首页 > 范文大全 > 心得体会

长方体和正方体教学设计方案(通用15篇)

长方体和正方体教学设计方案(通用15篇)



计划书需要不断迭代和修正,以适应外部环境的变化和目标的调整。计划书范文的阅读可以帮助我们更好地理解和掌握计划书的要点和技巧。

长方体和正方体教学设计

3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力。

学生准备小正方体(多个)ppt。

1、填空。

(1)()叫做物体的体积。

(2)常用的体积单位有()()()。

2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。

1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)。

2、出示学习目标:

1、回顾“以旧学新”的几何问题研究方法。

以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。

2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。

3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。

4、出示小组研究提示。

(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)。

(2)把不同的长方体的相关数据填入下表(29页表格)。

(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?

6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。

7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3a3读作“a的立方”,表示3个a相乘。

1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)。

2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)。

3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)。

这节课你有什么收获?

v=abh正方体体积=棱长×棱长×棱长。

v=a×a×a=a3。

长方体和正方体教学设计

1、知识与技能:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。

2、过程与方法:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。

3、情感态度价值观:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。

1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!

2、小组合作,利用长、正方形纸板动手制作长方体纸盒。

3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。

生1:长方体有6个面、12条棱、8个顶点。

生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。

生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。

生4:拿着长方体指出它的长、宽、高。

师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)。

师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用"上"、"下"、"左"、"右"、"前"、"后"标明六个面。

师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?

生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。

师:有几组面积相等的长方形?

生:总共有三组面积相等的长方形。

师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)。

师:展开后的每个面是什么形状的?有几个相等的面?

生:每个面是正方形的,有6个相等的面。

师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。

师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。

生合作探究计算方法,汇报如下:(预设)。

生1:我们组列式是6×5+6×5+6×3+6×3+5×3+5×3,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。

生2:我们组列式为6×5×2+6×3×2+5×3×2。我用6×5×2求上下两个面的面积;用6×3×2求出前后两个面的面积;用5×3×2求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。

生3:我们组列式是(6×5+6×3+5×3)×2。我用6×5求出上面;6×3求出前面;5×3求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。

生4:我们组列式是(5+3+5+3)×6+5×3×2。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;5×3×2求的是左右两个面的面积。最后再求出它们的和。

生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:6×3×4+3×3×2,我用6×3×4求的是上下、前后四个面的面积;用3×3×2求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。

师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。

师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。

生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长×棱长×6。

1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。

2、生独立计算。

3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)。

简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。

2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)。

3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)。

师:这节课你有什么收获?

长方体和正方体的体积教学设计

义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。

学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。

2.培养学生实际操作能力,同时发展他们的空间观念;

3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

探索长方体体积的计算方法。

挂图,若干个1立方厘米小正方块

1立方厘米的正方体16块

一、创设情境,揭示课题

1、实物引入

上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?

根据学生回答,其他学生也动手摆。

如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。

再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。

2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)

二、猜想验证,探究新知

1、提出猜想

你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。

长宽 高正方体个数体积

长方体1

长方体2

长方体3

长方体4

请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。

学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。 引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。

(板书:)长方体的体积=长×宽×高。

2、验证猜想

用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。

1、长4厘米,宽1厘米,高1厘米。

2、长4厘米、宽3厘米、高1厘米。

3、长4厘米、宽3厘米、高2厘米

那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。

你是怎么摆的?体积是多少?和我们之前的猜想一样吗?

7×4×3=84立方厘米,所以它的体积就是84立方厘米。

3、概括公式

v=abh

长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

学生汇报:

因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

出示正方体,出示公式。

强调写的时候,3要写在a的右上角,并且要写的小一些。

小训练:完成例2,在练习本上完成,集体订正。

三、巩固应用

计算下面长方体和正方体的体积。

1、长9厘米、宽6厘米、高5厘米

2、长0.5米、宽2.5米、高0.8米

3、棱长6分米

四、课堂小结

这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?

