首页 > 范文大全 > 心得体会

解决问题策略心得体会(专业17篇)

解决问题策略心得体会(专业17篇)



通过撰写心得体会,我们可以更好地反思和总结过去的经历和成果。这是小郭在参与志愿者工作后的心得体会,希望可以给大家一些参考和思考的空间。

画图解决问题策略心得体会

在生活中,我们时常遇到需要解决问题的情况。作为一种形象的表达方式,画图在我们解决问题时扮演着重要的角色。在我的学习和工作中,我深刻体会到画图解决问题的策略在解决问题中的重要性,大大提高了我的工作效率和解决问题能力。下面我将结合自身体会进行探讨分享。

画图是一种形象的表达方式,将抽象的事物转化为形象的可视化的物体,有着形象记忆的优势。因此,通过画图,我们可以更好地理解解决问题的思路和流程。同时,画图可以将信息更加简明化和直观化,让我们能够更好地把握问题的关键点,更迅速地找到解决问题的方案。

首先,我们需要对问题有一个整体性的认识。其次,我们需要分析问题中的各个因素之间的联系和作用,可利用树形、思维导图,这些工具可以帮助我们捕捉问题的现象和本质。接着,我们需要对解决问题过程中的不同环节做出可视化的表达,比如状态转移图、UML图等。最后,我们需要对解决问题的过程进行总结和分析,得到最终的解决方案。

在工作中,我用画图方法解决了许多问题,比如组织架构变化、产品设计方案等。举例来说,当公司的人力资源布局调整时,我运用组织结构图的方式,将现有的人员情况,包括各个部门的职位和人员的数量和岗位职责清晰地表达了出来,经过调整和优化,现在公司的人员结构更合理和更高效。

第五段:结尾。

总结来看,画图解决问题不仅可以让我们更好地认识问题和解决问题的思路,而且在实际应用中也会提高我们的工作效率和解决问题的能力,为我们的工作带来更多的好处。因此,在日常的工作和学习中,我们需要学会画图的策略,并且不断运用,才能更好地利用画图来解决问题,提高自己的生产力和竞争力。

浅谈解决问题策略教学心得体会

各位老师,今天我执教的是五年级《解决问题的策略》,这一内容是在学生已经学习了用画图和列表的策略解决问题的基础上,教学用“倒过来推想”的策略解决实际问题。

反思这节课的备课过程,是自己一个对教材编排意图不断提出质疑,不断理解深化的过程。

下面就谈谈这节课备课的体会:

(1)明确教材意图,是上好课的前提。

在理解教材意图中,我备课时经历了一番曲折。

最先,拿到书后,给我的第一感觉就是如果我是学生,教师给我出了这两道题目,我怎么也不会想到教材中预设的思考方式。

如例2的小明集邮。教材出示了“根据题意摘录条件进行整理,再倒过来推想”的策略,特别是根据题意摘录条件进行整理这一设计,备课的时候,我曾问过学生,如果让你自己做例2,你会想到摘录条件吗?没有一个学生表示会这么做。

问题出来了,为什么教材所设想的解决问题的步骤与方法,我和我的学生都不认同呢?是教材的编者错了吗?还是我理解教材上出现了误差。

在经历了长时间的痛苦思索后,我终于领悟的教材的意图。

我用一句话来概括自己的认识,“如果我的教学目的只是教会学生会解答例1和例2的话,那我就只能是教教材。而真正的用教材来教,应该是通过对例1和例2的解答,让学生经历倒过来推想的思维过程,认识倒过来推想策略的特点,并在以后的学习中会用这个策略解决问题。

认识到这一点,我对教材的理解上升到了另一个境界。

例1与例2只是本课教学目标的载体。解决问题的策略是多样的,所以,例1与例2如果我不学倒过来推想的策略让学生做,学生会不会做?结果应该是肯定的。比如例2,学生非常熟练地就能用求未知数的知识解答。

我的学生之所以想不到例1和例2所呈现的思维方法,那是因为这些方法正是本节课所要探讨的“倒过来推想”的策略。

(2)选择教学方法,应从教学目标入手,不可盲目求新求异。

备课时,我对教学方法的选择也经历了一个曲折的探索过程。

新课程改革给数学课堂带来了生机活力,我们的孩子有了更多的机会去自主探索,我们的教师有了更多的自觉让学生在自主、合作、探究的课堂中,去学生数学知识。学生能在这样的课堂中学习无疑是幸福的。

所以,拥有这样观点的我也必然要在这节课里,想给学生更多的自主空间。

所以,第一次备课,我给了学生很大的自学空间。比如:例1的教学中,我在提示题目之后,便引导学生自主选择策略去解答。在例2的教学中,我尝试让学生自己试着去根据题意整理条件。结果让我大失所望。孩子们虽然画出了图,可是这个图不是根据倒过来推想策略画出来的,这还有什么意义。在例2的教学中,学生甚至跟我反应:如果让他们自己解答例2还能懂,可是如果让他们整理条件,反到被绕糊涂了。

这一切是为什么?难道,自主探索在这里行不通。

反思这节课的教学目标,这是一节教会学生用不同的方法去解决问题的课,而要教学生的策略正是孩子们生活经验中所缺乏的。学生在长期的学习中形成了由前往后思考的习惯,必将影响到本节课里2道例题的解答。

想到这里,我懂得了教师教学用书上教案编写者的意图。在我第一次看到教学用书上的教案时,我是不以为然的。我认为:教学用书上的教学过程太过精细,没有给学生太多的空间与探索。现在,我明白了:有的知识是离不开教师的精心引导,特别是像倒过来推想这种策略,是不太适宜自主探索的。

在也是这节课为什么没有采用学生自主学习这一非常流行的方法的原因所在。

想起了曾经听过一位教师执教的,也是这一节课,例2的教学是学生自学的,学生非常顺畅地将教材例2预设的思维过程演译了一次,学生的表现让我惊讶不已。

各位老师,以上的一些纯粹是我个人在上完这节课后的一点思考,都是自己的真实想法。本来是不敢讲的,因为怕讲错了。不过一想,继续是交流嘛!应该说一些真实的想法,希望得到各位老师的虚心指导。

画图解决问题策略心得体会

画图解决问题是一种非常常见的策略,在生活和学习中都有很广泛的应用。经过一段时间的实践和总结,对于这种方式,在学习中我已经有了一些心得和体会。本文从以下几个方面入手,探讨我的体会。

