首页 > 范文大全 > 心得体会

考研数学高分心得体会范文(17篇)

考研数学高分心得体会范文(17篇)



通过总结心得体会,我能够提升自己的思维能力和分析问题的能力。接下来,我们将分享一些成功的心得体会范文,希望能给大家带来帮助。

考研数学

极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。

限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。

四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。

与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;3、渐近线(水平、垂直、斜渐近线);4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。

导数。

求导与求微分每年直接考查的知识所占分值平均在10分到13分左右。常考题型:(1)利用定义计算导数或讨论函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。

的。应该熟练掌握可导、可微与连续性的关系。求导计算中常用的方法是四则运算法则和复合函数求导法则,一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式不变性,利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数。幂指函数求导法、隐函数求导法、参数式求导法、反函数求导法及变限积分求导法等都是复合函数求导法的应用。

导数计算中需要掌握的常见类型有以下几种:1、基本函数类型的求导;2、复合函数求导;3、隐函数求导,对于隐函数求导,不要刻意记忆公式,记住计算方法即可,计算的时候要注意结合各种求导法则;4、由参数方程所确定的函数求导,不必记忆公式,要掌握其计算方法,依据复合函数求导法则计算即可;5、反函数的导数;6、求分段函数的导数,关键是求分界点处的导数;7、变上限积分求导,关键是从积分号下把提出;8、偏导数的计算,求偏导数的基本法则是固定其余变量,只对一个变量求导,在此法则下,基本计算公式与一元函数类似。

导数的计算需要考生不断练习,直到对所有题目一见到就能够熟练、正确地解答出来。

无论是强化阶段还是冲刺阶段希望考生们都能够重视对于一些基本概念、理论的学习和巩固。希望同学们坚持到底,收获属于自己的美丽!

考研数学高分心得体会

对于大部分学生而言,数学在大学课程中都学习过,但是由于在大一时高数学习得较浅,再加上学完时间较长,很多知识点都已遗忘。所以第一遍的基础复习一定要抱着一种重新学习的态度,认认真真重新再把大学课程中学习过的教材复习一遍,把遗忘的知识点一一捡起来。复习时,对于例题和课后习题一定要动手做一遍,多思考多总结做题的思路和方法。

二、稳抓“三基”

数学水平的高低是通过解题来检测的,而基本概念、方法、理论也只有在解题中才能真正理解和巩固。试题千变万化,但其知识点及知识体系却基本相同,考试的题型也相对固定,一般题型都存在一定的解题规律。通过做题可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。

三、理解知识点的实质

数学学习不能死记硬背,死搬硬套。对于每一个知识点,按照老师教授的和自己做题的体会结合起来深刻理解知识点,不能光注重答案。遇到自己实在不会做的题目,不能看看答案解析就完事了,不能认为自己看明白的题目应该就会做了。一定要抛掉答案解析,自己再重新做一遍。只有自己真正会做了,才能理解此题考查的是哪个知识点,该知识点是如何考查的。

四、多总结,勤整理

在学习过程中一定要把自己的心得或体会以标注的形式写在书上或笔记本上。对于一些比较好的例题,尽量挖掘题目的`内涵,这一点很重要,并且要贯穿到整个考研复习中去。或是自己的易错题,易混淆的知识点或概念,可以总结在笔记本上。尤其是在最后的冲刺阶段,考前的半个月,我们可以把前面整理的笔记本认真复习一遍。

五、全面复习考点

对于大纲中要求的考点,要求同学们全面复习到位。不能因为有些知识点是冷点(即考频率不高的知识点或是近年考试中没考过的知识点),就主观断定这个知识点今年可能还是不考,没必要复习了。只要是考纲中出现的考点,我们就全力以赴地复习到位。

1、实战做题寻找感觉

复习完数学基础知识后,可以取一套真题,模拟真是场景进行实战训练。这样,在做题的过程中会有紧张的感觉,能检测自己的基础知识和应试能力,还能帮助有效利用时间。

2、查漏补缺

数学真题由于全面,可以帮助广大考生实际了解大纲要求的知识点,查明自己在哪些地方还没有完全掌握。因此,做完题之后一定要养成总结的习惯,总结错题的原因,题目的考察要点,用到的原理和公式等。

3、制定有效的学习计划

由于做真题得出了学习中的遗漏点,因此,总结错题之后可以适当调整自己的学习计划,使复习更加高效。通常情况下是针对真题中出现的问题,对相应科目和章节重点的进行复习安排。

4、总结循环规律

考研心得体会高分

考研,是很多大学毕业生都会选择的一条路。无论是出于自身的兴趣还是为了找到更好的工作机会,考研都是一个非常有挑战性的过程。在考研中取得高分则更需要付出更多的努力和时间。今天我想分享自己在考研过程中的心得体会,希望能帮助那些想要取得高分的考生更加有效地准备考试。

