心得体会是一种对自己经验的内省和反思,帮助我们更好地理解自己和他人。以下是小编为大家整理的一些优秀心得体会范文,供大家参考和借鉴。希望通过阅读这些范文,可以帮助大家更好地理解和掌握心得体会的写作技巧,提升自己的写作水平。让我们一起来欣赏这些精彩的作品吧!
学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。
学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。
本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。
希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。
随着科技的不断发展,人工智能已经成为了人们生活中不可或缺的一部分。然而,对于人工智能在社会发展中的地位和作用,人们的意见却并不一致。为了探讨人工智能的优劣与必要性,并且寻求对该技术的更深入了解,我们参与了感兴趣的辩论,分享了各自的观点。在这个过程中,我们不仅从其他人的发言中获得了新的见解,也发现了自己的盲点和认识的不足。通过这次辩论,我深感人工智能的重要性和复杂性,也意识到我们作为个体应该如何积极适应人工智能时代的到来。
在辩论的过程中,我第一次意识到人工智能的广泛应用和未来的发展潜力。不论是医疗、交通、金融还是教育领域,人工智能正逐渐渗透进我们的生活。在现实中,人们几乎无时无刻不在和人工智能进行互动,比如通过语音助手与智能音响沟通、通过智能手机上的人脸解锁功能解锁手机等等。人工智能的出现大大提高了工作效率和生活便利性。通过参与辩论,我进一步认识到人工智能的潜在优势和在各个行业中的重要作用。
然而,在辩论的过程中,我也不得不面对一些为人工智能的批判性观点。他们担心人工智能会取代人类的工作岗位,导致大量人才失业。他们还担忧人工智能的发展可能导致逐渐失去对自己生活的控制权,甚至可能产生不可控制的风险。通过了解这些观点,我深入思考了人工智能所带来的不确定性和可控性的问题,并认识到我们需要制定相应的法律和伦理规范来规范人工智能的应用。
参与辩论还使我认识到人工智能发展背后的技术挑战和困难。在许多情况下,人工智能技术仍然需要大量的数据来训练和改进。这可能需要涉及大规模的数据收集和隐私权问题。此外,人工智能在解决人类问题方面还面临许多难题,例如情感识别和道德判断等。人工智能的这些挑战需要我们不断研究和创新,才能更好地利用这项技术。
最后,通过辩论的过程,我也更加清楚地认识到作为个体我们应该如何与人工智能相处。虽然人工智能可以提高生产力和效率,但它并不是人类代替的替代品。我们应该学会利用人工智能的优势,使其为我们服务,并在需要的时候提供帮助和支持。同时,我们也需要注重我们自身的能力培养,提高自己的综合素质和对人工智能的了解,以适应未来的工作和生活。
通过这次辩论,我从各种不同的角度更深入地认识到了人工智能的重要性和存在的问题。人工智能是一个复杂的领域,它既给我们带来了巨大的潜力,也需要我们认真思考和规范应用。只有在充分了解和尊重技术的同时,我们才能更好地应对人工智能时代的挑战,为人工智能的发展铺平道路。
人工智能是当今科技发展的热门话题之一。它带来了许多革命性的变革,同时也引发了激烈的争论和辩论。最近,我参加了一场关于人工智能的辩论赛,从中我得到了一些宝贵的心得体会。在这篇文章中,我将分享我的观点和总结。
首先,人工智能的发展具有巨大的潜力和益处。在我们的辩论赛中,许多人支持人工智能的发展,并且提出了许多有说服力的观点。他们强调人工智能可以提高我们的生产效率,推动科学研究和医疗领域的进步,解决世界面临的许多大问题。他们认为,人工智能可以代替人类从事一些危险、繁琐和重复性的工作,从而释放出人类的时间和精力去专注于更有创造性和思考性的任务。我深刻认同这些观点,认为人工智能的发展是不可避免的,也是人类社会进步不可或缺的一部分。
然而,正如每个事物都具有两面性一样,人工智能也会带来一些风险和挑战。在辩论中,一些人表达了对人工智能可能带来的失业问题的担忧。他们认为,随着人工智能的普及和发展,许多传统岗位可能会被取代,导致人们失去工作和生计来源。此外,人工智能的不可控性和透明度也被一些人所担忧。虽然人工智能有助于提高我们的生活质量,但我们也需要确保它不会被滥用或成为威胁人类利益的工具。因此,我们需要建立有效的监管和道德框架来引导人工智能的发展,并确保它为人类带来益处。
在辩论中,我还学到了重要的一点,即我们不能过于依赖人工智能和技术。尽管人工智能可以提供便利和效率,但它终究是由人类开发和控制的。我们不能完全依赖它,而是要保持自己的思考和判断能力。当我们面临决策时,我们应该综合考虑人工智能的建议和我们自己的直觉。人工智能可以成为我们的助手和工具,但最终决策的责任仍然在人类手中。
最后,辩论让我认识到人工智能的发展需要全社会的参与和讨论。这并不仅仅是科技公司和专家们的事情,每个人都应该对人工智能的发展有所了解并参与进来。我们需要积极参与讨论人工智能的伦理和法律问题,为其发展提供必要的指导和约束。只有这样,我们才能确保人工智能的发展符合人类的利益,为我们带来最大的好处。
总之,参加人工智能辩论赛给了我很多思考和体会。我认识到了人工智能的巨大潜力和益处,但也了解到了其中的风险和挑战。我相信,只有我们保持警惕和积极参与,才能确保人工智能的发展真正造福人类。未来,人工智能将继续引领科技的发展并改变我们的生活,我们需要为此做好准备。