画图解决问题有其独特的优点。首先,画图可以将一个抽象的问题具象化,更加直观地呈现在眼前,使问题更加易于理解。其次,画图能够帮助我们把一个复杂的问题划分为更小、更容易解决的子问题,从而降低了解决问题的难度。综上所述,画图解决问题是一种简单而且实用的方法。

第三段:细致的线条,精准的表述。

要想用画图解决问题,必须掌握一定的绘图技巧。画图的过程中,线条的细致程度可以直接影响到表述的准确性。因此,在绘图过程中,我们需要认真审视每一个细节,保证每一条线条的精准度。同时,过多的线条也会导致不必要的混淆,使问题更加复杂。所以在绘图时,要注重线条的精简。

第四段:需要学会抽象思考。

画图解决问题可以更加直观地呈现问题,但是对于一些较为抽象的问题,难度并不会因此而降低。这时候,我们需要学会抽象思考,抓住问题的本质。在掌握了问题所需要的基础概念后,我们可以用更加抽象的符号来表示问题,以此达到更清晰的表述。

第五段:结论。

画图解决问题是一种常见实用的方法。通过总结我的实践体会,认为画图解决问题具有直观易懂、划分问题、抽象思考等优点。因此,我们应该在学习和生活中多加运用,并在掌握基本的绘图技巧的同时,注重问题的简化和准确,以达到更好的效果。

解决问题策略心得体会

今天学习了吴厚明老师的一节数学课《解决问题的策略》,又一次感觉到新教材的难教。新教材中对于解决问题的策略这部分的内容是一个重要的安排,是新教材的一个亮点,意图很明显,授之以渔嘛,给学生以方法的学习更重于知识的学习。

例2中出现的订阅报刊杂志,每人至少订一种,最多订3种,一共有多少种订法?《科学博览》《优秀作文》《小小发明家》。教者在学生理解题意的基础之上,让学生分类分析。订一种、两种、三种各有几种可能,并让学生通过小组合作分析的形式共同一一列举出所有的可能。大组交流时我认为应该将学生的`列举显示在黑板上,这样学生的理解更有样可寻,有样可依,对于后面题目的解答有一定的帮助。

在教学的过程中,引导学生运用一一列举的方法解决实际问题,让学生理解一一列举这种方法是在平时生活中经常运用的解决问题的方法。在教学中教者重在引导学生学会先分类,再有序地进行一一列举。学生对这部分内容的学习,有一定的难度,虽然只有两三条例题,但练习中的题目都需要教者引导学生仔细分析,方法的形成更需要一定的练习才行。

浅谈解决问题策略教学心得体会

“形成解决问题的一些基本策略,体验解决问题的多样性、发展实践能力和创新精神”是《数学课程标准(实验稿)》确定的目标之一。苏教版课程标准数学实验教材从四年级(上)起,每册都编排一个“解决问题的策略”单元。为了更好的把握新课程的意图,更好的落实这一课程目标,学校数学组对教材中的“解决问题的`策略”进行了系列性的磨课活动。一轮探讨活动下来,大家感触颇多。

教材是学生获取知识、进行学习的主要材料,也是教师开展教学活动的主要依据。现行的教材是依据新课程标准的要求和精神,贯彻新课程理念而编写的。教学时应该充分尊重教材、理解教材和吃透教材。

前后联系读厚教材:读懂教材要求教师能系统的分析教材内容,把握教材之间的纵横联系。也就是说,教师不能孤立地理解教材内容,而要把教学内容放到知识结构中去,在知识板块中理解教材所处的地位,从而正确定位。纵观解决问题的策略,教材的编排如下表:

册数教学内容

四(上)用列表的策略解决实际问题。

四(下)用画图的策略整理和表达信息,寻找解决问题的方法。

五(上)用枚举的策略解决实际问题。

五(下)用“倒过来想”的策略解决实际问题。

六(上)用“替换和假设”的策略解决实际问题。

六(下)用“转化”的策略解决实际问题。

字斟句酌读透教材:读透教材就是要研读教材的一词一句、一图一画以及例题的前后顺序,练等等。例如,六年级上册“解决问题”安排的是用“替换和假设”的策略。本单元的教学可以分成两步:例1教学替换的方法和初步的假设思想,例2应用替换和假设的策略解决稍复杂的问题。例1的问题情境比较容易引发替换的需要,并借助直观形象的替换过程与方法,使学生理解替换是解决问题的一种策略。第90页的“练一练”起承前启后的作用,问题解决应用了例1的替换思想,但无论是把大盒换成小盒,还是把小盒换成大盒,替换后所有盒子里可以装球的总数都会比原来减少或增加,在这一点,它又为例2的教学作了铺垫。例2有可能经过两次甚至多次的连续替换思路的稳定、有序展开,需要依靠画图、列表、枚举等其他策略的支持。相应的“练一练”让学生进一步体会例2那样的替换活动,为独立解决练习十七的有关问题打下基础。这样字斟句酌,深刻领悟后,设计例1的教学时,一般就可以分成四步:一:图文结合,发现策略。二:引导替换,运用策略。三:交流策略,感悟方法。四:回顾策略,体验再认。

学生在学习新知识前,不是一张“白纸”,他们或多或少地积累了一定的知识、经验。因此,在教学前教师要经常思考:学生在学习这部分内容之前,已经具有哪些知识和经验,可能还存在什么问题?把握学生的学习起点资源,是数学课堂动态生成的基础,也是彰显教学设计心理起点、有效提高课堂教学质量的前提。因此,在这一教学活动中,我们不仅要关注“关于解决问题的策略,学生已经触及了哪些?”这一知识经验准备状态,更应关注“为什么要学习解决问题的这个策略”的心理原点问题。

四年级(下册)“解决问题的策略”,教材的例题是典型的相遇问题。主要编写意图是启发学生通过画图或列表的策略来整理题中的条件和问题。学生在四年级上学期已经学会用列表整理信息的方法,因此,在出示例题后“你能用自己喜欢的方法整理信息吗?”学生自然会联想到刚学过的列表整理的方法。因此教学的侧重点便落在研究如何画线段图来整理信息。教学中教师分以下几个层次展示:1、展示学生尝试的原始线段图,从例题的文字叙述到示意图,为了让学生充分领略线段图的含义,教师带领学生做全、做细了线段图。2、接着电脑演示完整的画图过程,让学生在规范的引领下再次感受线段图。3、最后,让学生进行完整的操作。那为什么列表与画线段图都是解决问题的策略,而要把浓重的笔墨倾注于后者?教师在解题说理的过程中有意让学生比较,从而明白线段图在行程问题中更加形象与合适。有详有略,有主有次,使课堂教学呈现出立体感。