长方体和正方体教学设计

1.通过观察、猜想、操作、想象、推理、探索等数学活动,自主探索长方体、正方体关于面、棱、顶点的特征,理解长方体长、宽、高的含义。

2.立足想象与操作,自主探索并发现长方体顶点、棱、面之间的关系,理解长方体和正方体的关系。

3.在自主探索长方体和正方体特征的过程中,培养学生的空间观念和推理能力。

把握特征,培养空间观念。

空间观念的培养。

课件、模型、搭长方体的材料等。

师:同学们,今天老师给大家带来了很多的数学图形,你认识它们吗?(认识)。

师:那这个图形叫什么?这个呢?这个……。

师:在这些图形里,你能分辨哪些是平面图形,哪些是立体图形吗?(能)。

师:你上来试一试。请将是平面图形的拖到左边,是立体图形的拖到右边。

师:同学们,他做的对吗?(对)。

师:很好,今天,我们就一起进入立体图形的世界,更深入的认识一下长方体和正方体。(板书课题:长方体和正方体的认识)。

师:同学们,你们在生活中见过哪些物体的形状是长方体或正方体的?

师:我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。

2.认识长方体。

师:我们先来认识一下长方体。请同学们看,在长方体中,老师手摸得这些平平的地方叫做长方体的面,然后面与面相交的这条线就叫做长方体的棱,三条棱相交的这个点叫做长方体的顶点。

师:同学们的桌上都有一个长方体的物体。接下来,请同学们带着下面这些问题摸一摸你的长方体。

(1)长方体有()个面。

(2)每个面是什么形状的?

(3)哪些面是完全相同的?

(4)长方体有()条棱。

(5)哪些棱长度相等?

(6)长方体有()个顶点。

师:你们有答案了吗?我们一起来看一下。

师:通过刚刚的活动我们知道了:长方体一般是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。

3.制作长方体,认识长、宽、高。

交流:

师:同学们,刚刚我们初步认识了长方体,你们想亲自动手用小棒做一个长方体吗?(想)。

师:那想要搭成一个长方体,需要几根小棒呢?(12根)。

师:为什么是12根?

师:给你12根一定能搭成吗?

学生思考并回答。

操作:

师:同学们想好了吗?我们一起来试一试。

出示任务要求:

(1)选择其中的一种方案,小组合作搭一个长方体。

(2)进一步思考其他方案可不可以搭成,为什么?

(3)思考在搭长方体的过程中自己的发现。

学生操作。

反馈:

师:同学们完成了吗?请问哪些方案不能搭成长方体?

方案2。

师:这些方案都用了12根小棒,为什么唯独2号方案不可以搭成长方体?

预测1:2号方案黄色小棒不够了,而蓝色的多了一根。

预测2:每种长度都应该是4根才够,否则搭不成。小结:长方体有12条棱,分成3组,每组都是4根。

预测1:每种长度都有4根。

引导学生指一指模型并板书:分成3组,每组4根。

预测2:长度相同的4根小棒,放在相对的位置。

板书:位置相对。

预测3:每组相等的小棒,都是平行的。

师:(利用模型引导学生观察)水平面相对的棱互相平行;

垂直面相对的棱互相平行;

侧面相对的棱互相平行。

预测4:每个顶点上有3条长度不等的棱。

师:同学们,请看模型。老师把长方体的前面和后面拆下来看一下,我们会发现它们的长与宽都是用的一样的小棒,所以前面和后面是一样的长方形,同样的道理,左边和右边是一样的长方形,上面和下面是一样的长方形。我们再一次发现长方体有6个面,并且相对的面大小相同。

师:接下来,我们来看一下方案3搭成的长方体,哪些同学是用方案3搭的?

师:(出示方案3)这个长方体与与用方案1搭的长方体相比,有什么特别之处吗?

预测:方案1搭的长方体6个面都是长方形,方案3搭的长方体有2个面是正方形。

师:是的,这是方案1的长方体,我们可以将它怎样变化,得到方案3搭的长方体呢?(课件演示)。

师:再进一步思考,我们能不能继续把这个长方体变成正方体呢,有什么办法?

学生反馈,师动态演示。

师:(展示方案4所搭成的正方体)正方体与长方体相比有什么相同,什么不同?

师:根据你们的回答,老师画出了这幅图,这个图是什么意思?在以前学习中有没有这样的图?(出示长方形与正方形的集合图,体会两者关系。)。

师:其实,正方体是长、宽、高都相等的特殊的长方体。

长方体和正方体教学设计

2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。

掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。

每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。

(一)、创设情境。

师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)。

师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)。

师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?

生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。

师;看来同学们都是生活中的.有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)。

(二)、认识特征。

1、师出示长方体模型。

师:(师拿模型)关于长方体,你还知道些什么?