人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。
人工智能简称ai,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5g技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。
在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:
第一教材的缺乏,
第二师资的缺乏,
第三课程实施的场地缺乏,
第四怎么教的问题。
分为三个阶段:
第一阶段大班stem基础教学,
第二轮实践教学建立社团校队,
第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。
这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与n形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机eniac做出了开拓性的贡献。
以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。
现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。
2.1逻辑学的大体分类。
逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(niz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。
2.2泛逻辑的基本原理。
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。
泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。
逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。
3.1经典逻辑的应用。
人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(lt)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(gps),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。
3.2非经典逻辑的应用。
(1)不确定性的推理研究。
人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。
归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。
(2)不完全信息的推理研究。
常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的nml非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。
此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。
现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
人工智能的产生与发展和逻辑学的发展密不可分。
一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。
。
通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。
人工智能的发展历史大致可以分为这几个阶段:
第一阶段:50年代人工智能的兴起和冷落。
人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本19xx年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。
19xx年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。
由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
对人工智能对世界的影响的感受及未来畅想。
在当前社会中的呢?
人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。
智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。
虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。
个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。
人工智能研究的近期目标;是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的智能系统。例如目前研究开发的专家系统,机器翻译系统、模式识别系统、机器学习系统、机器人等。随着社会的发展,技术的进步,人工智能的发展是任何人都无法想象的。通过对人工智能的学习,以及与所听所见所闻的结合,我大胆的对未来人工智能的发展做出了以下拙劣的猜想:
1、在某些城市,立法机关将主要采用人工智能专家系统来制定新的法律。