第二段:了解考试内容。

首先,我认为了解考试内容是备考的第一步。在这个过程中,我们要具体了解考试的考试科目、考试形式、考试时间等等。考试的科目和形式是不断变化和更新的,我们需要及时了解最新的信息。比如,在我考研期间,数学科目的划分和题型发生了很大变化,这让我不得不重新规划我的备考计划。此外,我们还要对考试的难度做一定的了解,并且针对考试内容制定具体的备考计划,以达到高分的目标。

第三段:建立科学的备考计划。

建立科学的备考计划也非常关键。对于考研备考而言,计划是把学习任务合理分配到时间中的关键。我们可以建立一个详细的学习计划表,记录每天需完成的学习任务。在协调学业和生活的过程中,需要保证每天时间准确规划和科学利用。此外,也要注意适度休息,保证身体健康。通过建立高效的学习计划,我们可以在备考期间不断进步,更有可能取得高分。

第四段:善于总结归纳。

备考过程中需要不断地进行总结,以更好地归纳知识点和信息。我们可以通过制定错题本、做笔记等方式,把错误的知识点和题目进行总结,自己进行归纳总结,找出问题,并及时修正。我们还可以通过参加模拟考试和其他考试培训来进一步加强自身知识的掌握和考试技巧的训练。

第五段:坚持和信心。

最后一个秘诀便是坚持和信心。考研是一个漫长而艰苦的过程,我们需要有良好的心态和足够的信心来面对压力。当我们遭遇困难时,不要轻易气馁放弃,相信自己的能力和付出,一定会有回报。同时,在孜孜不倦的复习中,我们需要保持适度的休息和运动,使自己保持状态。如此,我们才能充分发挥自己的潜能,取得高分。

结语:

考研是一个长期的过程,在这个过程中,我们需要不断地努力和往前迈进。通过了解考试内容、建立科学的备考计划、善于总结归纳、坚持和信心等方面的实践,我们可以在备考过程中更加高效地准备考试,为将来的发展打下更加稳固的基础,实现我们的梦想。

数学考研心得体会

作为考研的一员,我们不能忽视数学这个重要科目。这门学科在考研中占比很大,而且贯穿整个考试。那么,如何提高数学成绩呢?我在考研复习过程中积累了一些心得体会,现在分享给大家。

第一段:制定计划,不断练习。

在备考数学时,我发现计划非常必要。首先,我们需要把各个章节内容分配到时间轴上,合理安排时间,努力练习。我推荐选择一本数学较为系统的教材,系统复习所有知识点。考研不只是对各个知识点的梳理和记忆,更是对于知识点的掌握和应用。我们需要不断练习,切换各类题目,目的是熟练掌握知识点,巩固能力,提高解题水平和速度。

第二段:善用网络资源,找到差距。

我们在复习过程中,经常会遇到一些难点和问题。这时候,我们要学会善用网络资源,不断地向外寻求帮助,找到适合自己的解决方法。网络上有许多考研数学的高水平视频、直播以及各种学习资源,如“高数在线”、“考研数学社区”等等。我们通过对照所学资料和参考书,对自己的应试水平及知识点较弱之处进行较深的剖析与思考,找到差距。

第三段:灵活运用方法,提高解题技巧。

数学题目大多数都存在一定的规律,懂得规律,则解题套路灵活掌握,就会事半功倍,考试时举一反三。在学习过程中,我们要尽量学习各种解题方法,根据不同类型题目采取不同的方法。通过多练多思,熟练掌握所有的方法技巧,做到心中有数。同时,我们还要不断增加时间压力条件下快速解题的能力。

第四段:注重基础知识的巩固。

数学有一些基础知识是不可忽略的,对于我们之后的研究生甚至是博士研究,都有着非常重要的意义。我们需要善于总结、归纳所有基础知识,逐一复习,分类训练、分类练习,逐渐达到熟练掌握的目的。

第五段:考试前的心态调整。

在迎接考试的前一天或者前两天,我们需要放松自己,调整状态,从而进入一个更好的状态。拥有良好的心态是非常必要的,做到沉着冷静,在考试入场之前,做好充分的准备工作,查阅一些往届历年的真题,熟悉考试之前的各种流程,提前安排好出门的时间、考场的位置等等,让自己在考试前能够调整自己的状态,使精神状态达到最佳状态,在备考的这段时间能够深入思考考试的内容,从而得到提高。

总之,数学考研并不可怕,关键是在备考的过程中,我们需要保持一种积极的心态,严格按照计划复习、练习,灵活运用解题方法和技巧,注重基础知识的巩固,考前适度放松调整状态。只要我们坚持理性备考,下定决心,相信我们的数学成绩一定能够取得优异成就!