教师要研究教材的逻辑体系和结构、明确教学重点和难点,还要领会教材预设的知识发生、发展的过程,充分考虑学生在学习过程中遇到的困难、产生的疑问,更应结合自身的特点,让课堂成为展示自己风采的场所。

六年级(上)导入新课时,擅长讲故事的女教师是这样开始的:同学们,喜欢听故事吗?下面我给大家讲个曹冲称象的故事:曹操是三国时代的一位君王,有一次有人送来一头大象,曹操想知道大象的体重。大臣们都想不出好办法来替大象称体重。这时曹操5岁的小儿子曹冲从人堆里走出来,告诉大家想到的办法。先把大象牵到船上,在船帮齐水处作个记号,再将大象牵走,把石头运到船上去,一直到先前作的记号为止,这时石头的重量就和大象的重量相等了。称出石块的重量就知道了大象的重量。(播放课件《曹冲称象》三幅图片)。

师:听了故事后,你觉得曹冲是个怎样的孩子?

生:曹冲真是一个聪明的孩子!

“曹冲称象的故事”,让学生在优美的音乐声中初步感受解决问题的策略,渲染了气氛,导入了新课;而另一位男教师则觉得不太适合自己,尤其是对于六年级的学生来说,在这方面已经有了自己的经验。于是他就“开门见山”,谈话导入:“同学们,今天我们一起来学习解决问题的策略。你认为什么叫策略?”学生们凭着已有经验,认为策略就是一种方法,一种计策、一种谋略。虽少了几分热闹,但多了几许思考。

四、关注过程,由浅入深,呈现教学流程反思视点。

数学是思维的体操,教师在组织学生进行探究活动时,更要重视学生探究的过程,以及探究的深入与细致。

五年级(上)教学的“解决问题的策略”以图文结合的形式出示例题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?教研组在第一次设计教学流程时是这样安排的:(1)先让学生说说从题中获取的数学信息;(2)然后用小棒实际摆一摆,观察所摆的长和宽分别是多少?(3)操作后让学生说说长和宽的米数,引导学生有序填写下表:

长方形的长/米

长方形的宽/米

这一教学流程的实施非常顺畅。教学时安排学生用小棒摆一摆,其所表达的信息是在教学时借助学具进行直观操作,自然展开列举活动。只是对于一部分学生来说,已能不借助操作,直接进行列举。统一安排这一操作活动,使这些孩子兴味索然。据此考虑与发现,在第二次的教学活动中,进行适当调整,让学生获取数学信息后简单分析:(1)“不同围法是什么意思?同学们能找出一共有多少种不同的围法?试试看?”(2)学生进行探究、思考。(3)交流反馈:生1:我是用小棒摆的,宽摆1米,长就是8米;宽是2米,长就是7米,宽摆3米,长就是6米;宽是4米,长就是5米,再摆下去就和前面一样了,所以有四种。生2:我没有用小棒摆,因为长方形的周长是18米,一条长和一条宽的和就是9米,8+1=9;7+2=9;6+3=9;5+4=9,这样也找到了四组。师:“比较用小棒摆和直接列出的围法一样吗?”生:“一样。”——————第二次的教学中教师放手让学生根据自己的知识经验,自由地选择解题策略,给每一个孩子提供了独立思考的空间,充分激活了学生的思维潜能:一部分学生可以通过学具操作寻求答案;一部分学生可以直接根据长和宽的和,直接列举,甚至达到了有序列举。教学虽然看似无序,却生动活泼,富有活力。

画图解决问题策略心得体会

画图是一种常用的解决问题的策略,不仅能够帮助我们理解问题的本质,还能够帮助我们更好地掌握问题的解决方法。在我的学习和生活中,当遇到困难的时候,我总是会利用画图的方法来帮助自己解决问题。这篇文章我将分享我在画图解决问题方面的一些心得体会。

第二段:画图能力提升。

学会画图既有方法又有技巧,简单运用几何图形,或是表格型的图表,都是很好的理解问题的办法。画图能力的提升不仅在技巧上,在阅读经验和知识,能让我们更深刻的发觉问题本质,在日常生活与琐碎事务中屡试不爽,同时在工作中也能够明确目标,提高工作效率。

第三段:画图方法。

画图方法有很多种,例如,流程图,思维导图,图表分析等等。在具体操作时,首先需要理清需求,Z字梳理法是一种非常有效的方法,可以将问题有效地拆解作为进一步的需求说明。在实际绘制中,可以用手绘画图,使用电脑中的绘图软件或模板,选择适合自己的方法即可。

第四段:画图应用场景。

画图在不同领域和方面都能得到应用。举一个实际的例子:在学习数学时,画图可以帮助我们理解数学问题。例如,在学习三角函数时,想要理解三角函数图形,就需要将该函数的各个部分都画出来,这不仅可以使我们理解原理,而且也利于记忆。

第五段:总结。

总而言之,画图解决问题的策略是一种让我们更好理解问题并促进我们找到答案的有效方法。如何最大化地利用画图的方法,需要不断地学习探索,才能找到适合自己的方法和技巧。无论是在学习生活中还是在工作中,正确地利用画图的方法,一定会让我们更快且更准地达到预期效果,提高我们的工作效率和工作质量。

浅谈解决问题策略教学心得体会

“形成解决问题的一些基本策略,体验解决问题的多样性、发展实践能力和创新精神”是《数学课程标准(实验稿)》确定的目标之一。苏教版课程标准数学实验教材从四年级(上)起,每册都编排一个“解决问题的策略”单元。为了更好的把握新课程的意图,更好的落实这一课程目标,学校数学组对教材中的“解决问题的策略”进行了系列性的磨课活动。一轮探讨活动下来,大家感触颇多。

一、关注教材,由薄读厚,把握教材编写的意图。

教材是学生获取知识、进行学习的主要材料,也是教师开展教学活动的主要依据。现行的教材是依据新课程标准的要求和精神,贯彻新课程理念而编写的。教学时应该充分尊重教材、理解教材和吃透教材。

前后联系读厚教材:读懂教材要求教师能系统的分析教材内容,把握教材之间的纵横联系。也就是说,教师不能孤立地理解教材内容,而要把教学内容放到知识结构中去,在知识板块中理解教材所处的地位,从而正确定位。纵观解决问题的策略,教材的编排如下表:

册数教学内容。

四(上)用列表的策略解决实际问题。

四(下)用画图的策略整理和表达信息,寻找解决问题的方法。

五(上)用枚举的策略解决实际问题。

五(下)用“倒过来想”的策略解决实际问题。

六(上)用“替换和假设”的策略解决实际问题。

六(下)用“转化”的策略解决实际问题。

字斟句酌读透教材:读透教材就是要研读教材的一词一句、一图一画以及例题的前后顺序,练习的要求等等。例如,六年级上册“解决问题”安排的是用“替换和假设”的策略。本单元的教学可以分成两步:例1教学替换的方法和初步的假设思想,例2应用替换和假设的策略解决稍复杂的问题。例1的问题情境比较容易引发替换的需要,并借助直观形象的替换过程与方法,使学生理解替换是解决问题的一种策略。第90页的“练一练”起承前启后的作用,问题解决应用了例1的替换思想,但无论是把大盒换成小盒,还是把小盒换成大盒,替换后所有盒子里可以装球的总数都会比原来减少或增加,在这一点,它又为例2的教学作了铺垫。例2有可能经过两次甚至多次的连续替换思路的稳定、有序展开,需要依靠画图、列表、枚举等其他策略的支持。相应的“练一练”让学生进一步体会例2那样的替换活动,为独立解决练习十七的有关问题打下基础。这样字斟句酌,深刻领悟后,设计例1的教学时,一般就可以分成四步:一:图文结合,发现策略。二:引导替换,运用策略。三:交流策略,感悟方法。四:回顾策略,体验再认。

二、关注学生,由表及里,彰显教学设计心理起点。

学生在学习新知识前,不是一张“白纸”,他们或多或少地积累了一定的知识、经验。因此,在教学前教师要经常思考:学生在学习这部分内容之前,已经具有哪些知识和经验,可能还存在什么问题?把握学生的学习起点资源,是数学课堂动态生成的基础,也是彰显教学设计心理起点、有效提高课堂教学质量的前提。因此,在这一教学活动中,我们不仅要关注“关于解决问题的策略,学生已经触及了哪些?”这一知识经验准备状态,更应关注“为什么要学习解决问题的这个策略”的心理原点问题。

四年级(下册)“解决问题的策略”,教材的例题是典型的相遇问题。主要编写意图是启发学生通过画图或列表的策略来整理题中的条件和问题。学生在四年级上学期已经学会用列表整理信息的方法,因此,在出示例题后“你能用自己喜欢的方法整理信息吗?”学生自然会联想到刚学过的列表整理的方法。因此教学的侧重点便落在研究如何画线段图来整理信息。教学中教师分以下几个层次展示:1、展示学生尝试的原始线段图,从例题的文字叙述到示意图,为了让学生充分领略线段图的含义,教师带领学生做全、做细了线段图。2、接着电脑演示完整的画图过程,让学生在规范的引领下再次感受线段图。3、最后,让学生进行完整的操作。那为什么列表与画线段图都是解决问题的策略,而要把浓重的笔墨倾注于后者?教师在解题说理的过程中有意让学生比较,从而明白线段图在行程问题中更加形象与合适。有详有略,有主有次,使课堂教学呈现出立体感。

三、关注教师,由虚到实,凸显课堂教学设计亮点。

教师要研究教材的逻辑体系和结构、明确教学重点和难点,还要领会教材预设的知识发生、发展的过程,充分考虑学生在学习过程中遇到的困难、产生的疑问,更应结合自身的特点,让课堂成为展示自己风采的场所。

六年级(上)导入新课时,擅长讲故事的女教师是这样开始的:同学们,喜欢听故事吗?下面我给大家讲个曹冲称象的故事:曹操是三国时代的一位君王,有一次有人送来一头大象,曹操想知道大象的体重。大臣们都想不出好办法来替大象称体重。这时曹操5岁的小儿子曹冲从人堆里走出来,告诉大家想到的办法。先把大象牵到船上,在船帮齐水处作个记号,再将大象牵走,把石头运到船上去,一直到先前作的记号为止,这时石头的重量就和大象的重量相等了。称出石块的重量就知道了大象的重量。(播放课件《曹冲称象》三幅图片)。

师:听了故事后,你觉得曹冲是个怎样的孩子?

生:曹冲真是一个聪明的孩子!

“曹冲称象的故事”,让学生在优美的音乐声中初步感受解决问题的策略,渲染了气氛,导入了新课;而另一位男教师则觉得不太适合自己,尤其是对于六年级的学生来说,在这方面已经有了自己的经验。于是他就“开门见山”,谈话导入:“同学们,今天我们一起来学习解决问题的策略。你认为什么叫策略?”学生们凭着已有经验,认为策略就是一种方法,一种计策、一种谋略。虽少了几分热闹,但多了几许思考。

四、关注过程,由浅入深,呈现教学流程反思视点。

数学是思维的体操,教师在组织学生进行探究活动时,更要重视学生探究的过程,以及探究的深入与细致。

五年级(上)教学的“解决问题的策略”以图文结合的形式出示例题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?教研组在第一次设计教学流程时是这样安排的:(1)先让学生说说从题中获取的数学信息;(2)然后用小棒实际摆一摆,观察所摆的长和宽分别是多少?(3)操作后让学生说说长和宽的米数,引导学生有序填写下表:

长方形的长/米。

长方形的宽/米。

这一教学流程的实施非常顺畅。教学时安排学生用小棒摆一摆,其所表达的信息是在教学时借助学具进行直观操作,自然展开列举活动。只是对于一部分学生来说,已能不借助操作,直接进行列举。统一安排这一操作活动,使这些孩子兴味索然。据此考虑与发现,在第二次的教学活动中,进行适当调整,让学生获取数学信息后简单分析:(1)“不同围法是什么意思?同学们能找出一共有多少种不同的围法?试试看?”(2)学生进行探究、思考。(3)交流反馈:生1:我是用小棒摆的,宽摆1米,长就是8米;宽是2米,长就是7米,宽摆3米,长就是6米;宽是4米,长就是5米,再摆下去就和前面一样了,所以有四种。生2:我没有用小棒摆,因为长方形的周长是18米,一条长和一条宽的和就是9米,8+1=9;7+2=9;6+3=9;5+4=9,这样也找到了四组。师:“比较用小棒摆和直接列出的围法一样吗?”生:“一样。”------第二次的教学中教师放手让学生根据自己的知识经验,自由地选择解题策略,给每一个孩子提供了独立思考的空间,充分激活了学生的思维潜能:一部分学生可以通过学具操作寻求答案;一部分学生可以直接根据长和宽的和,直接列举,甚至达到了有序列举。教学虽然看似无序,却生动活泼,富有活力。