2、人们可以用语言来操纵和控制智能化计算机、互联网、收音机、电视机和移动电话,远程医疗和远程保健等远程服务变得更为完善。
3、智能化计算机和互联网在教育中扮演了重要角色,远程教育十分普及。
4、随着信息技术、生物技术和纳米技术的发展,人工智能科学逐渐完善。
5、许多植入了芯片的人体组成了人体通信网络(以后甚至可以不用植入任何芯片)。比如,将微型超级计算机植入人脑,人们就可通过植入的芯片直接进行通信。
6、抗病毒程序可以防止各种非自然因素引发灾难。
7、随着人工智能的加速发展,新制定的法律不仅可以用来更好地保护人类健康,而且能大幅度提高全社会的文明水准。比如,法律可以保护人们免受电磁烟雾的侵害,可以规范家用机器人的使用,可以更加有效地保护数据,可以禁止计算机合成技术在一些文化和艺术方面的应用(比如禁止合成电视名人),可以禁止编写具有自我保护意识的计算机程序。
1、智能化计算机和互联网既能自我修复,也能自行进行科学研究,还能自己生产产品。
2、一些新型材料的出现,促使智能化向更高层次发展。
3、用可植入芯片实现人类、计算机和鲸目动物之间的直接通信,在以后的发展中甚至不用植入芯片也可实现此项功能。
4、制定“机器人法”等新的法律来约束机器人的行为,使人们不受机器人的侵害。
5、高水准的智能化技术可以使火星表面环境适合人类居住和发展。
1、信息化的世界进一步发展成全息模式的世界。
2、人工智能系统可从环境中采集全息信息,身处某地的人们可以更容易地了解和知晓其他地方的情况。
3、人们对一些目前无法解释的自然现象会有更清楚的认识和更完善的解释,并将这些全新的知识应用在医疗、保健和安全等领域。
4、人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。人工智能一但拥有长足的进步,必将带动其他计算机技术的发展。网络化将虚拟的世界变得无限大,届时,足不出户将成为一种习惯。人工智能必将带动人类的发展,起到决定性作用。
虽然不知道其中有多少在未来会得到实现,但也算是我通过对人工智能的学习所收获的总结。人工智能的繁荣景象和光明前景已展示出其诱人的魅力,让我们一起期待未来的世界吧,一个全新的人工智能世界。
在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。
在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。
近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。
1、分布式人工智能与艾真体。
分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。
分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。
mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动。
态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。
2、计算智能与进化计算。
计算智能(putingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。
进化计算(evolutionaryputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。
达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。
直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。
3、数据挖掘与知识发现。
知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。
从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。
机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。
比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的。
coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。
4、人工生命。
人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。
人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。
(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。
(6)基本了解人工智能程序设计的语言和工具。
对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。
人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。
当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。
(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成。
果中人工智能那些知识被应用。
(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》。
