教案模板是教学设计的重要组成部分,它包含了教学目标、教学内容、教学方法、教学步骤等内容,为教师提供了一个清晰的教学蓝图。在下面的范文中,大家可以学习到不同学科和年级的教案模板设计,希望对大家的备课工作有所帮助。
本节课是义务教育六年制小学数学课本第十二册第一单元第一小节第四课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2、本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是在学习了长方体和立方体的基础上进入了小学里学习立体图形的最后阶段,这个单元知识的综合性和对学生的要求都比较高,化归和类比是常用的思想方法要进行总结,长方形正方形以及圆的基础知识都是本单元的认知基础。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
教材的编排特别注重让学生积极主动地实践研究,让学生在合作探究的过程中自主发现规律,先用想一想的思考,回忆圆面积公式推导过程,激活原先“化曲为直”的极限思想和“转化”的思想方法记忆储存,接着用较多的篇幅讲解切拼的过程,便于学生理解和感受转化的过程和极限思想,然后推导圆柱体积的计算公式,并抽象到字母公式。例题直接利用公式解决问题,试一试和练一练对方法进行了巩固,并有所变化,不同条件下求圆柱体积,完善认知结构。
根据新课程标准中对空间和图形的目标要求和对教材文本的分析理解,以及我对六年级学生的认知发展水品的认识,我从“知识能力”“过程方法”“情感态度”三个维度制订以下教学目标:
1、经历并理解圆柱体积公式的推导过程,掌握圆柱的体积公式并能应用公式正确地解决实际问题。
2、通过观察、猜测、操作、分析、比较、综合,建立初步的空间观念,并体会知识间相互“转化”的思想方法。
3、让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。
圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程作为本节课的教学重点;而小学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,而本节课需要把圆柱体切割转化成长方体,我们却找不到某种材料做的圆柱体适合切割拼组,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学热点和分化点。
本节课采用的教具和学具为:圆柱体切割组合学具,课件,各小组自备所需演示用具。
本课教学时最大特点是从学生已有的知识水平和认识规律出发,运用迁移,类比猜想、实践演示、自主推导,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以一几个特点:
1、直观演示,操作发现。
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生有丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2、巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3、运用迁移,深化提高。
运用知识的迁移,培养学生利用旧知学习新能力,从而使学生主动学习,掌握知识,形成技能。
我说课的题目是《圆柱的表面积》,我将从教材分析、教学目标、教学重点与难点、教学方法、学习方法、教学过程这六个方面来介绍我的构思与理解。
一、教材分析:
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。
二、教学目标:
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的'的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观。
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
三、教学重点与难点:
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
四、教学方法:
为了更好的突出重点突破难点并遵循“学生为主体,教师为主导”的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
五、学习方法:
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到“人人学有价值的数学”这个目的。
六、教学过程:
课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】。
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】。
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【教学过程】。
一、引入新课。
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)。
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
二、探究新知。
1、初步感知。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)。