《解决问题策略》心得体会

英国大哲学家怀特海说:“尽管知识是智育的一个主要目标,但是知识的价值还有另一个更模糊、但更伟大、更居支配地位的成分,古人称它为‘智慧’,没有某些知识基础,你不可能聪明;但是你也许轻而易举地获得了知识,却仍然缺乏智慧。”

联想到现在苏教版教材设置的“解决问题策略”单元,也许正是出于这样的初衷吧。希望学生在获得知识的同时生长智慧。

在最新修改的小学数学第五册教材里,也多了这样一个单元《解决问题的策略》。这个单元,所讲的策略是——从条件想起。

卫老师对这一单元经过了慎重深入的思考,继承了过去教材“分析法”解题的精华,又巧妙渗透进新课程的理念。

她鼓励学生将“条件”进行“搭积木”,她意识到,“搭积木”活动时,孩子总是根据自己脑海里的“图像”将自己手中的积木进行灵活组合,于是,同样的一堆积木有时会组合成英式建筑,有时会变成美式庄园,有时是中国长城。而应用题中的“条件”何尝不是学生手中的“积木”?根据最终目标,将这些已有条件进行组合,就会一步步接近目标。而在这里,卫老师通过层次丰富的学习活动,让学生体验到两点:

2:怎样组合,不是随意的,一定是科学的,根据问题的需要来的。

这样才有例题里学生不同方法的产生,因为不同的方法背后,是对条件的“不同组合”。

其实,小学数学学习,显性的数学知识背后往往蕴含着隐性的数学方法与数学思想。很多的数学老师都是以学生作业的正确率来衡量学生知识的掌握度,却忽视了数学知识应带给学生的“数学智慧”。虽然,智慧不能被表述,但是,一个高度自觉的数学教师总能根据知识本身的特点及小学生心智发展水平,确定恰当的渗透要求和教学策略,使学生深切地感受到数学的精神和骨髓,从而生长出自己的数学智慧。卫老师的这节课,正体现了这样的智慧!

解决问题策略心得体会

沈老师的课课堂机构清晰,三个板块,第一板块是简单回顾引入课题,第二板块是自主探索解决例题,联系过去感悟策略,第三板块巩固练习。

1、关键处的追问。出示例题后,学生读题,老师问:你知道了什么?学生回答。老师追问:有没有更深一点的理解?这时就有学生提出:周长22米,要注意周长的计算公式先要除以2,再来写长和宽。这里的追问就非常好,把这题的关键分析了出来,这样就为学生解决这道题正确列举作准备。

2、列举方法的展示。老师收集了学生的作业进行了展示,先展示的是凌乱的、缺的,然后展示按顺序的、全部列举的,学生通过对比就发现了“有序”列举的重要性。注意列举从哪里开始,按怎样的次序进行,感受这里“从大到小”“从小到大”列举的好处。这个环节的处理,就很容易得出一一列举时的'注意点。

3、教学资源的巧利用。沈老师在巩固练习环节设计了3个闯关题,每题分值分别是50、80、100,然后学生先完成这三题,到最后再问刚才你们答对了几题,有几种结果,学生再来计算分数。这样一来这个分数又是一道巩固题,学生也深刻体会到一一列举在生活中的运用,是按需产生的。

1、学生解决完例题后,老师问了2个问题:观察这几种围法,长、宽和面积是怎么变化的?不用木条、用绳子围,什么时候面积最大?我觉得这两个问题不需要,因为这两个问题都是指向这题的结论性,而本课重点在于一定要列举出所有围法才能找出本题答案。侧重点矛盾。

2、回顾一到四年级用过这个策略的题目时,沈老师让学生一个个的回答,这里浪费了比较多的时间,我认为其实只要展示出当时解题的方法,那么学生看到就能明白这里就是运用到了今天的一一列举的策略。从而知道策略不是无本之木、无源之水,更不是天降之物,总要在自己已有的经验上萌发的。

解决问题的策略教案

你能根据题意自己独立画线段图整理。

展示学生的线段图,并让学生说说自己是怎样想的。

补充合适的问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。

2、比较两题,找联系。

说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。

什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的`速度再算总的路程。……)

1、先画图整理,再解答。

2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。

3、读题后问:这道题和例题有什么联系?你会解答吗?

“解决问题的策略”

教学目标:

1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。

2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。

教学重点:会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息。

教学难点:会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。

教学资源:实物投影仪。

教学过程:

一、游戏导入:

二、新知探究。

1、出示题目:指名读题目,并要求说说知道了些什么,还想到些什么?

2、引导学生认识到,当题目中的信息比较多时,可以用适当的方法把题目中的条件和问题进行整理,这样有利于更清楚地分析数量关系,确定解题思路。

3、学生尝试整理信息。

你能将题目中的这些信息整理出来吗?你打算用什么方法?(学生讨论)。

4、汇报交流:1、列表整理;2、画图整理。

5、学生整理,教师巡视。

三、.师生交流。

1、分别展示学生的整理方法,并让学生说说自己的想法。

3、解答:根据整理的结果,可以怎样列式计算。

4、比较两种解法有什么联系?

四、试一试。

1、出示第1题:让学生先独立画图整理条件和问题,再独立进行解答。

2、出示第2题:让学生先独立画图整理条件和问题并进行解答,

再评议订正并说说画图整理的方法有什么好处?

五、巩固反思。

1、做“想想做做”的第1题。

(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。

2、做“想想做做”的第2题。

(1)先帮助学生理解183元是购买8瓶墨水和9枝钢笔的钱,要从183元中去掉8瓶墨水的钱就是9枝钢笔的钱。

(2)再让学生独立解答,最后交流反馈。

3、做“想想做做”的第3题。

(1)先引导学生画一个椭圆形跑道直观图,帮助学生理解跑道长应等于小张和小李所跑的路程之和。再让学生尝试画出线段图并解答。

五、总结质疑。

1、这堂课你有些什么收获?2、作业:想想做做第3~5题。

第二课时。

教学目标:

1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。

2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。

教学重点、难点:

会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,并能正确解答。

教学资源:小黑板等。

教学过程:

一、复习导入:

1、同学们,还记得上课我们学习了什么知识吗?

二、新知探究。

1、出示题目:指名读题目,并要求说说知道了些什么。

2、讨论:打算用怎样的策略去解决这个问题?