系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。
(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的。
作品,增强同学对人工智能的兴趣,加强同学之间的学习。
(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些。
新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。
2016年10月,全球最大代工厂富士康“机器换人”计划加速,每年有上万机器人投入使用,其江苏昆山市的工厂已裁减6万员工。正在举行的全国两会上,一些代表委员对有着近3亿人的农民工群体未来的走向,不无担忧。他们提醒说,“机器换人”,可能会导致农民工未来的就业压力不断加大。(2017/3/10《工人日报》)。
人类进入信息化时代,随之而来的将是智能化时代,或者称着机器人时代。目前“机器换人”计划加速,大量的机器人投入使用,让人们从脏、热、累、有毒有害、机械重复的工作中解放出来,将使生产效率和产品质量大大提高,同时能大幅降低生产成本,带来社会的进步。中国制造正在向中高端迈进,只有接纳机器人,才能提高企业和产品的国际竞争力。机器人时代不论你喜欢不喜欢都将如期而至。
“机器换人”来了,预示着一场工业革命已经来临,生产方式、企业管理和用工制度等都将发生一系列的变化,一些企业因为引入机器人而不得不大量裁员,一部分工人特别是农民工因此失去工作的机会,一些年龄大的农民工要想再就业就比较困难,一旦失去工作机会也将丢掉手中的饭碗。
“机器换人”来了,喜忧参半。要有忧患意识,要有危机感,紧迫感,早做安排,提前做好准备。在今年的两会上,全国人大财政经济委员会副主任委员辜胜阻给出细致的建议,要在普惠性前提下,为农民工提供一个有弹性、多层次、多选择、多模式的持续进修机制。即政府和企业要为农民工提供进修培训的机会,掌握一定的职业技能,以应对新的就业市场。
全国人大代表曹晶认为,应当从职业学校到企业打造出一条终身学习提升的通道,或出台技能津贴指导意见,督促人社部门和企业共同落实。同时,通过立法确定企业必须承担职业教育的义务。教育和培训不可能是一步到位,“授人以鱼不如授人以渔。”以终身学习适应万变的社会和就业市场。
机器人来了,政府和企业要加大职工培训的力度,职工自身也必须自我加压,积极参与学习和培训,学到一技之长,学到再就业的本领,不会因为企业裁员而失去工作的机会。机器人来了,用工总量或会减少,政府和企业还应拓宽就业渠道,增加就业岗位保就业,同时完善失业保险制度。个人也应积极主动创造劳动机会。就业是最大的民生,失去就业机会也将无法保证生活质量。机器人来了,不可以坐等,要积极应对。
。
在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。
在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。
近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。
分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。
分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。
mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动。
态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。
2、计算智能与进化计算。
计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。
进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。
达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。
直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。
3、数据挖掘与知识发现。
知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。
从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。
机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。
比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的。
coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。
4、人工生命。
人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。
人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。
(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。
(6)基本了解人工智能程序设计的语言和工具。
对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。