生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)。

师:再看一看两个面相交处有什么?

生:有一条边。

师:我们把两个面相交的这条边叫做棱。(板书:棱)。

师:请同学们看一看三条棱相交处有什么?

生:尖。(或点)。

师:三条棱相交的点叫做顶点。(板书:顶点)。

师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。

学生按要求摸一摸。

生:长方体有6个面。

师:你们同意吗?谁来说一说你是怎样数的?

生1:我是转圈数,再数左、右两边的两个面,共6个面。

(边说边演示)。

生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。

(边说边演示)。

生可能回答:

生1:这6个面都是长方形。

生2:上、下两个面大小相等。

生3:左、右两个面大小相等。

生4:前、后两个面大小相等。

生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)。

学生同桌合作交流并集体汇报:

生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。

生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。

师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。

下面我们来看一下大屏幕,(师用课件演示)。

通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)。

师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。

3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?

生:8颗珠子。

师:这些珠子就是长方体的(顶点)。

师:那么长方体有几个顶点?

生:长方体有8个顶点。

师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。

师:再数一数这个长方体用了几根小棒?

生:用了12根小棒。

师:这些小棒就是长方体的(棱)。

师:谁来说一下长方体有几条棱?

生:长方体有12条棱。

师:长方体的棱有什么特点?

生1:这12条棱可以分成3组,相对的棱长度相等。

生2:这12条棱可以分成3组,每组4条棱长度相等。

师指名一生到前面演示。

(师用课件演示说明)。

师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。

4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)。

学生观察,讨论。

5、师:谁来说一说正方体有哪些特征?

生1:正方体也有6个面,6个面都是正方形的。

生2:正方体所有的面完全相等,

生3:它有12条棱,所有的棱的长度都相等。

生4:有8个顶点。

师:同学们真聪明,下面咱们一起来看大屏幕。

长方体和正方体教学设计

教学内容:

人教版教材数学五年级下册29页到30页教学目标:

1、探究、推导长方体和正方体体积的计算公式

2、理解掌握并运用长方体和正方体体积公式解决实际问题

3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力

教学重点:

理解掌握长方体和正方体体积的计算公式

教学难点:

长方体和正方体体积公式的推导

教具准备:

学生准备小正方体(多个)ppt

教学过程:

1、填空

(1)()叫做物体的体积。

(2)常用的体积单位有()()()

2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。

1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)

2、出示学习目标:

(1)探究总结长方体和正方体的体积的计算方法

(2)运用长方体和正方体体积的计算公式解决实际问题

1、回顾“以旧学新”的几何问题研究方法

以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。

2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。

3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。

4、出示小组研究提示

(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)

(2)把不同的长方体的相关数据填入下表(29页表格)

(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?

6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。

7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。

1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)

2、一块棱长30厘米的正方体冰块,它的`体积是多少立方厘米?(33页第9题)

3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)

这节课你有什么收获?

板书设计:

长方体和正方体体积

长方体体积=长×宽×高

v=abh正方体体积=棱长×棱长×棱长

v=a×a×a=a3

长方体和正方体教学设计

2、通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和长方体表面积计算方法,培养学生的动手操作、观察、抽象概括、探究问题的能力和初步的空间观念。

3、使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

理解长方体、正方体表面积的意义和掌握长方体表面积计算方法。

确定长方体每一个面的长和宽。

第一课时。

1、什么是长方体的长、宽、高?

2、指出长方体纸盒的长、宽、高,并说出长方体有什么特征?正方体有什么特征?

同学们,在我们的日常生活中有许多精美的包装盒,工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。

板书课题“长方体和正方体的表面积”:当你看了课题以后,你想知道什么?