(3)圆柱的表面积怎么求?(两个底面积+侧面积)。
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积。
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报。
(3)教师总结演示。
(4)推导圆柱侧面积公式。
3、表面积。
(1)总结表面积公式。
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)。
三、巩固练习。
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四、总结收获。
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
五、板书设计。
侧面积=底面周长×高。
圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2。
底面积×2=2πr2。
大家好,我是1号考生。今天,我说课的题目是《圆柱的表面积》。秉持着一切为了学生,为了学生一切的教育理念,我将从教材分析、教学目标、教学过程等几个方面对本节课加以阐述。
首先我来说说对教材的理解。
本节课是青岛版小学五年级下册的内容,它是学生初次接触圆柱这个几何体,要求学生认识掌握圆柱的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。本节课的学习以长方形和圆的面积为基础,又为后面学习一些其它几何体作了铺垫。
一堂成功的课,不仅要熟悉教材,还需要老师充分的了解学生。
本节课的授课对象是小学五年级的学生,该年龄段的学生正处于从具体形象思维向抽象逻辑思维过渡的阶段,他们的观察能力。想象能力和概括能力都有了一定的发展。但同时该年龄段的学生好动,注意力易分散。所以在教学中我抓住这些特点运用直观生动的形象,使学生们的注意力始终集中在课堂上。
依据前面对教材的分析和对学情的把握,我确定了如下三维教学目标:
知识与技能:掌握圆柱体侧面积、表面积的计算方法。
过程与方法:通过动手操作、合作交流,发展学生的空间观念以及事物间相互联系相互转化的观点。
情感态度与价值观:经历对圆柱体侧面计算的积探索,体验学习数学的乐趣,培养创新意识。
基于以上对教材、学情的分析,结合教学目标,我将本节课的重难点确定为:
难点:圆柱体侧面积公式的推导。
为了教学目标的顺利实现,并遵循着“学生为主体,老师为主导”的教学原则,本节课我采用情景教学法、启发法、讲授法等多种教学方法,引导学生动手操作、讨论交流。
(一)创设情景,导入新课。
我用多媒体直观展示一盒可比克薯片,引导学生观察圆柱形纸筒外包装,并顺势提问学生,做这样的圆柱体至少需要多少纸板?利用学生熟悉且感兴趣的事物激发起学生的学习兴趣,由此引出本节课题。
(二)本着“重结论的同时更重过程”的理念,带领学生进入启发诱导,探索新知环节。
根据学生实际情况,将前后四人分为一组,每组发放一个与屏幕上大小一样的圆柱形纸筒和一把剪刀。
先让学生思考怎样求圆柱体侧面积?然后引导学生把圆柱形纸筒沿着高剪开,看看变成什么图形。提醒学生用剪刀时要注意安全。我进行巡视,并予以指导。学生汇报交流。并让大家都举起自己的小成果展示给大家看。然后用多媒体演示圆柱转化成长方形和两个底面的过程。
接着让学生思考,剪开后的各部分图形与圆柱的各部分有什么关系?让学生充分表达自己的想法。对学生的回答给予赞扬,并完善:圆柱的侧面展开后是一个长方形,长方形的长就是圆柱底面的周长,长方形的宽就是圆柱的高。而且又一次用到了“转化”。
让学生尝试着写出侧面积怎样算?他们会比较容易的写出圆柱侧面积=底面周长×高。
也就是圆的周长乘高。
我紧接着再问学生,圆柱的表面积能求出来了吗?让学生先在练习本上写,然后请同学分享。并归纳:圆柱的表面积=侧面积+底面积×2。通过学生自己动手探索及我的一系列追问,促使学生主动思考,成功掌握了本节重点。
(三)巩固练习。
为让每一位学生都有不同程度的提高,我设置了不同层次的练习题:
首先,基本练习。计算手中圆柱的侧面积和表面积。同位之间,做的慢的要给做的快的捶捶背。
其次,加强练习。用多媒体展示一道应用题,让学生做一做。
最后,拓展提升题。
(四)小结。
让学生谈收获,我及时评价,共同完善。
然后,给学生布置一个小任务,让学生把今天的收获带回家,分享给父母,并与父母一起尝试着制作一个圆柱体,被计算出其表面积。通过学生与父母一起动手,一方面巩固今天所学知识,更重要的是促进家长与学生间的情感交流。
(五)最后,说一下我的板书:
圆柱的侧面积=圆的周长×高。
1、营造情境,引起学生兴趣时使用。根据教学内容创设与生活贴近的情境,就会让学生产生浓厚的兴趣和亲切感,可以使学生在形象化、直观化、趣味化中掌握枯燥的数学知识。教师按照学生的心理特点,运用课件既能够很好调动学生学习数学的兴趣,也使学生认识到现实生活中隐藏着丰富的数学问题。
3、图形内容教学时使用多媒体。在教学平面图形时,如果使用传统的教学手段,教师就会疲于准备许多展示的图片或在黑板上画图形,很麻烦。如果使用多媒体不但能很好地解决这些问题,还能进行各种图形变化。大量的形式多样、内容丰富的插图是教材的重要组成部分,但插图是静止的,插图借助多媒体,创设动态情境,以鲜明的色彩,活动的画面把活动过程全面展现出来,那么既可突出重点、突破难点,化抽象为具体,又可促进思维导向由模糊变清晰。