人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。
当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。
(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。
(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。
(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。
(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。
人工智能已成为当今科技领域最热门的话题之一,它是我们在很多领域中取得进步和提高生产效率的推手和催化剂。在了解人工智能的过程中,我也对其了解更多,有了自己独特的心得体会。在这篇文章中,我将分享我对人工智能的看法和感受。
“人工智能”这个概念,最初问世的时候,随即引起了人们的广泛关注。简单来说,人工智能就是机器和程序模拟人类智能和决策能力的技术。它能够学习、推理、识别、理解语言和解决问题,甚至能采取自我适应和发现新的算法来解决问题。可以说,人工智能在技术、工作、生活等方面受到了越来越多的应用和重视。
自从人工智能概念提出以来,人们一直在追求深度学习和人工智能算法的进步。然而,人工智能面临的一大挑战是数据是以人为中心的,也就是说,机器和程序都是通过人类所编写和提供的数据进行训练和学习的。同时,人工智能也带来了无限的机遇。人工智能可以改变我们的生活方式和工作方式,让我们更加方便和快捷地完成各项任务,从而提高了人类的效率和生产效率。
人工智能已经渗透到了各个领域,如医疗、金融、教育、交通、制造和农业等。例如,医疗领域的人工智能算法可以帮助医生进行影像识别,并为临床决策提供有用的数据和建议。另外,人工智能还可以帮助我们完成各种任务,比如语音助手、自动驾驶汽车和货运无人机等,可以节省时间和提高效率。
人工智能已经促进了人类的进步,未来人工智能将会进一步发挥其巨大的潜能。预计到2035年,全球人工智能市场规模将达到1500亿美元。可以预见的未来,人工智能将进一步革新传统产业,推动数字化经济的发展。同时,人工智能也会带来更多的工作和机会,创造出更多惊人的进展,为人类的未来带来无限可能。
总的来说,人工智能的进步和应用对我们的生活产生了大量的影响。每个行业都在变得更加智能,并适应人工智能的技术和应用,使其变得更加高效和智能。但是人工智能不是一种解决所有挑战的万能药,它依然需要技术和规则的完善,进一步的发展也需要人类进行更多地探索。我们应该保持敬畏之心,在人工智能的应用过程中,合理地发挥其好处和优势,并控制其可能的风险。
结论:
人工智能带来了深远的影响和重要的进展。通过理性和科学的方法,我们可以不断改善和提升人工智能技术,并使其更好地服务于人类社会的各个领域。我们应该充分认识到人工智能的潜力和意义,努力实现人工智能和人类和谐共处,为人类的美好未来做出贡献。
人工智能(ArtificialIntelligence,简称AI)作为一项新兴技术,其应用领域不断扩大,引发了许多争论。参与人工智能辩论的过程中,我不仅对于人工智能技术有了更深入的了解,还对于其中的争议有了更加全面的认识。在辩论中,我认为,我们不仅要追求技术进步,更要关注其对人类社会、个人权益和伦理道德的影响。通过这次辩论,我得出了以下几点心得体会。
首先,人工智能技术能够为社会带来巨大的进步和便利。在人工智能辩论中,我了解到很多人工智能技术已经成功应用于医疗、交通、金融等领域,并为人们的生活带来了便捷和效率。例如,智能医疗设备可以提供精准的诊断和治疗方案,大大提高了医疗水平;自动驾驶技术使交通更加安全和便利。人工智能技术的发展,无疑将为人类社会带来更多的进步和发展空间。
其次,人工智能的发展也带来了一些问题和担忧。一方面,人工智能技术在取代人类工作岗位和导致失业问题上引发了争议。例如,自动化生产线取代了许多工人,使得一些人失去了工作。另一方面,人工智能技术的普及和应用也引发了对于隐私和个人权益的担忧。例如,人脸识别技术是否会侵犯个人隐私?算法偏见是否会导致不公平的结果?这些问题需要我们更加深入地思考,并寻找合适的解决方案。
第三,人工智能技术的发展需要伦理道德的引导。在辩论中,我意识到人工智能技术的发展不仅需要科学和技术的支持,更需要伦理和道德的引导。我们需要建立起相应的伦理框架和机制,以确保人工智能的发展不会对社会和个人产生不利影响。例如,在自动驾驶技术的应用中,我们应该建立起相应的道德准则,确保其运行不会伤害他人利益。
第四,教育和媒体在人工智能辩论中起着重要的作用。在人工智能辩论中,我发现很多人对于人工智能技术有着片面和不足的了解,并且对于其中的风险和挑战缺乏认识。因此,我们需要加强教育和媒体的普及,提升公众对于人工智能技术的了解,并提供相关的信息和解析。只有在公众有充分的了解和认识的情况下,我们才能更好地与人工智能技术共同发展。
最后,人工智能是一项不可逆转的趋势,我们需要积极应对挑战。无论我们是否认同人工智能技术的发展,它已经成为了社会发展的不可逆转趋势。在辩论中,我明白了我们需要积极地面对人工智能带来的挑战,而不是盲目地抵制或回避。我们需要利用人工智能技术为社会创造更多的福祉,同时也需要更好地调整和应对人工智能对于个人权益和社会制度的影响。