1.初步认识长方体的表面积。

2.初步认识正方体的表面积。

请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。

深化主题。

1、探索活动:长方体的表面积。

2、集体研讨:学生归纳,

老师板书:长方体表面积:长×宽×2+长×高×2+高×宽×2或:(长×宽+长×高+高×宽)×22。出示例1做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。

3、小结:计算长方体的表面积,关键是要正确找出3组面中每个面的长和宽。同学们真爱动脑筋,我们计算时可以选择最简便的算法。

4、迁移:把高0.4米改为0.5米,怎样计算?学生讨论,交流汇报:

这是一个特殊的长方体,有两个相对的面是正方形,四个完全一样的长方形(只列算式不计算结果)。

勇闯第二关:智力冲浪园。

教后反思:

长方体正方体的表面积教学设计

长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。

1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。

2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)。

(有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)。

师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。

我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。

1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)。

2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)。

3、教学例3。

1、鱼缸缺少哪个面的玻璃?(上面)。

2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的.两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽x高前面=长x高底面=长x宽)。

3、指名学生板演,集体订正。

学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。

学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。

说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。

书p42页练习二的第一、二题。

(要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)。

课后反思:

在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。

在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。

改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。

教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。

长方体和正方体的表面积教学设计

并能运用所学知识解决一些实际问题 。

2、在探索学习中建立初步的空间观念,发展初步合情推理能力量。

3、培养学生的动手操作能力和共同研究问题的习惯。

4、通过亲身参与探索实践活动,去获得积极的成功的情感体验。

5、体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。

教学重点:长方体表面积计算的基本思路和方法。

教学难点:根据长方体的长、宽、高 ,确定每个面的长、宽是多少。

师:长方体表面积展开教具。

生:用附1、附2做成的长方体、正方体盒子、剪刀、尺。

生1:什么叫长方体、正方体的表面积?

生2:怎样计算长方体、正方体的表面积?

1、分组操作,探索长方体或正方体表面积的含义、并建立它们的联系。

组织学生展示不同的展开图。

大家知道展开前长方体的每个面在展开后是哪个面吗?现在大家在没剪的那个盒子上分别用上、下、前、后、左、右标明6个面,然后与剪开的那个作个对比,在展开图上标出6个面。

师:长方全或正方体6个面的总面积叫做它的表面积。[板书课题]

2、探索长方体表面积的计算

(2)看教材上的立体图形思考后填书,全班展示不同结果。

比较上面两种解法有什么不同?它们之间有什么联系?

师:两种方法都是正确的,利用乘法分配律可以把第一种列式变成第二种,第二种方法可以命名大会计算简便些。

3、大胆猜想、动手测量、探索正方体表面积的求法

师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

生谈自己的计算方法。

师:利用正方体学具快速计算它的表面积。

生说想法。

1、读书质疑

师:关于长方体和正方体的表面积怎样计算大家还有问题吗?请仔细阅读教材,有问题提出来。

2、灵活应用所学知识。

(1)测量并计算牙膏盒的表面积

师:出示长方体牙膏盒,能计算出它的表面积吗?

生:齐声回答“能!”过了一会说:不能。师:为什么?

生:因为不知道每个面的长和宽各是多少?

师:对!要想求出牙膏盒的表面积需要量出几个数据?分别是长方体的什么?

生:需要量出3个数据,分别是长方体的长、宽、高。

师:请拿出学具袋中的.牙膏盒,帮助工人师傅计算一下制作一个这样的牙膏盒至少需要多少纸板?生:列式(略)。

(2)测量并计算长方体药盒的表面积

师:拿出你准备的长方体药盒,计算出制作一个这样的药盒至少需要多少纸板?测量后你发现了什么?(特殊长方体)

生:我发现长方体药盒的宽和高是相等的,所以是一个特殊的长方体。 生:列式(略)。

生:列式(略)。

师:请拿出学具袋里的火柴盒,分别求出内槽和外壳的表面积。

这道题有点难,同学们可以共同研究一下解决的办法。

生:汇报计算方法(略)。

1、p36第1题,只列式,不计算。

2、p34做一做。

师:在实际生活中,有时不需要计算长方体6个面的总面积,只需要计算出其中几个面的面积。究竟要计算哪几个面的面积,需要根据具体情况而定。

学生独立列式,集体订正。

3、p36第2题

方法指导:先确定一个面做下底面,写下“下”,然后想象折叠的过程,折叠一面确定一个出它是哪面,就在此面标上相应的文字,如果定为是右面,就在此面标上“右”。最后如果能不重复不遗漏的在六个面上分别标上上、下、前、后、左、右,那么这个展示图就能折成正方体,否则就不能。如果学生想像判断困难,可让学生在纸上画出这些展开图,再剪下来,动手折一折。

师:通过这节课的学习你有什么收获?