数学考研心得体会

数学考研是众多理工科学生的必修课程,考研数学涉及的知识点繁多,复习起来也很繁琐。然而,通过数学考研,不仅可以提高数学水平,提高自身学术能力,还可以为以后的学术研究奠定基础。本文旨在分享自己的数学考研心得体会,希望给大家提供一些参考和帮助。

第二段:总结数学考研的复习方法和策略。

数学考研复习是一个漫长的过程,需要耐心和毅力。首先,需要查阅各种学习资料,确定好复习的知识点。其次,需要制定一份可行的复习计划,有序地安排复习进度。再次,需要注重练习,考研数学需要不断练习才能掌握正确的操作方法和思考方式。最后,需要掌握好考试的策略,有意识地做好时间分配和命题类型的选择。

第三段:分享数学考研复习中的积极心态。

数学考研的复习是一个困难而漫长的过程,容易让人因枯燥、繁琐而失去信心。在复习的过程中,需要不断调整自己的心态,保持积极向上的态度。可以通过阅读一些成功者的经历,或与同学,老师沟通交流,或者参加一些集体活动,来鼓励自己,强化自信心。

第四段:总结数学考研中的注意事项。

在数学考研中,需要注意许多细节,这些细节可能会影响整体的考试成绩。例如,需要注意文章的阅读时间,注意随机过程等等。另外,需要严格遵守考场纪律,避免违规操作造成不必要的损失。最后,也需要注意考试后的评估和总结,及时纠正一些考试中存在的问题。

第五段:总结并对未来数学考研做出展望。

数学考研不仅可以提高学术水平,更可以增加自信心,帮助自己更好的适应研究生活。通过总结数学考研的心得体会,可以发现复习时的种种不易,更可以发现掌握数学考研的秘诀。希望未来的学子们能够在反思、总结、实践中越来越地成长,不断完善自我,为以后的学术研究奠定坚实的基础。

考研数学高分心得体会集锦

如何用好真题?建议大家两轮,第一轮真题可以按照高学、线代、概率章节做。尽快尽早做。

第二轮近十年真题按照套卷做,三小时能不能完成,遇到困难怎么办?高分学员建议数1数2数3,都要做,只要考纲要求的。试卷之间有差异,只要考卷要求。

对真题要做归纳和总结。

大家如果在真题学习过程当中有困难可以关注数学历年真题经典题、重难点题精解精练。

第二要做12套左右高质量的模拟卷。真题在强化课程当中引用过、老师讲过。做的时候感觉做过吗?但是模拟卷都是全新的。为什么要交错做。真题做一套感觉自己考清华的,做做模拟题信心又没了。模拟卷是打击你的,真题提升你信心的。交错使用效果会更好。

第三不要偏科,不能放弃线代或者概率。特别是概率,一直同学们把概率当做小三,概率永远爬不上去,然后说概率放弃。线代和概率大题很容易把握很容易拿分。所以同学们一定要记住考场上要把会做的题拿下,复习的时候把可能考的题先拿下,千万不要放弃线代和概率。

命题专家2013年到2016年都说了考生分析问题和解决问题的能力比较差,特别是处理概率题的能力很差。你做题是不是可以考虑高学留在最后,今年得分率0.08,不做也无所谓了。

资料舍取,真题是必须的,真题是最核心的,真题两遍不能完成的话,其他资料让位。模拟卷也是,是打击你的,上了考场不至于崩溃。

提高学习效率,一定要独立做题。看懂不等于做出来,看看都懂,一本数学书看得很快,如果我选择我宁愿从第一步独立做到最后。

整理错题本,周一到周五做新题,双休日整理错题。由厚到薄,看需要注意什么。

计算错误照片集,每次拍一张照,考前定期看自己的错误,如果想发朋友圈也可以。所以这是一些提高学习效率的方法。

考研高等数学的重要定理证明。

高数定理证明之微分中值定理:。

这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)0(或0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

高数定理证明之求导公式:。

2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。先考虑f(x)_(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)_(x)在任意点的导数公式。

高数定理证明之积分中值定理:。

该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数a。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的a。

接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数a位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即a为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

高数定理证明之微积分基本定理:。

该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是f(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以f(x)等于f(x)的变上限积分函数加某个常数c。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

考研数学高分心得体会

考研数学安排各阶段复习任务的方法。

资料:

《考研数学辅导书》,在此阶段考生要多练,把这本书上的重要题型练熟练,开拓思路。

巩固提高阶段20__.10—20__.11。

目标:真题巩固。

资料:

《历年真题解析》(做10~15年就够了,要做2遍,第一遍按套题来做)。

《120种常考题型》。

考研数学也是有规律可循的,同学们一定要把握命题规律,研究真题,掌握每章重点题型。

冲刺阶段20__.11—考前。

目标:实战演练,查漏补缺。

资料:

《模拟试题》。

《历年真题解析》。

《120种常考题型》。

在当前强化阶段,希望大家一定要利用好现在的时间,注意考试的细节,调整好心里状态,能够在计算能力以及应试技巧能力上有质的提高。

转变做题方式。

很多文科生做数学题很喜欢:做题(有些人甚至是看题)——不会——看懂答案(或者看不懂)——结束,你是不是这样呢?合适的方法是:做题——不会——把目前能计算或推导的结论写出来,想想还差什么---看一眼答案,有些是一看就恍然大悟——那么就自己再重新算一遍,然后好好总结下为什么刚才没算出来,是方法没遇过还是要经过变形自己没看出来,有时候一道题做不出来答案一看就是种超纲题或者偏题难题,数学三一般考的都是最常见,最基础的方法,所以那些冷门方法一律放弃。

“珍惜自己独立思考解题的机会”

不要老是看答案,这样才能摆脱文科思维。如果只是一味地机械做题,背答案,即使你做了李永乐的全套也还是没用。

复习全书和指南我都用过,但我推荐全书,就数三而言,全书的题更好更全面,其实两本书很多题目都是重复的。不要说复习全书看了3,4遍,这样太笼统,就像我一站时全书做了7.8遍不也只有110左右嘛,我个人觉得2遍为宜,做得太多后来只会记住题目而不是思维方法。我推荐全书2遍后直接上真题,基础差的甚至660也不用做,因为660的题有些比全书还打,直接做数三真题,然后自己薄弱的地方找全书查漏补缺,而不是反复抱着全书死磕,因为你没个重点,以为全书每道题都要掌握。通过做真题,你知道哪些是数三常考内容,哪些不是,你慢慢会发现全书上哪些是有价值的题目,真题做完数三做做数一数二的相关题,然后上模拟卷,模拟卷至少上30套吧,推荐合工大10-13的,李永乐400题,陈文灯的模拟。

模拟题对于文科生的重要性:

首先,很多经验帖不强调模拟题,甚至反对模拟,我觉得这和数学基础有关,正如前文所述。逻辑思维好的同学完全可以做做教材,全书,真题然后考个140+,因为他们数学基础好,他们懂得如何做题。而基础差的同学,像我,可能做个n遍全书仍不得其法。而模拟题或者说真题具有一下全书或者660之类的题集所不具备的几大优势:

1.套题一般都是集中出线常考的知识点,有些套题几乎是真题的翻版,改个数字,而数三真题的最大特点就是来自真题,就像13的数三来自往年数三和数一数二的太多了。所以做模拟就是加强对常考知识点的考核,而不像许多全书不分重点。

2.通过严格掐时间做套题,可以培养你做题的时间优势,对难题有所放弃。今年数三小题难,大题简单,很多人慌了手脚,这就是平时缺乏演练的结果,本人后期保持一天一套题的速度模拟,懂得如何跳过难题,保证计算率,不慌张,可以说考试当天对我来说只是一场模拟,所以我很淡定,要知道基础越差的同学,越是对数学害怕的文科生越是容易在考场紧张!

3.反复看以前做的题容易记住题目本身。许多同学做了7,8遍全书,全书的题都快背出来了,但考场变个型就不知道了,而模拟题很多都是对真题的适当变形,或者自创题,这里强烈推荐合工大的模拟,很接近真题,难度又稍高于真题,我平时合工大模拟130+,结果也是和最终成绩吻合的。

1.

2.

7.

数学考研心得体会

数学考研,对于绝大多数人而言都是一份巨大的挑战,需要经过长期的努力学习才能够顺利通过考试。对于我来说,参加数学考研也是一段充满挑战和机遇的经历,我从中收获了很多的经验和教训,也结交了不少志同道合的朋友,以下是我的数学考研心得体会。

第二段。

在我准备考研的过程中,我主要通过做题的方式来提升数学能力。我通过不断地做题来加强我的记忆和理解能力,同时还可以查漏补缺。另外,我也经常参加线上或线下培训和讲座,以此来获取更多的信息和经验,同时也可以结交更多志同道合的同学。我还通过模拟考试来检验自己的学习成果,这样可以及时调整自己的学习计划和方法。

第三段。

数学考研的科目比较繁杂,需要掌握的知识点也比较多,所以我在准备考试的过程中也付出了很多的努力与心血。对于我而言,我主要通过记忆和理解两个方面来掌握知识点。在记忆方面,我经常使用记忆卡片来帮助我记忆,这样可以加深我对知识点的记忆和理解。在理解方面,我则会通过查阅资料和和其他同学的讨论,来更加深入地理解知识点。