3、学生尝试整理信息,教师巡视指导。

4、汇报交流:1、列表整理;2、画图整理。

分别将两种方法展示在黑板上,然后提醒学生画图时线段长度的比例应大致符合实际情况,并标出相应的已知条件;列表整理时提醒学生可以通过简单的计算,把扩建后的操场的长与宽直接填在表中,以有利于更好地把握主要数量关系。

5、学生纠正。

6、解答:通过刚才的整理,你现在能快速、准确地解答这道题目了吗?(学生独立解答)。

7、反馈交流答案。

三、试一试。

1、出示题目,指名读题后讨论用怎样的方法来解决?为什么?

2、引导学生说出用画出示意图的方法。然后指导学生画出示意图,再让学生结合示意图独立解答。

3、反馈交流答案。

四、巩固应用。

1、做“想想做做”的第1题。

(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。

2、做“想想做做”的第2题。

(1)先让学生画出长增加6米后的示意图,理解此时面积增加了48平方米,而48正好是原长方形的宽余的乘积,由此可以求出原长方形的宽,再用同样的方法求出长方形的长,最后计算出原来实验田的面积。

(2)再让学生独立解答,最后交流反馈。

3、做“想想做做”的第3题。

(1)先引导学生理解红花与谎话的摆法,四条边共可摆36盆,但由于4个顶点处被多计算了一次,所以红花的盆数是32盆。同样的道理,可以算出黄花的盆数是40盆。

(2)学生独立解答并交流答案。

五、总结质疑。

1、这堂课你有些什么收获?2、作业:想想做做第1~3题。

第三课时。

教学内容。

第103页例题通过场景图提供相关信息,启发学生根据解决问题需要采用不同的策略收集和整理信息,在此基础上用不同方法解决问题。

教学目的与要求。

教学目标。

1、使学生在解决简单实际问题过程中,体会用画图和列表方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。

2、是学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学自信心。

教学重点与难点。

学习用画线段图和列表方法解决有关行程计算的实际问题。

教具学具。

投影仪、小黑板。

教学过程。

一、创设情境。

投影出示p103例题。

小组合作,讨论、交流。

联系现实场景,说说能知道些什么?还能想到些什么?

二、探索研究。

1、小组探讨:怎样用适当的方法把题中的条件和问题进行整理,更有利于分析数量关系,确定解体思路?教师巡视,给与恰当指导。

2、教师强调画线段图的方法。

(1)、让线段图正确反映小发明家、学校、小芳家的相对位置关系。

(2)、能在图中看出小明、效仿各自行走的速度和时间以及所需要解决的问题。

(3)、能从图中直观分析数量之间的关系。

3、小组汇报整理的方法,投影出示:

(1)、画图整理:

(2)、列表整理。

小明家到学校每分走70米走了4分。

小芳家到学校每分走60米走了4分。

4、根据整理结果,小组交流、探讨:

应先算什么、再算什么,教师鼓励学生富有个性解决问题。

学生汇报,教师投影展示:

704+604       (70+60)4。

=280+240         =1304。

=520(米)       =520(米)。

答:他们两家相距520米。

5、比一比,两种解法有什么联系?

6、小结,通过例题的学习,你有哪些收获?

三、拓展延伸:

1、完成“试一试”

第1题,让学生根据题意先画图整理条件和问题,再独立进行解答。

第2题,让学生在列表整理的基础上,指导学生分析数量关系,明确解题思路。

2、完成“想想做做”中题目。

第2题,教师帮助学生理解题目意思,再引导学生通过思考和计算,填出括号里的数字。

第3题,教师先画一个椭圆形跑道直观图,帮助学生理解“跑道长应等于小张和小李所跑的路程之和”。

学生尝试画线段图表示题中的数量关系。

第4题,重点引导学生先列表整理条件再独立解答。

第5题,第(2)小题根据题意,师生合作化出相应线段图,然后再解答。

四、作业。

想想做做1、5题。

第四课时。

教学内容。

第106页例题主要通过解决有关面积计算的问题,让学生自主运用画图或列表的策略解决问题,并体会相同的策略可以有不同操作形式。

教学目的与要求。

1、使学生会通过画线段图,直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。

2、使学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。

教学重点与难点。

重点学习用画直观示意图和列表的方法解决有关面积计算的实际问题。

教具学具。

投影仪、小黑板。

教学过程。

一、创设情境。

投影例题:学生读题,讨论用怎样的策略去解决问题。

二、探索研究:

小组合作,探讨、交流。

教师提示:画出的操场示意图中线段长度的比例大致符合实际情况,在图中应标出相应的已知条件。

1、小组汇报解决策略,教师投影展示。

列表:

长    宽    面积。

原来 50米 40米 ?平方米。

现在 ?米 ?米  ?平方米。

画图:如图书p106。

2、想想,要求操场的面积增加了多少平方米,可以先算什么,再算什么?再小组里说说自己的想法再解答。

板书:(50+10) (40+8)          50 40。

=60  48                   =(平方米)。

=2880(平方米)。

2880-=880(平方米)。

或50 8+(40+8 10)。

=400+480。

=880(平方米)。

答:操场的面积增加了880平方米。

3、小结:通过例题的学习你有哪些收获?

三、拓展应用:

1、完成“试一试”

指导学生根据题意画出直观示意图,启发学生把图中“小路”适当分成几部分,分别算出面积后再求和;也可启发学生用外围大正方形面积减去里面的草坪面积,从而求得小路面积。

2、完成“想想做做”

第2题,让学生画出长增加6米后的示意图,理解面积增加了48平方米,而48正好是原长方形的宽与6的乘积,由此可以求出原长方形试验田的宽。再用同样的方法求出长方形试验田的长,最后计算出原来试验田的面积。

第3题,分别引导学生理解红花与黄花的摆法,红花应沿里面的正方形边摆,每边能摆9盆,四条边共可摆36盆,但由于4个顶点处各被多计算了一次,所以红花的盆数是32。同样的道理,可计算处黄花的盆数是40,红花和黄花一共要放72盆。

四、作业。

想想做做第1题。

“解决问题的策略”

进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。

教学过程:

一、积累铺垫。

4.从图中你能求出什么?

二、初步感知。

2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。

4.现在图有了,你能根据图来求出原来操场的面积吗?

(1)学生尝试,教师巡视。(2)讨论交流:

三、再次体验。

四、深入体验。

(一)第四关:

1.引入:应用画图的策略,我们来闯第四关。

2.分层出示:

到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。

3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?