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:
1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
二、把握学情,选择教法。
(一)学情分析。
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的'力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
三、教学策略的选择。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。
四、基于以上构想,我确定本节课的教学程序为:
教师活动:创设情境协作指导拓展延伸。
学生活动:操作感悟自主探究实践应用。
具体为三个环节进行教学:
1.直观演示,操作发现。
让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
具体教学程序:
(2)你能想办法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
2、创设问题情景。
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。
(二)、新课教学:
设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。
根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1)引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(三)巩固练习,检验目标。
1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。
2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。
4.动手实践:让学生测量自带的圆柱体。
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(四)总结全课,深化教学目标。
结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。
本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。
文档为doc格式。
本课教学中,学生探究的热情很高,学得非常积极主动,对圆柱侧面积的计算有了更为深刻的认识。我认为,教学成功的关键在于教师关注了学生的学习过程,尊重个体的数学“现实”,为学生营造了一个平等、和谐、开放的学习氛围,放手让学生自主探索,从而使学生在获得知识的同时,培养了探究精神,锻炼了思维能力。当教师以为可以总结出圆柱侧面积的计算方法时,却有学生提出了疑问,学生提出问题后,教师并不是简单地给出答案,或者硬加要求、横加指责,而是巧妙地抓住这个意外生成的资源,把问题抛给学生通过师生互动、生生互动,实现了互相沟通、互相补充,引发了群体思维碰撞,从而达成共识、共享、共进。
各位评委,各位老师,大家好,今天我说课的题目是《圆柱的表面积》,我将从说教材、说教法,说学法,说教学程序,说板书设计,说反思等六个方面来介绍我的构思和见解。
一、说教材。
1、教材分析。
《圆柱的表面积》是北师版小学六年级下册第一单元的一个内容,是在学生学习了面的旋转,了解了点、线、面体之间的关系,和认识了圆柱、圆锥的基本特征后,安排的一节探索活动课。通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中实际问题。学好这部分内容,可以进一步发展学生的空间观念,为学生学习其它几何知识打下坚实的基础。
2、学习目标。
1、知识目标。
知识目标有二。第一、理解圆柱体表面积的含义,并了解侧面展开图的形状,掌握圆柱体侧面积和表面积的计算,这是本节的重点。第二、理解侧面展开图与圆柱体各部分间的关系,这是本节课的难点。
2、情感目标。
通过观察、想象、操作等活动,让学生体验到数学知识的广泛性,探索性和挑战性,体会数学与生活的联系,从而培养学生大胆猜想和顽强学习的毅力等等。
二、说教法。
学具准备:小圆柱体、剪刀、直尺等。
三、说学法。
教给学生一个好的学习方法,胜做一百道题,可以让他们在今后的学习中永远立于不败之地,为此,本节课,我注重了对学生以下学法的指导。
1.动手操作,自主探索。
记得南宋诗人陆游在《冬夜读书示子聿》中写道:“古人学问无遗力,少壮工夫老始成。纸上得来终觉浅,绝知此事要躬行”。说的就是知识的取得贵在实践,数学中的很多知识,不能仅靠老师的赐予,老师应多鼓励学生去探索、去发现、只有自己的亲身体验,才能深知原因为何!
2.合作交流。
俗话说:三个臭皮匠,顶个诸葛亮。一个人的力量是有限的,而众人的智慧是无穷的,通过小组的'合作、交流、讨论,可以让知识展现得更加明彻,让同学们理解得更透、掌握得更牢。从而有助于同学们理解教学重点。
3.直观演示法。
我们知道立体图形的知识是相当抽象的一个内容,学生在理解上由于空间观念不强,所以很难想象,为此,我要求学生用操作,演示的方法学习,这样可以更直观地展示知识,从而有助于学生突破学习中的难点。
四、说教学程序。