第四段。

对于数学专业来说,数学分析和代数基础是很重要的知识点。在我准备考试的过程中,我不断加强这些基础,同时也在扩展其他知识领域。我尝试了更多的题型和难度,以此来拓宽自己的数学知识面,并为考试做好更完善的准备。此外,我也更加强调细节和逻辑的对接,这样可以提高我的做题能力和解题能力。

第五段。

在考试期间,心态也是至关重要的一个方面。我在考试前会适度地放松自己,以充分调整自己的状态,同时也尽量避免心理担心和压力。在考试中,我也时刻保持冷静和清醒,积极应对题目,并注意时间控制。在考试结束后,我也会及时复盘,并总结自己的考试经验和不足,并制定相应的改进计划,以此提高自己的数学能力和学习水平。

总之,数学考研对于我而言是一份充满挑战和机遇的经验,我从中收获了很多的经验和教训,也结交了不少志同道合的朋友。我通过不断地学习和努力,成功地完成了自己的考试目标,并在这个过程中充分感受到了成长的快乐和满足感。我相信,在未来的人生道路中,我会不断地保持这份努力学习的精神,并通过不懈的努力,迎接更多的挑战和机遇。

考研数学高分心得体会

不分阶段复习是复习无计划的表现,分阶段复习,分清阶段复习重点至关重要。第一阶段为系统复习阶段,结合考试大纲,从头至尾复习,达到记住所有公式、概念的目的。第二、三阶段为强化训练阶段,通过练习,强化能力。

你是否选错了“研友”

数学基础差,没有搞懂基本概念、公式的学生不适合直接上暑期和秋季的强化班。因为不同的班次有着不同的辅导目的,强化班解决不了学生的基础差问题,基础不好的学生上强化班是不会有好效果的。专家提醒考生,强化班的目的在于强化,如果大家的基础不好的话还是参加一些基础课程,毕竟路要一步一步走。

是否只看题不做题。

很多考生在复习过程中会不断翻书,却不肯亲自动笔练习。专家提醒考生,看懂了题不等于就会亲自解题,要以动手练习为主,锻炼好自己的运算能力,否则就会出现正式考试时会做的题而因为运算不过关而拿不到分。

公式是否还没记清。

第二、三阶段为强化训练阶段,以高度综合题为主,是通过大量练习强化公式、概念的阶段,绝对不应该作题时还要不断到书上去查找公式。其实,无论是作同一类型的题目还是作整套试卷,都要总结规律。通过作同一类型试题可以总结考试重点;通过作整套试卷,可以总结答题方法和时间分配方面的经验。

是否只顾闷头作题,不经常交流。

三人行必有我师。交流可以碰撞出思想的火花,少到可以多探讨出一种解题方法,交流的好,可以改变自己的错误观点和坏习惯。可以与同学交流,也可以尽可能找到上课老师交流,谦虚好学,不断总结,不断进步,争取让自己站到分析问题,审视问题的高度。专家认为,这些都也只是一个片面地了解,真正的数学高分就是靠大家认认真真、老老实实的复习,一步一步地总结归纳,将典型题型汇总复习,相信这样就不存在那些错误的学习方法了。

考研心得体会高分

考研是众多大学生们必须要面对的一个考试,如果你想要顺利通过考试并获得高分,就必须要有一定的规划、准备和心态。在我经历了自己的考研之路后,我逐渐发现了一些既简单又实用的方法,能够帮助考生提高自己的成绩,打造自己的考研之路。

第二段:合理的调整自己的状态。

备考期间,为保持强大的运动体魄,你可以选择适度的锻炼让自己的生理状态处于最佳状态,同时还可以鼓舞斗志。合理的饮食和休息方案也非常重要,它们有助于你的身体和精神状态接受新的知识和信息。要排除一切干扰,让自己的注意力始终集中在学习上,如此才能保证学习效率。

第三段:科学制定计划。

必须有一个科学的学习计划,为自己的备考设置目标和时间表。这个过程应该尽可能详细和具体,以确保您每天有一个清晰的计划和行动路线。你需要统计自己需要学习的知识点,然后给自己一定的时间在这些知识点上进行重点学习。有时候,事半功倍,善于做到有效利用时间,合理规划一天的时间也可在考研复习之路上取得重要的一步。

第四段:认真学习反复练习。

在备考的过程中,你需要把课本上的内容认真学习,掌握重点和难点的相关知识。为加强自己的记忆和理解能力,你可以不断回顾重要知识点,结合电子或纸质笔记,让自己更好地消化和理解所学知识。在此过程中,进行反复练习也是非常重要的,通过刷题、考试等方法,考试时自己的信心得以增强,并且不断地提高自己的考试水平。

