化练习。

1.奉献。

2.理财。

3.帮助。

4.介绍小知识。(教育储蓄)。

设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。

效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。

六年级数学教案

教科书第55页例2,课堂活动第2题,练习十五第4~7题。

1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

重点:把两个数比的问题的解题方法推广到三个数连比的问题。

难点:理解三个数连比的问题的解题方法。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

导入新课

1.填空。(多媒体出示题目)

(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

学生回答反馈,说说怎样思考,集体评价。

2.引入谈话:怎样解决按比例分配的问题?

在实际生活中还有哪些问题可以用按比例分配的'方法解决?生举例。(组织学生分组讨论.

反馈.

交流后,老师及时做出评价)

在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

独立思考再交流方法和结果,集体评价。

举例,分组讨论、反馈、交流。

1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

生1:前面所做的题都是两个量的比,这道题是三个量的比。

生2:可以仿照上节所学的按比例分配方法去解。

3.学生尝试解答,教师巡视。

4.展示学生解法,说出解题思路。

方法1:220÷(2+3+6)=20(吨)

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

答:需要水泥40吨,需要沙子60吨,需要石子120吨。

方法2:总份数:2+3+6=11

需要水泥的吨数:220x2/11=40(吨)

需要沙子的吨数:220x3/11=60(吨)

需要石子的吨数:220×6/11=120(吨)

方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

解:设每份是x吨.

2x+3x+6x=220

11x=220

x=20

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

5.议一议:怎样解决按比例分配的问题?

学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

学生交流获取的信息。

讨论交流异同。

尝试解答,再展示交流解题思路。

独立思考,再小组交流、小结解决按比例分配问题的一般方法。

在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

在按比例分配的过程中,感受分配方案的简洁美、理性美。

1.课堂活动第2题。

根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

教师组织学生讨论:这道题与前面所做的题有什么区别?

引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

学生讨论后尝试独立解题。完成后交流解决问题的方法。

再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

学生讨论找到方法。

独立解题,再交流解题方法。

讨论交流得出结论。

经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

想一想,今天学习的知识与昨天有什么不同?又有什么相同?

谈收获。

练习十五第4―7题。

独立完成。

六年级数学教案

整理与复习学到的知识,试一试第1题。

学情分析。

学生知识的整理和归类。

学习目标。

1、进一步理解和掌握以前学过的'知识和计算方法。

2、对所学知识进行巩固和复习。

导学策略。

练习法。

教学准备。

小黑板、投影仪、投影片。

导学流程设计:

教师预设。

学生活动。

一.引入。

1.问:以前几个单元我们一起学习了哪些知识?指名回答。

2.师生一起归纳、整理几个单元所学内容。

3.揭示课题。

4.请学生把知识进行简单的整理。并写下来。

5.与同学进行交流。

二.展开(要多设计一些学生生活实际的题目,让题目靠近学生生活。)。

1.根据学到的知识,请学生提问题。

2.学生自己尝试解决。

3.与同学进行交流。

注意学生的参与性和积极性。

三.综合应用。

投影出示p66练一练第1题。

先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。

三.总结。

四.作业。

学生指名回答。以前几个单元我们一起学习了哪些知识?

学生把知识进行简单的整理。并写下来。

与同学进行交流。

根据学到的知识,请学生提问题。

学生自己尝试解决。

与同学进行交流。

先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程。

教学反思。

达标情况分析:很好。

教学心得体会:多给学生一些思考的空间,学生更喜欢。

六年级数学教案

教学内容:

教学目标:

1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

使学生掌握用“替换”的策略解决一些简单问题的方法。

教学难点:

使学生能感受到“替换”策略对于解决特定问题的价值。

教学过程:

一、复习导入。

1.说说图中两个量的关系可以怎样表示?

追问:还可以怎么说?

指出:两个量的关系,换一个角度,还可以有另外一种表示方法。

2.从图中你可以知道些什么?

(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)

指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。

3.口答准备题:

(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。

二、新授

(一)教学例1

1.读题

2.分析探索

提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。

3.交流

谈话:我们一起来交流一下,该怎么办?

追问:还可以怎么办?

小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)

4.列式计算

a:把大杯换成小杯

提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?

追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)

小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。

b:把小杯换成大杯

谈话:那反过来,把小杯换成大杯呢?(板书)

提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?

指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。

提问:这样做的依据又是什么?

指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)

提问:能求出每个大杯的容量吗?每个小杯呢?(板书)

5.检验

谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?