由于上一节课同学们已认识了圆柱的有关特征,我课下也会让学生自己动手做一个小圆柱。所以教本课时,为吸引学生,调动其积极性,我设计了这样一个情景:上节课老师让大家做的小圆柱体都做好了吗?同学们肯定会高兴拿出自己的杰作,向我炫耀一番,这时我会夸奖几个做得较好的,但话锋一转,又问:你知道你做的这个小圆柱体用了多少纸板吗?同学们肯定会大为失色,茫茫然,从而引出本课的课题——《圆柱的表面积》。为让学生明确学习目标。我会用这样的一句话来过渡:“学习好比远航,没有目标就没有方向,谁能给大家指明今天的学习方向”。从而让学生明晰今天的学习目标。
在目标明确后,我会让他们根据老师指定的自学方法进入今天的自学环节。同学们在边观察、边操作、边想象中进入合作学习,这时候老师会走下讲台,和他们一起学习、探究。并适时辅导在学习上走弯路的同学。在短短的10分钟后,就开始了质疑-解疑的环节,对于一般的疑点我会找学生及时解答,而对于难一些的问题就让他们小组合作,讨论交流完成,让同学们在自学中初次尝到成功的喜悦。
根据成功教学案的设计原则,学什么量什么,为此我在量学中设计了几道填空题,目的是让同学们把在自学中获得的知识、发现和收获用文字的形式表达出来。学习方式为:先独立完成再合作交流。我一直认为导学的环节是学生展示、汇报的时间,为调动其积极性,我会这样来激励:“同学们,通过你们的合作学习相信你们有了很多的收获,何不趁此机会展示一番呢?”同学们受此激励兴趣大发,会把自己的发现和收获一同汇报,有的说思路,有的说方法,有的说提醒,有的说注意点…..过程精彩纷呈,高潮迭起,老师只作为一个活动的组织者和引导者,这样就真正做到了以学生为主体,老师为主导的教学思路。
用学中,为检查同学们在三次学习后的学习效果,在此我设计了两道习题,以让90%的同学能做会为主,通过及时的巩固,可以让知识掌握的更加牢固。学习方式为:两生板演,后讲解解题思路。为满足不同层次学生的学习渴望,真正实现“让每一个学生成功”的办学思想,在测学中我设计了三类题目:基础过关,综合应用、拓展拔高。既达到了巩固的目的,又满足了优秀学生吃不饱的现象,真正实现为每一个学生成功而服务。
五、说板书。
板书能加强教学的直观性,能唤起学生的注意力,增强学生的记忆力和理解力,为此我的板书设计以简单明了为根本宗旨,重在重点突出,清晰易记。板书如下:
圆柱的侧面积=长方形的面积(展开后)。
=长×宽。
=底面周长×高。
用字母表示:s侧=ch。
我说课的题目是《圆柱的表面积》,我将从教材分析、教学目标、教学重点与难点、教学方法、学习方法、教学过程这六个方面来介绍我的构思与理解。
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观。
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的`一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
为了更好的突出重点突破难点并遵循“学生为主体,教师为主导”的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到“人人学有价值的数学”这个目的。
课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
数学小学六年级下册说课稿是针对小学生的学习特点和学习阶段准备的,希望大家好好学习,取得优异的成绩!
1.教学内容。
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时,内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2.本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4.教学目标。
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
二、说教法。
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1.直观演示,操作发现。
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法。
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
四、说教学过程。
对本节课的教学,我们设计了以下几个环节,
(一)复习旧知识,为引入新知识作准备。
1.求下面各圆的面积(口算),单位为厘米。
(1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。
2.什么叫做体积?怎样计算长方体的体积?
(二)导入新课,隐射教学目标。
1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
2.展示学习目标,学生认读目标。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标。
1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的'面积公式的推导过程,教师出示投影,帮助学生思考。
2.演示操作,揭示新知。
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
1、授课内容:。
人教版第12册第二单元第38面至39面(圆柱的认识)、做一做、练习十的第1题。
2、教学内容的地位、作用和意义。