第五段:良好的心态。

备考过程中,不要过度担心结果,而是要抓住当下一点一滴的学习机会,让自己更好地做好每一个细节。它可以为自己提供更好的心理来源,也可以让自己摆脱紧张和压力。不要复杂化每一个问题。面对考试时间,你应该长期保持积极的心态和自信,以实现自己的梦想和目标。

结论:

以上这些方法并不是灵丹妙药,它们需要考生真正去践行和落实,才能真正取得好的考研成绩。它们需要考生逐步的去实践,学习成绩才能表现出来,一步一个脚印是提高成绩的有效途径。相信只要你按照这些方法,保持良好状态和心态,考研高分不再只是一个遥远的梦想。

考研心得体会高分

考研是众多大学生为了自己的未来而选择的一项重要挑战。对于大多数人来说,考研并不是一件容易的事情,需要付出大量的精力和时间。而在备考过程中,如何取得高分也是每个考生都非常关注的问题。笔者经过长达一年的准备和紧张的考试,终于以理想的分数成功考取研究生。在这里,笔者想分享自己的考研心得和体会,希望对后来的考生有所帮助。

第二段:提前准备。

首先,在准备要学会一步步来,提前规划好整个备考过程。在考研之前,建议考生提早多看一些资料,了解考试内容和形式。根据自己的实际情况和学科要求,确定一个科学的学习计划。在学习计划中,应以每日任务量为基础,规定每天的学习和复习目标,并适当留有时间修整和休息。同时,建议考生在规定任务完成之后,可以多关注一些相关的备考经验和资料,提高自己的备考技巧。

第三段:突出重点。

其次,在备考过程中应注重突出重点。在学习知识过程中,要注意区分每个知识点的重要程度。对于重点和难点部分,考生应特别花费精力和时间进行深入理解和掌握。而对于那些冗余内容,可以适当减少学习量,以便更好地突出重点。此外,在备考期间,也要时刻关注最新的考试动态,重点研究以往的试题,了解考试的出题方向和难易程度。

第四段:多练习。

第三,多进行题目练习。在考研期间,要做好泛读和精读统一对接的拼图式学习,并且要将精力主要集中在做题上。正确的做题方法可以使考生的成绩得到提升。在平时的复习和准备过程中,考生一定要多进行各种难度的题目练习,以适应考试的难度和形式。对于做错的题目和易错的知识点,要及时背诵和整理总结,并且在下一次的复习中能够改正错误。

第五段:冷静应对。

最后,在考试时一定要保持冷静,应对考试。无论是在考场上还是在面对考试成绩的时候,考生都要保持冷静、应试从容。在考场上,要认真阅读题目,仔细审题,确定出题者的意图,从而进行有效的思考和提高作答效率。在面对考试成绩进一步的总结和备考纠错中,要发现自己的不足和成绩提升的空间,为下一步的考研做好更好的准备。

结尾:

总之,考研是一项值得挑战的事业。只有在备考过程中坚持不懈、合理规划、高效学习、冷静应对的准则,才能在考试中获得更好的成绩。通过笔者的经验与教训,希望这篇文章能够为考生们的顺利考研提供一些思考和参考。

考研数学心得体会

从整体来看,今年的试题线性代数部分在数一、数二、数三中的考试内容是一致的,虽然数一没有单独考查向量空间,但与大纲要求也是相符的。今年的线性代数试题整体看来难度不大,计算量也不是很大。其实线性代数最注重各个章节之间的联系,这点我们考研的数学老师在授课的时候一直强调。事实上,今年的线性代数命题人也是按这个思路命制考题的。

我们来看看线性代数的两个解答题,即是数一、数三的21、22题,数二的22、23题。我们先看一下第一大题,这是一道有关线性方程组解的判定与求解问题。此题形式上是一个矩阵方程的问题,并且未知矩阵出现了两次,这在往年的试题中是不多见的。本题的关键是将的元素都设为未知数,利用矩阵乘法将其转化为线性方程组的求解。第二大题考查二次型,其中第一小题很简单,大家可以直接将所给的二次型对三项和的平方展开化简,然后按定义即可将二次型的矩阵写出,写出矩阵也就完成了第一小题的证明;也可以按矩阵乘法将所给二次型表达成矩阵形式,直接从矩阵形式写出二次型对应的矩阵。第二小题主要是利用特征值、特征向量的定义求出二次型的特征值,另外还要仔细观察题目中所给的已知条件,充分利用起来;此外,考生也可以求出与题中正交的单位向量(实际上是证明这个的存在即可),以它们为行向量作正交变换(即),从而可以直接将原二次型中的两个三项和改写成与。本题也考查了二次型的标准形,这里考生只需知道在正交变换下得到的标准形中的系数就是二次型矩阵的特征值即可。