指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。

6.小结

指出:解这题的关键就是把两种杯子看成一种杯子。

(二)练习十七第1题

谈话:把这道题目,做在自己的草稿本上。(指名板演)

提问:把你的做法讲给同学们听。

追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!

(三)教学“练一练”

1.出示题目

谈话:自己先在下面读一遍题目。

2.分析比较

提问:这题与刚才的例1相比较有何不同之处?

指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。

提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。

3.学生试做

4.评讲

谈话:说说你是怎么做的?

指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。

提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。

指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。

谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。

5.检验

谈话:同桌相互检验一下刚才计算的结果是否正确。

6.小结

提问:解这题时你觉得哪一步是关键?

指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。

三、全课总结

谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)

提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。

追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。

四、巩固练习

3.练习十七2(机动)

――替换

把两种物体看成同一种物体

1.把大杯替换成小杯共需要9个小杯

720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)

80×3=240(毫升)240÷80=3(倍)

2.把小杯替换成大杯共需要3个大杯

720÷(1+2)=240(毫升)

240÷3=80(毫升)

课后反思:

由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。

一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。

二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。

不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。

六年级数学教案

教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。

教学重点:分数乘整数的意义。

教学难点:分数乘整数的计算法则:如何先约分再乘。

教学过程:

一、复习。

1、5个12是多少?

用加法算:12+12+12+12+12。

用乘法算:125。

问:125算式的意义是什么?被乘数和乘数各表示什么?

2、计算:

问:有什么特点?应该怎样计算?

3、小结:

(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。

(2)同分母分数加法计算法则是分子相加作分子,分母不变。

二、新授。

教学例1。

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:(块)。

用乘法算:(块)。

问:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)。

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。

六年级数学教案

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

负数的意义和负数的读法与写法。

理解0既不是正数,也不是负数。

多媒体课件。

教师讲授、合作交流。

一、复习导入。

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知。

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的'知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)。

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

引导学生交流:吐鲁番盆地比海平面低155米。

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。

三、运用新知,课堂作业。

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结。

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业。

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识。

正数:20、22、14、+8844.43…。

0:既不是正数也不是负数。

负数:-2、-30、-10、-15、-155…。

六年级数学教案

(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)。

六年级数学教案

教学内容:冀教版《数学》六年级上册第92、93页。

教学目标:

1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

3、感受数学在解决问题中的价值,培养数学应用意识。

课前准备:一个蒙古包图片。

教学过程:

1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。

师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

生:蒙古包。

师:对,蒙古包。看,老师带来了一张蒙古包的图片。

图片贴在黑板上。

师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

师:如果要计算蒙古包的占地面积,怎么办?

生:测量出蒙古包的直径,就能计算出它的占地面积。

生:不好测量。

生:测量出周长。

师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。

板书:周长18.84米。

1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

学生讨论。

师:谁来说说已知圆的周长是多少,怎样求圆的面积?

生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

学生说不完整,教师参与交流。

师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

学生独立计算,教师巡视并指导。

生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)。

学生说的同时,教师板书:

蒙古包的半径:

2×3.14×r=25.12。

r=25.12÷6.28。

r=4。

蒙古包的占地面积:

3.14×42=50.24(平方米)。

如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

学生独立完成,教师个别指导。

师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)。

师:看第2题,求花池的面积。自己解答。

交流时,请学习稍差的学生回答。

答案:3.14×2×r=18.84。

r=3。

3.14×32=28.26(平方米)。

2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.

学生完成后,指名汇报。答案:。

3.14×2×r=100.5。

r=16。

3.14×162=803.84(平方厘米)。

生:就是把树锯断后的圆面。

师:树木的周长相当于这个横截面的什么?

生:周长。

师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

学生读题。

学生可能出现不同意见,都不做评价。

1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

学生合作研究,教师参与指导。

学生可能出现不同的假设。如:(1)假设铁丝长1米。

正方形的边长:1÷4=0.25=25(厘米)。

正方形面积:25×25=625(平方厘米)。

圆半径:100÷2÷3.14≈16(厘米)。

圆面积:3.14×162≈803(平方厘米)。

结论:圆的面积大。

(2)假设铁丝长2米。

正方形的边长:2÷4=0.5=50(厘米)。

正方形面积:50×50=2500(平方厘米)。

圆半径:200÷2÷3.14≈32(厘米)。

圆面积:3.14×322≈3215(平方厘米)。

结论:圆的面积大。

(3)假设铁丝长4米。

正方形的边长:4÷4=1(米)。

正方形面积:1×1=1(平方米)。

圆半径:4÷2÷3.14≈0.64(米)。

圆面积:3.14×0.642≈1.29(平方米)。

结论:圆的面积大。

3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。

六年级数学教案

掌握解决此类问题的方法。

理解题中的数量关系。

1、把下面各数化成百分数。

0.631.0870.044。

2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

(1)计划造林是实际造林的百分之几?