总之,通过人工智能辩论,我对于人工智能技术有了更全面的认识和理解。人工智能技术不仅有着巨大的发展潜力,也带来了一些问题和挑战。我们需要明确人工智能发展的目标,建立起相应的伦理和道德框架,发挥教育和媒体的作用,积极应对人工智能的挑战。只有这样,我们才能更好地发展和利用人工智能技术,为人类的社会进步和福祉作出贡献。
李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。
近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。
下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。
人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了vr、ar等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的.热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。
人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。
人工智能简称ai,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5g技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的.着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。
在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:
第一教材的缺乏,
第二师资的缺乏,
第三课程实施的场地缺乏,
第四怎么教的问题。
分为三个阶段:
第一阶段大班stem基础教学,
第二轮实践教学建立社团校队,
第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。
首先,自由意识是受者的感受,如果你于一台放在黑屋子里的机器一直对话,并一直以为对方是人,那么,便可以说它或具有自由意识,这也就是所谓的人工智能初期想要达到的效果。
辐射的世界不缺机器人,他们能胜任不同的工作,有的单一,有的复杂,甚至有的还貌似发展出了自己的个性,那么他们是不是具有自我意识的人工智能呢?在辐射宇宙中,这些机器都是编程的产物,程序模拟的思维,和学习方式,并不能和ai(人工智能)比,这就好像要拿把小黄鸡说成是人工智能一样。
个性化最明显的是巧手管家,因为要服务的是人而不是机器,所以良好的用户交互是必要的,这也就是为什么,3代的巧手管家会讲笑话,但却有些生冷。四代中的机器人管家会搞不清真实状况,但却一直能记得猪脚一家,船长是宪兵机器人,但却有一套语言系统,这些机器人会很有个性,然而归根结底,都是程序员的功劳,仔细看,他们都有一个特点,就是对周遭的大变迁不以为然,那是因为它们多是战前的产物,所谓的程序模拟学习,逻辑是固定的,并不能和自由意识挂钩。
2.合成人与机器人的区别。
很多人都知道合成人出自学院,但其实机器是大多也是,机器人在战前便已经开始批量生产,而合成人的诞生,或多或少是学院对人类失望的结果,他们分为3代,最原始的和机器无差别,之后,有了合成皮肤,甚至是血肉,这都是因为我开始提到的那个自由意识的定义,也就是所谓的图灵测试,如果受者认为他是个人,那么它就具备了所谓的自由意识,可见,它与编程了服务于人类的机器人的设计创造理念本身就是不同的,在辐射的宇宙中,真正具有自由意识的机器是解开代码枷锁后的合成人,而机器人只是人类的工具而已,这也就是为什么废土客一般都会信任机器人,或者开枪就好,不会咒骂他们,因为没有人会对手中的工具有过多的感情纠葛,而从人类的进化史上看来,每一次更强的自由意识的诞生,都伴随着一个相近但较低智慧的群体的灭绝,智慧性自由意识,意味着威胁。
之后再看看,为什么说机器人的希望只是场梦?
老宪法号是美国服役过的,依旧能够航行的,最受人尊敬的`海军战舰,可以说是美国的爱国标志之一。
并存在于自由之经的“绿色"旅游线路之上,是波士顿的骄傲,之所以机器人背后的程序员会基于某种方式,保护宪法号,并让她升天,更多的是希望能再一次的点燃人们的爱国情绪,然而今日的废土,势力割据,每个都有自己得信仰,能记得宪法号所象征的自由与自豪的,除了几只尸鬼外,还会又有几个人。
执着的是程序,但选择关机否的,确实只能是人类自己,梦很美,但已经时过境迁了。
b社对《辐射4》充满信心销量将超《上古卷轴5》。
对于即将在2015年11月10日发售的《辐射4》,bethesda是绝对的信心十足,其营销副总裁在接受外媒采访时甚至表示游戏的销量会超越《上古卷轴5:天际》。
petehines表示:“我认为《辐射4》的销量将会突破《上古卷轴5:天际》,这是一款更加壮观的rpg游戏,出色到无法形容,我的工作是负责推广这款游戏,而游戏自身将决定它能够走多远,能造成多大影响力,这些目前都是不确定的,因为《上古卷轴5:天际》的影响力的确很大,但我们对《辐射4》有信心。”
《上古卷轴5:天际》的全球销量超过2000万份,是rpg界的一个奇迹,首先让我们看看《辐射》系列近期作品的销量,《辐射3》销量为920万套,《辐射:新维加斯》为750万套,前两作的销量已经不错,相信凭借玩家多年对于游戏的期待,游戏大卖是毫无疑问的,但是否能够达到2000万还有待时间为我们公布答案。
《辐射4》是否能击败《老滚5》?