我们再来看看线性代数的三个选择、填空题,即是数一、数三的5、6、13题,数二的7、8、14题。第一题考查分块矩阵的的运算与向量组的线性表示,第二题考查矩阵的相似(这里是实对称矩阵的特殊情况),第三题考查伴随矩阵与矩阵的行列式,考查内容简单明确、覆盖面广,与解答题互为补充。

从今年的线性代数部分的出题情况我们可以看出,线性代数题的难度不大,都是一些基础的知识,但是由于计算比较复杂,极易出现错误,考生因为粗心大意而算错的概率很大。在此,我们给20xx届的考生提出如下建议。

基本概念、基本方法、基本性质一直是考研数学的重点。线性代数的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。

线性代数的知识点是三大科目里最少的,但基本概念和性质较多,他们之间的联系也比较紧密。考生特别要根据历年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:线性方程组的三种形式之间的联系与转换;行列式的计算与矩阵运算之间的联系与差别;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。

大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。

近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。

总之,考生在复习线性代数的时候要注重基础,打好基本功,并结合一些综合性的试题培养自己的分析解决问题能力,加深对知识的理解。一些考生在复习时过分追求难题,而对基本概念,基本方法和基本性质重视不够,投入不足,考研的老师警醒大家这样做是不对的,应该及时纠正。

此外,数学的学习不是看明白资料就行的,必须独立完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法独立解决的问题,应该有针对性地与学友讨论或者请教老师。

考研数学心得体会

(1)通读教材我是跨校跨专业考研的,因此复习得比较早,但考研这一路下来,我觉得数学提早复习是明智的,也是十分必要的。三月份到五月中旬是我选择的通读教材的。很多人推荐的教材是同济大学的《高等数学》、浙江大学的《概率论和数理统计》和清华大学的《线性代数》或者同济大学的《线性代数》。其实我觉得并不一定要使用推荐的教材,尤其对于数学基础不太好的学生来说。因为读一本新书需要建立新的逻辑思维,换句话说就是需要时间来熟悉作者的逻辑和内容架构,有些时候这是很浪费时间和耗费精力的。所以我建议对于那些数学基础不是很好的学生来说,通读自己大学学的教材就可以了,其上的标记和笔记可以使自己较快进入状态,也比较容易建立学好数学的信心。当然对于那些基础好的同学,我还是建议读读推荐教材,同济大学的《高等数学》还是很缜密、很经典的。看教材要做到细致,要对基本概念基本定理有充分的理解,还要弄懂每个定理的证明,我认为这些定理的证明过程对培养缜密的思维逻辑和良好的思维非常有帮助,最重要的是要做课后的练习,课后练习题是对基本概念基本定理最基础的拓展和应用。当然,说到这儿,一本全面细致的教材课后习题答案就成为必备了。这里想插一个小例子,我的一位室友是十月份才开始考研的,那时时间已经很紧了,她也没买什么复习资料,只是把她学的教材仔仔细细看了五遍,又看了一遍复习指南就上考场了,结果也考了150,这让我十分佩服,当然她的数学基础很好,而且这种方法是很难效仿的,但起码说明了精读教材真的很重要。

(2)选好基础习题集经过两个月至三个月的精读教材,相信不少同学对数学已经颇具感觉,这时候需要用做题来巩固这种感觉才能加深对概念定理的理解,使数学解题能力再上一层。在这个阶段,我认为练习题不能过难,否则会极大打击前一个阶段建立的信心,但过于简单又无法领悟研究生入学考试数学科目的难度。在这个阶段我选择的习题是《复习指南》,也有一些人推荐李永乐老师的《复习大全》,但由于我没有读过所以不敢妄加评论,只说一下对《复习指南》的看法。有些人说《复习指南》的解题方法太注重技巧,我没有此种感觉,反倒觉得书中的一些思维定式或者说固定的思维方向对于应试数学非常有用,一直觉得应试数学相对其他科目比较机械,没有什么可以主观发挥的东西,因此只要学会了那种固定的思维方法,应试数学就很容易了。当然,书中的某些题还是挺难的,有些方法如分部积分法的推广公式对于经济类的考生也不需要掌握,因此对于太难啃的题目可以放过,考研题目不会那么难的。但是,总体来说我觉得这本书还是很好的。