(2)实际造林是计划造林的`百分之几?

(3)实际造林比计划造林增加百分之几?

(4)计划早林比实际造林少百分之几?

2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。

3、学生自主解决实际早林比计划增加了百分之几的问题。

(1)分析数量关系,让学生自己尝试着用线段图表示出来。

(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。

(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

方法一:(14-12)12=2120.167=16.7%。

方法二:14121.167=116.7%116.7%-100%=16.7%。

(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。

(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?

学生列出算式:(14-12)14。

(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。

1、独立完成课本第90页做一做的题目。

2、练习二十二第1、2题。

六年级数学教案

1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的`意识。

抽取问题。

理解抽取问题的基本原理。

一、教学例。

1、猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2、实验活动。

(1)一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2)一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3、发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做。

第1题。

(1)独立思考,判断正误。

(2)同学交流,说明理由。

第2题。

(1)说一说至少取几个,你怎么知道呢?

(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习。

完成课文练习十二第1、3题。

六年级数学教案

教学目标:

1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

教学重点:

理解百分率的含义,掌握求百分率的方法。

教学难点:

探究百分率的含义。

教学用具:

ppt课件。

教学过程:

一、复习导入(8分)。

1、出示口算题,1分钟,并校正题目。

2、小结学生所提问题,并指名口头列式。

3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

4、小结:算法相同,但计算结果的表示方法不同。

5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

6、口算比赛:(1分钟)(见课件)。

7、根据口算情况,提出数学问题。

(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)。

8、尝试解答修改后的问题。

10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。

二、设问导读(9分)。

1、说明达标率的含义。

2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

3、组织学生以4人小组讨论。

4、巡回指导书写格式。阅读例题,思考下面的问题。

(1)什么叫做达标率?

(2)怎样计算达标率?

(3)思考:公式中为什么要“×100%”呢?

(4)尝试计算例1的达标率。

三、质疑探究(5分)。

1、在展示台上展示学生写出的百分率计算公式。

2、要求学生认真计算,并对学生进行思想教育。

1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

2、求例1(2)中的发芽率。

四、巩固练习(14分)。

1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

3、出示问题,指导学生书写格式,并强调。

4、解决问题要注意:看清求什么率?找出对应的量。

6、引学生观察、发现:出勤率+缺勤率=1.

五、加强巩固。

1、说说下面百分率各表示什么意思。(1颗星)。

(1)学校栽了200棵树苗,成活率是90%。

(2)六(1)班同学的近视率达14%。

(3)海水的出盐率是20%。

2、判断。(2颗星)。

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。

(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。

(3)把25克盐放入100克水中,盐水的含盐率为25%。

(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。

5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

3、解决问题(3颗星)。

(2)六(1)班今天有48人到校,有2人缺席,求出勤率。

(4)王师傅加工的300个零件中有298个合格,合格率是多少?

课堂总结:

六年级数学教案

课本第57——58页“扇形统计图“。

1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

3、提高学生的实际应用能力。

认识扇形统计图,了解扇形统计图的特点与作用。

学生的实际应用能力的提高。

课件。

一、复习旧知,引入新知。

1、电脑课件呈现下表。

种类摄入量/克占总摄入量的百分比。

油脂类50。

奶类和豆类450。

鱼、禽、肉、蛋等类600。

蔬菜和水果类900。

谷类1800。

2、电脑课件呈现统计图(或以学生的作品亦可)。

3、引入新知。

二、探索交流,获取新知。

1、什么样的统计图是扇形统计图呢?

2、了解扇形统计图特点。

3、即时练习。

完成课后的“说一说”。

(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。

(2)说一说,你有什么体会。

学生说信息,并计算各种成分的百分比。

汇报计算结果,订正。

学生发言、交流。

学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

观察,说出获得的信息。

根据教师引导说出发现。

从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

观察数据,发现,说出不同,说出自己的看法。

进行计算,订正。

三、小结本课学习内容。

揭题,板书课题:扇形统计图。

出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)。

四、巩固升华。

完成课后“试一试”。

1、比较各项活动时间,说一说有什么不同。提出数学问题。

2、总时间是多少?各项活动时间可以怎么计算?

3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。

五、全课小结:你今天有什么收获?还有什么不懂的地方?

板书设计:

扇形统计图。

能清楚地反映整体与部分的关系。

相关内容

热门阅读
随机推荐