(二)第五关:

1.引入:第四关我们都闯过了,下面我们要挑战——第五关!

(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。

五、全课总结。

解决问题的策略

课次。

1

授课课题。

教   学基本内容。

教学目的。

和要求。

1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。

教学重点。

教学方法及手段。

有条理,有序的思考问题。

学法指导。

一一列举。

板书设计。

执行情况与教学思。

课次。

2

授课课题。

教   学基本内容。

教科书65页例3及“练一练”练习十一4-5。

教学目的。

和要求1、让学生继续在解决问题的过程中体验并掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。2、进一步培养学生思考数学问题的条理性、有序性,进一步体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、进一步培养学生的探索意识、策略意识和合作意识,让学生进一步感受数学与现实生活的联系。

教学重点及难点。

掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。

教学方法及手段。

列表整理。

学法指导。

有序列举。

计一、导入新课提问:上节课我们学习了一种新的解决问题的策略,是什么?运用这种策略时要注意什么问题?谈话:这节课我们继续学习用列举的策略来解决数学问题。(板书课题:解决问题的策略)。

二、创设情景,讲授新知1、谈话 2、教学例3。题目告诉我们哪些信息?括号里的话是什么意思?要我们解决什么问题?你打算用什么策略来解决这个问题?3、这道题很适合用列举的策略来解决,我们知道列举要有条理、有顺序。想一想,按怎样的顺序列举会不重复不遗漏?在小组里讨论一下。4、大家都认为,可以按3人间由少到多的顺序来列举,也可以按2人间由少到多的顺序来列举。我们先按3人间由少到多的顺序来列举,为了方便记录和观察,我们可以先画个表格。(出示表格)从只住1个3人间想起,还需要多少个2人间?你是怎样想的?教师板书:板书算式:23-3=20(人),20/2=10(间),并在表里填写1和10。接下去,如果住2个3人间,还需要多少个2人间?请计算出来。教师板书:3*2=6(人),23-6=17(人),17/2=8(间)……1(人)提问:这样2人间怎样安排?符合题目要求吗?谈话:这种情况是不符合要求的,那么这次列举的内容要否定掉。可以在2人间里对应的格子里画“—“,表示否定。(板书:—)谈话:你们会这样列举了吗?接下去应该怎样想?在小组里讨论。注意:组内每个人至少要说一种。指名说答案,教师板书。

6、比较:两次列举有什么相同和不同的地方?你认为哪种列举比较简便?让学生把答句填写完整。

板书设计。

执行情况与教学思。

课次。

3

授课课题。

教   学基本内容。

教科书练习十一6-9。

教学目的。

和要求。

教学重点及难点。

具体情境中能用列举法解决实际问题。

教学方法及手段。

优化方法。

学法指导。

有序的列举。

板书设计。

执行。

情况。

与教学反思。

解决问题的策略教案

【教材分析】例题用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。而通过课件利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的,教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。再引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

【教学目标】。

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤。

2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

【教学重点】。

用等量替换的方法实现问题的简单化,并相应的解决问题。

【教学过程】。

一、曹冲称象导入。

师:同学们,你们听过“曹冲称象”这个故事吧?好,下面我们一起来看曹冲他是怎么称象的。(点击播放)。

播放结束后提问:曹冲称象,为什么不直接称大象而要称石头?(生自由回答)。

生:当时还没有这种技术。

了不起。其实,他就是运用了“替换”这种方法解决了问题。(板书“替换”)。

二、教学例题1。

师:大臣们的问题大致是(口述):把720毫升果汁倒入7个杯子,正好都倒满,杯子的容量各是多少毫升?你会列式吗?(课件没有出示杯子)。

生自由说。

师:720÷7?真的这么简单?就能难倒聪明的曹冲?看看,大臣们给的到底是什么样的杯子。(出示杯子)。

师:看,这样的杯子,能用720÷7吗?生:不能。

师:为什么?

生:(因为杯子的大小不一样)――可以多问几个学生。

师:是的,杯子不一样,所以我们就不能直接用720÷7。那如果,装满的都是?

让生答:装满的都是小杯或者都是大杯,我们就可以直接算出每个杯子的容量了。

师:好,我们一起来看看大臣们出的问题具体是:(课件出示:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的1/3。大杯和小杯的容量是多少毫升?)。请同学们把题目读一读。

师:你从题目中获得到什么信息?

(720毫升果汁、6个小杯、1个大杯)(师板书)。

理解关键句。

师:你是怎么理解小杯的容量是大杯的1/3这句话的?(多问几个同学)。

(预设之一:把大杯当做标准量,小杯是比较量;反过来那如果把小杯当作标准量(单位一)那大杯的容量是可以说一个大杯的容量相当于3个小杯的容量,也可以说3个小杯的总容量等于1个大杯的容量)。

师:其实,也就是一个大杯的容量相当于3个小杯的容量。

独立思考,合作探究。

1、师:那你想用什么策略解决这个问题?把你的想法和你的同桌说一说,然后把你的解题过程写出来。

同桌讨论,生列算式的过程中(师巡视指导,并请两位学生上台板演。)。

2、师:好,同学们请看:(指着算式)做对了吗?你来解释一下你的解题过程!3、课件演示学生所回答的思路。

师:老师听明白了,你们呢?(演示):他是把1个大杯换成3个小杯,这时候就有??(生:9个小杯)现在就可以先求出??(小杯的容量),然后我们再根据大杯和小杯之间的关系,求出大杯的容量。

4、板书小结:

师:简单的说就是把1个大杯替换成3个小杯,再加上原来的6个小杯,一共就有9个小杯。

5、请学生说第二种方法的思路。

师:诶?这组算式呢?对吗?谁知道他的想法?生回答。

6、学生讲完第二种方法后,课件演示。(也要问到点子上,比如:你是根据)。

师:真不错,是把每三个小杯换成一个大杯,这么一替换,得到的就是(大杯)。就可以求出??(大杯的容量),我们在根据大杯和小杯之间的关系求出小杯的容量。

7、完成板书:

师:是的,我们还可以把6个小杯替换成2个大杯,再加上原来的1个小杯,一共就有3个大杯。

师:你们也都像他们这样解决吗?

检验。

师:到底正不正确呢?我们还要对它进行?