bethesda称《辐射4》好到无法形容销量要创新高。
对于即将在2015年11月10日发售的《辐射4》,bethesda是绝对的信心十足,其营销副总裁在接受外媒采访时甚至表示游戏的销量会超越《上古卷轴5:天际》。
petehines表示:“我认为《辐射4》的销量将会突破《上古卷轴5:天际》,这是一款更加壮观的rpg游戏,出色到无法形容,我的工作是负责推广这款游戏,而游戏自身将决定它能够走多远,能造成多大影响力,这些目前都是不确定的,因为老滚5的影响力的确很大,但我们对《辐射4》有信心。”
《上古卷轴5:天际》的全球销量超过2000万份,是rpg界的一个奇迹,首先让我们看看《辐射》系列近期作品的销量,《辐射3》销量为920万套,《辐射:新维加斯》为750万套,前两作的销量已经不错,相信凭借玩家多年对于游戏的期待,游戏大卖是毫无疑问的,但是否能够达到2000万还有待时间为我们公布答案。
看完这部电影后,我的感触颇深。不仅是为人类在人工智能方面的伟大的研究所折服,更是因为那让我眼睛湿湿的机器人戴维与人类母亲之间的爱,不禁让我产生过“它还是机器人吗?”这样的想法。
人工智能一直处于计算机技术的最前沿,它是研究、开发用于模拟、延伸人工智能的理论、方法、技术及应用系统的一门新的技术科学。就像在影片中david的出现主要是为了填补将要崩溃的母亲monica心中对身患绝症的儿子的空白一样,人工智能不仅仅能满足人类物质生活上的需求,在未来的发展过程中,更有可能像影片中一样,帮助人们填补情感上的空缺。
我认为未来智能信息处理对人类生活的影响必然是有利有弊的。
有利的'一方面,正如现在我们现在运用在空间站及军事领域的一些成果,它可以帮助我们去勘探未知星球,把精准的数据传递回来,供人类研究,避免人类探测所造成的不必要的损失。在军事上,人工智能能大大增强一个国家的军事战斗力量,减少不必要的人员伤亡,同时,高科技以及人工智能的应用能够最大程度地缩短战斗时间。在人类的生活方面,以人工智能为代表的机器人能代替人做日常生活的琐事,使人的生活更舒适,安逸。就像是电影里的david,他甚至可以代替真正的孩子安抚人们受伤的心,给人一个新的开始。
弊的方面就是如我们所看到的电影中的情节一样,人们会担心自己生产出来的机器人会不会随着智能水平的提高而反过来统治我们。
好像机器人的出现就是为了人类最终的消失,我会想机器人会活多少年,人又会活多少年,机器人会越来越多,而人却会生老病死,就像电影中一样,大批量的机器人被生产,然后被送到屠宰场,如果智能的机器人不满足自己的命运,我们又该怎么办?人性本来就有弱点,或者说人类是懒惰的,我们会不会懒到不去清理自己的“杰作”。一切又将是灾难。
另外,难道人类不会害怕,当智能机的智能逐步提高,会不会有那么一天,智能机会就像拍死一只蚊子一样拍死一个人。雨果在一个访谈上说,不会,因为人类会有公约,我也想问,法律对于任何人来说都不陌生,但是犯罪不一样存在吗?公约可以管得住人类那贪图利益的心吗?智能机器人所带来的道德问题也不容忽视,当我看到成批量的david挂在架子上的时候,也禁不住毛骨悚然,怪不得david会动手宰了那个一摸一样的自己。这些都是值得我们思考的。
《人工智能》是很值得反思的一部片子,不论是机器人还是人类,总有一天到我们消失的那天,不要抱着遗憾,爱是可以超越生死的,要把这最宝贵的东西永远留于心中,或许真有那么一天,机器人为了爱而追寻千年,而我们人类却已腐烂殆尽,我们最先懂爱却无法持久无法想象出爱的重要足以使人追寻千年之久。
人工智能能胜任很多工作,但是不擅长需要沟通力或理解力的工作,因为目前还无法研发出能够灵活变通,能理解语言含义的人工智能。比如编程语言必须要规范,计算机才能准确识别,不然就会报错。从反方面来讲,只要人类具备灵活变通的能力,有一定的'沟通力和理解力,以及不被框架所限的创造力等,那就不用担忧未来人工智能时代会被人工智能所取代了。
如果你对人工智能感兴趣,不妨读读这本书,不是科幻类的小说,而是通过人工智能项目理智的分析了人工智能。人工智能既不会代替上帝为我们带来乌托邦,也不会拥有超越人类的能力而毁灭我们,至少目前不会。
今天是我研究人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。
人工智能在很多领域得到了发展,在我们的'日常生活和研究中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。
通过这堂课,我明白了野生智能开展的汗青和所处的位置,它始终处于计算机开展的最前沿。我相信野生智能在不久的将来将会得到更深一步的实现,会创造出一个全新的野生智能世界。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/xindetihui/698638.html