《长方体和正方体的表面积》教学设计

教学内容:

教学目标:

3.培养学生分析能力,发展学生的空间概念。

教学重点:

教学难点:

教具运用:

教学过程:

一、复习导入。

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

板书设计:

长方体和正方体的表面积的教学设计

作为一名教职工,往往需要进行教学设计编写工作,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?以下是小编为大家整理的长方体和正方体的表面积的教学设计,仅供参考,欢迎大家阅读。

义务教育教科书人教版教材五年级下册第三单元第三课时。

2、经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。

3、体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。

应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。

1、课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)。

2、长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的.表面积。板书课题:长方体和正方体的表面积。

(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。

(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。

(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?

(2)汇报:

六个面加起来;

相对的面只算一个再乘2;

(长×宽+长×高+宽×高)×2;

通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。

其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)。

3、教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?

1、按要求计算各长方体各个面的面积和表面积。

(1)全图。

(2)半图。

3、p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。

这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。

《长方体和正方体的表面积》教学设计

二、学生小组合作探究。

如果你们小组有困难可以参考合作提示:

1、讨论,要求需要多少彩纸就是要求什么?

2、怎样求,列出算式,想想,还有不同的方法吗?

3、结合生活实际想想还需要考虑什么问题?

三、交流,汇报。

四、小结,提升。

1、师:要求需要多少彩纸就是要求什么?

每个物体都有表面和表面积,长方体的表面积是指长方体几个面积的总面积?长方体6个面的总面积,叫做它的表面积。

2、师:真能干!把长方体或正方体纸盒的表面展开,看一看得到的是什么图形?把组合图形恢复到原来的长方体和正方体。(课件演示展开、复原全过程)。

学生回答后逐步小结完整:

上面、下面长方形的长和宽相当于长方体的长和宽。

用(长×宽+长×高+宽×高)×2来计算长方体的表面积简便些。

4、在实际生活中我们还需要考虑粘贴部分问题。

五、简单应用。

六、拓展。

1、课件演示,将刚才的长方体抽拉成正方体。

2、学生尝试计算。

3、小结,

师:求正方体表面积都必须知道什么条件?

“5×5”表示正方体一个面的面积。而正方体六个面面积都相等,所以求出一个面的面积后,乘6就得到了正方体的表面积。

七、应用知识,解决问题。

1、口答:一个正方体的棱长是2厘米,表面积是多少平方厘米?

《长方体和正方体的表面积》教学设计

义务教育教科书人教版教材五年级下册第三单元第三课时。

1、认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。

2、经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。

3、体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。

应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。

1、课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)。

2、长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的表面积。板书课题:长方体和正方体的表面积。

(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。

(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。

(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?

(2)汇报:

六个面加起来;相对的面只算一个再乘2;(长×宽+长×高+宽×高)×2;你喜欢哪种方法?为什么?总结公式:长方体的表面积=(长×宽+长×高+宽×高)×2;通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。

其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)。

3、教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?

1、按要求计算各长方体各个面的面积和表面积。

(1)全图。

(2)半图。

3、p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。

这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。

《长方体和正方体的表面积》教学设计

1、教材分析:

浙教版小学数学第十册第一单元《长方体和立方体的表面积》是本单元的第三课时。“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,本课时主要教学长方体、正方体表面积的概念和计算方法。教材先通过把一个长方体或正方体纸盒的6个面展开,帮助学生认识表面积的概念。这样可以把表面积的概念与刚刚建立起来的长方体和正方体的特征很好的联系起来,为下面学习计算表面积做好准备。接着,通过例1教学长方体表面积的计算方法。然后安排“试一试”学习立方体表面积的计算方法。

关于长方体表面积的计算,教材中没有给出计算公式,而是启发学生用不同的方法列式计算,这样安排有利于他们更好的掌握表面积的概念及有关计算,有利于更好的发展学生的空间观念。

2、学习者分析:

长方体和正方体的表面积这部分知识是在学生掌握了长方形与正方形的面积计算,并对长方体与正方体的特征有了初步认识的基础上进行教学的,即学生已经明确了长方体与正方体都有6个面,而且长方体相对的面的面积相等,正方体6个面的面积都相等的基础上教学的。计算长方体和正方体的表面积在生活中有广泛的应用。通过这部分内容的学习,还可以加深学生对长方体和正方体特征的的理解,发展他们的空间观念。

二、教学目标及重难点。

教学目标:

3、培养和发展学生的空间观念。

教学重点:

教学难点:

确定长方体每一个面的长和宽。

三、教学设想。

1、创设问题情景,激发学习欲望。

根据本课教材的特点和学生实际,新课伊始,我创设了“纸箱厂要制作一种长8分米,宽2分米,高4分米的长方体包装盒和一种棱长4分米的正方体包装盒.哪种包装盒要用的硬纸板少?”这一问题情景,接着问:“长方体和正方体的哪些地方要用硬纸板?”既激发了学生探究的兴趣,又对“长方体或正方体的表面积”这一概念建立清晰的表象,为学习表面积的计算方法做好充分准备。

2、借助教学媒体,提高学习有效性。

“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,因此在教学中尽可能丰富他们的感性认识,建立清晰的表象。我通过提问“这个长方体的表面积能一眼全看到吗?有什么办法能一眼全看到?”引导学生思考把立体图形得到平面图形。之后由多媒体电脑演示展开过程,要求学生在展开后的图形中找到“上下前后左右”6个面。强化空间观念,增加学习趣味。

在此基础上“提问”:每个面的长和宽与长方体的长、宽、高有什么关系?让学生围绕本课难点问题进行尝试解决问题,而教师只在关键处进行点拨、引导。体现学生的主体地位,培养学生独立解决问题的能力。学生通过自主探索,自己发现长方体表面积的计算方法。但由于学生的认知水平有差异,允许各类学生提出自己的方法,然后通过比较,进而到表面积计算的一般方法,这样可以有意识地结合教学内容体现思维方法,使学生认识到学数学要抓住解题关键,受到恰当的思维训练。

3、适当应用拓展,发展空间观念。

学生在上面问题的解决中都有是凭借实物来完成的,练习部分我先安排了一组判断题,在第三小题中,学生思维的常规得到打破,相对于独立物体而言的,那么对于组合物体表面积又是怎样的呢?我将更多的时间与思考空间留给了学生自己思考,让新知得到了进一步的深化。然后,第二大题安排了看数字算面积的练习,与看图算面积想比较,使学生的思维从具体形象思维向抽象逻辑思维过度。可无论是包装盒实物,还是具体图形、或只是数据的表面积计算,解决的都是6个完整的表面积的计算,可实际生活中的也有不是6个面的表面积计算,那么对于不完整的包装面积又该如何计算?我安排了“如此题改为同样尺寸的无盖塑料盒表面积如何求?”其目的是培养学生应用知识灵活解决问题的能力,这里注重培养学生方法的发散,及解题策略的多样化和最优化,培养学生个性。最后,我考虑到学生的认识不能只停留在感知水平上,还要上升到理性认识。在聪明题中,对于组合物体的包装,我将更多的时间留给学生自己思考,他们以小组合作的方式进行比较、交流,解决问题,发现新问题,这样多方面联系,不仅注意发挥学生的主体地位,还给他们创造了合作的空间。最后引导学生根据计算结果寻找规律,“重叠面多,图形越接近立方体,表面积越小,鼓励学生进一步用这一规律解释生活中的包装现象,使学生明确:对物体进行包装时,要根据实际情况选择合适的材料,要么使包装美观大方,吸引注意,要么简单小巧,尽可能省纸。从而使学生感知,数学来源于生活,应用于生活,增强数学的应用意识。

长方体和正方体的表面积教学设计

教材第24页例1、例2,以及第25~26页练习六第1、2、3、4、6、7题。

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

重点:掌握长方体和正方体表面积的意义。

难点:学会长方体和正方体表面积的计算方法。

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的.棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)

方法三:(上面的面积+前面的面积+左面的面积)×2

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

长方体和正方体的表面积(1)

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=边长×边长×6

本课时主要教学长方体、正方体表面积的概念和计算方法。教材先通过把一个长方体或正方体纸盒的6个面展开,帮助学生认识表面积的概念。这样可以把表面积的概念与刚刚建立起来的长方体和正方体的特征很好的联系起来,为下面学习计算表面积做好准备。接着,通过例1教学长方体表面积的计算方法。然后安排"试一试"学习立方体表面积的计算方法。关于长方体表面积的计算,教材中没有给出计算公式,而是启发学生用不同的方法列式计算,这样安排有利于他们更好的掌握表面积的概念及有关计算,有利于更好的发展学生的空间观念。

相关内容

热门阅读
随机推荐