生:检验。

师:怎么检验呢?试一试!(留给学生检验的时间)好,谁来说?生:用240+80=720ml所以正确。

师:哦,你是验证了一个大杯和6个小杯的容量等于720毫升这个条件,但是请你们好好思考思考,只符合这个条件就可以了吗?(240÷80=3)。

师:所以,我们在检验时不能只考虑一个方面,要从整体去思考。总结:

师:刚才我们用什么策略帮助曹冲解决难题的?生:替换师:对,替换就是解决问题的一种策略。(板书课题:解决问题的策略)。

师:那为什么要替换?

生:因为杯子不同,替换了就能变成同一种杯子,问题变得简单了。师:你替换的依据是?

生:小杯是大杯的三分之一。

师小结:是的,解这道题的时,我们先把两种不同的杯子替换成同一种杯子,也就是说把两种不同的量替换成同一种量来解决问题。这样,复杂的问题就简单化了!(板书:两种不同的量替换同一种量)。

师:看来呀,替换真是一种有效的解决问题的策略。那咱们继续用“替换”这种策略来解决生活中的一些问题。请看:(出示练习)。

三、巩固应用。

师:你打算填几?跟你的同桌说一说。学生思考后,指名回答。

从题目中,我们知道小杯的容量是大杯的(),也可以理解为1个大杯的容量等于()个小杯的容量。

如果把小杯替换成大杯,那么8个小杯的容量+2个大杯的容量=()个大杯的容量。

如果把大杯替换成小杯,那么8个小杯的容量+2个大杯的容量=()个小杯的容量。

2、有2个大箱和4个小箱,每个小箱的容量是大箱的1/2,1个大箱可以换成()个小箱,4个小箱可以换()个大箱,如果把大箱都换成小箱,则共有()个小箱。

3、买15支铅笔和4支钢笔共50元,5支铅笔可以换2支钢笔,每支铅笔和钢笔各是多少元?(留足够的时间给学生做题,展示学生作业时,要问:这个算式表示什么?算得的又是什么?每个数字各表示什么等。)。

四、全课总结:

师:你觉得这种替换的策略神奇吗?你有什么样的感想说一说,和大家分享分享。

师:像这样的问题,我们也可以用替换的策略来解决。只要我们从不同的角度去分析和思考,我想:我们将会有许多不同的收获和发现,韦老师期待着,那我们下一节课再一起来探讨。

“解决问题的策略”

教学目标:

1.进一步学会用“替换”“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2.在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

灵活运用多种解题策略解决稍复杂的实际问题。

教学过程:

一、揭示课题。

谈话:前几节课,我们学习了新的解题策略,你能举例说明吗?(请几位学生交流。)今天这节课,老师准备了一些实际问题,请同学们灵活运用我们学过的解题策略来解决这些稍复杂的实际问题。(板书课题)。

二、基本练习。

6.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?

小结:运用“替换”或“假设”的策略解决问题后都应该及时进行检验。

三、拓展练习。

鼓励学生用自己理解的方法来解决这些问题,解答后给学生充分的时间进行交流,教师及时评价学生。

四、全课总结。

谈话:今天我们综合运用一些策略来解决实际问题。你们又有什么新的收获吗?

五、布置作业:

解决问题的策略教案

p63~64例题和试一试、p65“想想做做”

(1)让学生学习有画图和列表的方法收集、整理信息,并在画图和列表的过程中分析数量关系,寻找解决问题的有效方法。

(2)使学生在自主探索合作交流中体验成功的`愉悦,进一步树立学习数学的自信心,发展对数学学习的积极情感,提高主动学习和独立思考的积极性。

一、导入新课

(学生说出不同的方法)哪些方法可取,比较好?

遇到问题如何解决,就要找到解决问题的策略,今天这节课学习“解决问题的策略”(板书课题)

二、新授

1、出示场景

(1)说一说图中提供了哪些信息。

(2)根据提供信息,你能提出哪些问题?

2、出示问题:

(1)小华买5本需要多少元?

(2)小军用42元可以买多少本?

“解决问题的策略”

教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。

教学目标:

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:让学生体会替换策略的优越性。

教学难点:对替换前后数量关系的把握。

教学准备:

课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。

课前给学生合作要求纸。正面题目1和要求,反面自编题目。

打开课件。

教学过程:

一、创设情景导入:

有谁带了钢笔吗?(学生举手)。

老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?

要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。

(严肃,让学生觉得真换)。

怎么啦?(学生说说)。

是啊!

那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?

为什么?(老师:成交!)。

用铅笔换钢笔依据。

那你说说看为什么非要老师用十支铅笔才肯换呢?

(引导学生说出价钱差不多)。

紧接板书:价格相当。

十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。

板书:依据。

二、温故知新:

课件打开到曹冲称象图片。

(他用什么替换了什么?)。

你能联系上面情节讲一讲它替换的依据是什么呢?

(鼓励性评价:真聪明)。

石头和大象的重量相同作为替换的依据。

那曹冲是怎样来保证石头和大象的重量相同呢?

板书:添上----替换两字。

三、协作创新。

曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。

三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。

(简略介绍其中的走舸和楼船。)。

题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。

生一起读题。

你知道了哪些信息?

这道题目能用“替换”的策略解决吗?

接下来请同学们按照题目下面的要求,来亲身体验一下替换。

同桌合作:

1用什么替换什么?(把题目中替换的双方圈一圈)。

2替换的依据是什么?(在题目关键句的下面画一画)。

3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。

小组交流:

知道怎么替换了的同学请举手。

你们在替换的时候,有没有想到替换有什么好处啊?

请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?

1替换有什么好处?

2你替换的方法和其他同学完全一样吗?

结合课件画面讲解,板书。

一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。

课件展示:

替换前。

(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。

替换后。

(15走舸,出示数量关系:15艘走舸一共装了105名士兵)。

让学生计算。并讲一讲过程(数量关系)。

(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。

两种方法都讲解完后,让学生说说替换的好处。

四、巩固立新:

俗话说得好:兵马未动,粮草先行。

请学生说说如何替换?

板书:一条运粮船----------替换----------(一辆马车+15袋)。

让学生在自备本上用自己喜欢的方式画一画。

实物投影展示替换方法。(最好选文字和图画各一份)。

数学是需要简洁和凝练的,看赵老师怎么来做。。。

强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?

课件演示思考过程。

同桌之间互相说说:替换前后的数量关系分别是什么?

学生自己列算式解答。

请学生说说替换的好处。

五、博古通今:

学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。

学生独立完成。

让一学生上黑板进行板演(力求作出示意图)。

全班交流。

引导学生把四大名著换成三国演义。

并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。

六、自编自演:

大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。

请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。

七、课堂小结:

今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。

相关内容

热门阅读
随机推荐