圆柱是一种常见的立体图形,在日常生活和生产中有着广泛的应用,学生对它已经有了初步的感性认识。
本单元是小学阶段学习几何知识的最后一部分内容,圆柱的认识是本单元的起始教材,是学生在学习圆和长方体、正方体的基础上来认识的。学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征是以后学习圆柱的表面积、体积以及圆锥和球的认识的基础;更有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。
可见,圆柱的认识教学在后继的几何教学中起着至关重要的作用,要引导学生切实学好。
3、教学目标的确定:。
(1)使学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征。
(2)通过操作、观察、比较、探索,培养学生的分析、推理、判断和空间想象能力,理解事物间的相互联系,进一步强化学生的立体观念。
4、教学内容的编排特点及教学重点、难点。
本节课教学内容是这样编排的:教材首先从直观入手,通过对常见的圆柱实物观察,使学生认识圆柱的形状,并从实物中抽象出圆柱的几何图形,然后介绍圆柱的各部分名称,说明圆柱的上、下两个面是平的,是两个相同的圆面,叫做圆柱的底面。对于圆柱侧面的认识,先通过观察和用手摸,知道圆柱的侧面是一个曲面。再把圆柱侧面展开,使学生了解圆柱侧面的展开土是长方形,以及它的长与宽跟圆柱底面周长与高的关系。可以看出,理解并掌握圆柱的特征是本课的教学重点,而认识圆柱侧面的特征是本课的教学难点。
5、教具准备。
师:圆柱体的实物、模型和相应电脑软件。
生:自带贴有标签纸的圆柱形物体;剪刀、线、尺。
依据教材编排特点和学生已有知识基础,本节教学的基本教学思路是:联系比较,建立表象——导引结合,探索新知——强化练习,巩固新知。为了体现这一教学思路,实现教学目标,教学时拟用“导探结合法”为主进行教学。
充分利用课前5分钟,通过师生比赛说长方体的有关知识,既复习了旧知,又激发了学习兴趣。
在导引结合,探索新知时,改变以往怕出偏差、怕学生自己弄不懂而不敢放手的做法,根据学生以形象思维为主的特点,充分利用学生已有的认知基础和他们已掌握的操作方法和方式,循着学生的思路去引导、去释疑、去点拨,创设有利于学生主体活动的情景。结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手摸、比、看的过程中,利用知识的正迁移,把认识长方体的方法和认识圆柱联系起来,发挥学生想象:如学生想到长方体有底面、侧面和高,那么圆柱有没有底面、侧面和高?长方体的对面相等,圆柱的两个底面会不会相等?圆柱本身还独具有什么特征?让学生在观察、操作中发现知识的异同点、转化点,使学生的思维进入发展区。
充分利用学生好动、好说、好表现的年龄特点,教学时,让学生在摆一摆、摸一摸、剪一剪、比一比的过程中,采用发言、讨论、复述、交流、演说等形式,让学生多角度、多形式地表达自己的思维过程,如在探讨圆柱上下底面为什么相等的方法时,学生通过操作后可能会出现下面几种说法:
(1)把两个圆剪出来比较;。
(3)量出它们的直径或半径进行比较;。
(4)用线圈上、下底面的周长来比较等。在讨论圆柱的侧面时,学生通过操作比较,说出圆柱侧面的特征后,可能有学生会提出,圆柱侧面展开图也有可能是正方形或平行四边形,教师应给予肯定和鼓励,并让学生说说是怎样做的和展开后的图形与原来圆柱之间又有什么关系。这样,既加深了学生对圆柱的各部分名称和特征的认识,又有效地培养学生的口头表达能力、学习能力和逻辑思维能力。
针对学生好新、好奇、思维活跃、有意注意持久性差的特点,在教学过程中,恰当借助电脑的多媒体作用,如演示把实物图抽象为立体图、上下两圆相同、高处处相等和圆柱的侧面展开过程等,让学生在观察中,把对圆柱的特征的感性认知升华为理性认知。同时,配合教师丰富的情感,从而调动了学生的学习兴趣,活跃了课堂气氛。
认知心理学认为:学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程,为了实现这个过程,还要通过有效的练习,才能使所形成的认知结构更加完善和充实。所以,在新课授完后,教师安排了针对性练习和发展性练习,进一步强化学生的感知基础。
这样,让学生在动手、动脑、动口中参与探索、分析、说理、概括的全过程,实现了在获取知识的同时发展学生的能力,使课堂教学得到优化。通过本节的教学,力求使学生实践和掌握一些基本的学习方法:参与知识形成的全过程、自主探索新知的方法;学会观察、分析、比较知识、抽象概括知识的本质属性的方法;自学课文质疑问难独立学习的方法。从而提高学生的创新精神和实践能力。
为了体现教法和学法,教学过程我是这样安排的:
(课前5分钟,师生进行比赛:(看谁对长方体了解得多))。
师:我说这个铁罐(举出)的形状像长方体。
生:我说橡皮的形状像长方体。
师:我说长方体有六个面。
生:我说长方体有八个顶点。
(一)、联系比较、建立表象。
1、初步感知,建立表象。
师:课前我们初步复习了长方体的各部分名称(构造)和特征。(板书:构造特征)。
(1)观察:
师:(师拿出一个用红布蒙着的圆柱笔筒,揭开布)这个物体的形状还能称为长方体或正方体吗?你们知道这是什么吗?(板书:圆柱),它还有一个名字叫做笔筒,今天老师准备把它作为一件礼物,送给大家,谁想得到它呢?看谁表现得好就送给谁。这个笔筒的形状是圆柱(教师再出现几个圆柱模型)学生拿出形状是圆柱的实物。
(2)举例:谁来说一说,在生活中,还有哪些物体的形状也是圆柱形的?
(3)认识立体图。
闭起眼睛,在脑子里想象一个圆柱的形状,如果我们把观察和想到的圆柱形状画成立体图会怎样呢?(电脑演示,贴出立体图)。
(二)、导引结合、探究新知。
引入:刚才,同学们举出了好多例子,这说明了在生活和生产中我们离不开圆柱,我们更应该来认识它!(板书:的认识)。
1、请你来说一说,你想认识圆柱些什么?
(现在,我们就随着这些想法一起来认识圆柱,好不好?)。
2、初步感知。
(1)看看、摸摸,同桌讨论:圆柱体有几个面?这些面怎样?
(2)初步反馈:圆柱体有三个面,其中有两个面是平面,是完全相同的两个圆,叫做圆柱的底面;还有一个面是曲面,叫做圆柱的侧面。(在立体图上标明)(学生闭起眼睛摸手中的圆柱,并说出它的各部分名称)。
(3)请你猜想一下,哪两个面是一样的,你是怎样知道的?可用什么方法来证明?
引导学生从下面几点来说明:
1、剪出来比较;。
2、量半径、量直径;。
3、量周长;。
4、沿着模型在纸上画出一个圆,再把模型倒换过来比较。(媒体演示,上下底面重叠过程)(教师说明:今天我们研究的都是像这样上下一样的粗细的,直直的圆柱。)。
(4)学法指导。(板书:观察、猜想、操作、发现)。
(5)联系比较,强化感知:(媒体出示:)。
4、圆柱的高。
(1)指上题中高、低两个圆柱问:哪个圆柱高,哪个低?想想,这与圆柱的什么有关?(引导学生得出:圆柱的高低与圆柱两个底面之间的距离有关。)。
(2)怎样测量着两个底面之间的距离呢?
通过圆柱的纵切模型引导学生感知应该测量两底面圆心的距离最科学,它叫做圆柱的高。同时媒体演示,使学生知道:圆柱的高也可以表示在圆柱的侧面上来。(师在立体图上表示出高,学生在自己的圆柱上画高。)。
(3)重复刚才的媒体操作,问:你还发现圆柱的高有什么特征?你是还可以怎样得到?(有无数条高,长度都相等。
(1)纵切面是长方形,可以有无数条高;。
(2)侧面上可以做无数条高;。
(3)两底面之间处处可以做高)。
5、圆柱的展开图。
(1)圆柱的两个底面都与侧面相交,观察一下,上面的平面与侧面相交形成那条线?这条线就是底面的什么?下底面也如此。
(2)侧面是围起来的一个曲面,如果沿着它的一条高剪开,再展开,你能想象出侧面会变成一个什么平面图形吗?(长方形或者正方形)(学生动手操作)(媒体演示)。
(3)同桌讨论这个长方形的长、宽与圆柱有什么关系?(学生回答,教师板书:)(媒体演示)。
(三)教学小结。
圆柱的认识和教学告一段落后,为了给学生一个完整而深刻的印象,教师要有意识地组织学生看板书,总结学到的知识。
(学生:通过学习,我懂得了……)。
(四)、强化练习、巩固新知。
1、针对性练习。
做一做。
2、发展性练习。
(2)一张正方形纸边长20厘米,来围成一个圆柱的侧面?它们之间又有什么关系?
(五)、总结整理、深化新知:
1、指导学生阅读课文,进一步把握知识要点,再次进行质疑问难。
2、归纳本节学了哪些知识,学会了什么,怎样学,达到强化新知,掌握方法的目的。
(六)、作业。
用硬纸做一个底面半径为2厘米,高5厘米的圆柱。
常言道:“万事开头难。”学习也一件很艰难的事,学生如果对学习没有兴趣,又找不到学习的方法,学习起来就很头疼,就算多么努力也是事倍功半,就会没有成效。反之,学生对学习有兴趣,并掌握了学习方法,就会觉得学习是件轻松愉快的,因为兴趣是获得知识和能力的金钥匙。作为教师上一节课,要使学生学有成效,就必须激发他们对这堂课产生兴趣。而良好的导入语是一把通往兴趣大门的'钥匙。因此我设置悬念“为什么生活中的一些茶叶罐、茶杯、饮料瓶等要做成圆柱体?”激发学生的学习兴趣。
课堂教学:
1、直观演示和实际操作相结合。
课堂开始出示圆柱体图片,学生思考:能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、培养了学生的合作创新意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,()把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。
4、培养了学生实践能力。
在课的最后,设计了一个操作练习:小组合作测量计算所带圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后借助计算器算出结果。学生在动手实践中做到了有目的、有计划、有步骤,并且根据实物的特点提出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程要求。
优点:
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
不足:
再教设想:
在课的.设计上以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,在学生动手实践、交流讨论和思考的时间上教师应合理把握。
将本文的word文档下载到电脑,方便收藏和打印。
听了x老师的《圆柱体的表面积》一课,在这里我来谈一下自己的几点不成熟的看法。这堂课,我认为有几个特点:
《圆柱体的表面积》这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一法取近似值。教材共安排了三道例题。x老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中来理解和掌握。四者有机结合、互相联系、多而不乱。教学设计和安排即源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学的轻松,极大提高了教学效率。
这节课在教学上采用了小组合作探究、讲练相结合的方法。
x老师用茶叶罐作为问题情境,引导学生观察、思考和合作探究圆柱侧面积的计算方法,同时通过多媒体的辅助教学,使学生的眼、手、脑等多种感官参与感知活动。让学生通过动手操作、合作交流后,抽象、概括出圆柱体侧面积的计算方法,再通过课件的演示,让学生很清楚的看到圆柱的侧面展开是一个长方形,求圆柱的侧面积实际上就是求一个长方形的面积。很好地突破了难点。通过教师的“导”,激发了学生积极、主动的探究新知的热情。
在表面积的教学环节中,x老师放手让学生独立推导圆柱体的表面积的计算方法。充分发挥了学生的主体作用,也培养了学生独立思考能力和初步的逻辑思维能力。
当然,我也向x老师提出自己的看法:最后的巩固题中,是不是可以把这个罐头外面的商标纸打开,就会发出商标纸还有一个接口处,这时再让学生计算这张商标纸的实际面积,我想,这样可以更让学生感受数学的生活性及实用性。
1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
理解圆柱体积计算公式的推导过程。
一、复述回顾,导入新课。
以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)。
1、说一说:(1)什么叫体积?常用的体积单位有哪些?
(2)长方体、正方体的体积怎样计算?如何用字母表示?
长方体、正方体的体积=×()用字母表示()。
2、求下面各圆的面积(只说出解题思路,不计算。)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
(二)揭示课题。
你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)。
二、设问导读。
请仔细阅读课本第8—9页的内容,完成下面问题。
(一)以小组合作完成1、2题。
(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母v代表圆柱的体积,s代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()。
[汇报交流,教师用教具演示讲解2题]。
(二)独立完成3、4题。
先求底面积,列式计算()。
再求体积,列式计算()。
综合算式()。
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)。
【要求:完成之后以小组互查,有争议之处四人大组讨论。】。
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
三、自我检测。
1、课本9页试一试。
2、课本9页练一练1题(只列式,不计算)。
【要求:完成后小组互查,教师评价】。
四、巩固练习。
课本练一练的2、3、4题。
【要求:组长先给组员讲解题思路,然后小组内共同完成】。
教师进行错例分析。
五、拓展练习。
1、课本练一练的5题。
【要求:先组内讨论确定解题思路,再完成】。
六、课堂总结,布置作业。
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题。
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;。
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
理解圆柱体积计算公式的推导过程。
圆柱体积演示教具。
一、旧知铺垫。
1、谈话引入。
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)。
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)。
二、自主探究,解决问题。
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)。
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
用字母表示:(板书:v=sh)。
三、巩固新知。
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成“试一试”
3、“跳一跳”:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸。
五、布置作业。
练一练1-5题。
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
圆柱的体积计算方法的推导。教学前我就思考,不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。
课上,出示挂图:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:
(1)圆柱的体积等于长方体和正方体的体积。
(2)圆柱的体积也等于底面积乘高。猜测是否准确呢?点燃学生的学习欲望。
让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。
还有一种推导过程是我没有预设到的:
一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。
所以圆柱体积=底面周长的一半×底面半径×高。首先我对这种方法加以肯定,然后利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。
这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/xindetihui/752818.html