我看第一遍《复习指南》的时间在五月中旬至七月上旬,其实看第一遍还是很费劲和痛苦的,速度很慢,有些题目也想不清楚,现在想想如果当时找个学伴,两个人互相督促和交流,效果可能更好些。看第一遍《复习指南》应该注意两点:一是切忌光看不练,书中例题多,习题少,而且习题的答案也不详细,因此最重要的是例题,每道例题都动手做一做,对于巩固所有知识点、提高解题能力是大有裨益的;二是要对不同程度的例题作出标记——有一些很快就能做出来,有些想很久才能做出来,也有些看了答案才恍然大悟,对不同的题要做不同的处理和注释,这样再看第二遍的时候才不至于简单的重复,才能做到有的放矢。

(3)巩固基础、熟悉真题8月份至考研前这段时间,我基本上都是处在不断地通过做题来加强数学解题能力的复习状态中,熟悉真题和大量做模拟题自然必不可少。这里,我想重点说点三个问题:第一,参加考研班的问题。我参加的是文登学校的暑期班,在之前,我已经看完了教材和复习指南的大部分,因此在时感觉颇为轻松。在此期间,也有些考研的朋友向我诉苦说天气太热,上课发困等等,但我却没有相似的感觉,反而越听课越精神,越有成就感,我想这得益于我看过复习指南的缘故吧。因此我建议朋友们在上课之前至少看完一遍复习指南,它会使听课的效果事半功倍。我参加的那个班级的授课老师是黄先开老师、陈文登老师和曹显兵老师,其中黄先开老师讲授了大部分的高数和全部的线性代数,陈文登老师讲授了一部分高数,概率主要是由曹显兵老师讲的。近来也有些师弟师妹问我哪些老师讲得好,其实我觉得这些老师讲得都非常好,只是哪些老师的授课风格更适合自己而已。我很喜欢我选择的这个组合,因为非常适合我,黄老师的授课风格非常严谨,逻辑性也很强,而且讲课中没有一句与数学无关的话,效率很高,也使我受益匪浅。考研班结束后,我的数学笔记记了满满一厚本,在后来的复习中,数学笔记也是给了我很大的帮助,但让我收获的是考研班的气氛给了我很大的压力和动力,让我在那个炎热的夏天振作起来以更饱满的精神投入考研复习中。所以我建议那些觉得自己在考研中途感到疲惫而产生放弃念头的同学报一个考研班,收获的不只是解题技巧,更重要的是动力。第二,模拟题的选择问题。现在大家比较推崇的模拟题主要是四百题和陈老师的模拟题,我只做过前者。凭心而论,四百题真的很难(我最后的成绩也只是在120分左右),以至于我在拿到考研试卷的时候都觉得考研题太简单而不敢相信。这也是我的失误——不该拿四百题做后期模拟题,而应择其为前期模拟题。在复习数学的最后阶段,应该选择与真题难度相近的模拟题。而且要保证天天都做题,这样才会在考试时更快的进入状态。第三,总结自己的错题集十分必要。这一点是我和很多考研战友交流之后得出的结论。在复习后期,将数学笔记和错题集常常拿出来温习成为我周围很多人的习惯。事实证明他们在考研中也取得了很不错的成绩。因此我觉得这种方法也比较值得借鉴。

(二)心路历程。

考研,首先要做的一件事就是坚定信念。其实,在考研过程中,我们会失去一些东西,比如大三暑期一般要去实习的,但如果选择了考研,就有可能不得不放弃实习机会以及错过很多知名企业的宣讲会。但是,我们也会得到许多东西,得到了家人和朋友的鼓励与支持,得到了宝贵的磨练意志的机会,更重要的,得到了未来的发展机会和前途。因此,在权衡是否考研的利弊得失之后,如果你做出了和我一样的,那么就勇往直前吧,不回头也不后悔!

曾经一位师姐对我说她考研的时候,有一天突发奇想,“地球是如何自转起来的呢”,牛顿说过“是上帝踢了地球一脚”,于是她就想“要是上帝踢我一脚该多好啊”。那时她对我说起上面这段话时,我十分不理解她的意思。后来自己成为考研大军中的一员时,才体会了她的心境——无助,还是无助。其实,在考研中,有时候心情是很不平静的,甚至是波涛汹涌的,会因做不出题而沮丧,会因做错题而苦恼,会因效率低而郁闷,会因很多小事甚至是道听途说的传言而彷徨无助。我想对大家说的是,每个人都会面对这样的问题,而非某一个人心理素质不好或是其他。无论怎样的荆棘道路,我们都一起走过;无论怎样的郁闷心情,我们都一起经历;只是我们不曾相识。因此,朋友,不要理会那些不平静的心情,矢志不渝地走下去,成功属于每个为之不懈努力追求的人!

希望以上冗杂的文字能给那些正在斟酌是否要考研的朋友们一点启示,更希望能给已经准备考研的朋友些许帮助。登山则情满于山,观海则意溢于海,相信只要全力付出,每个人都可以实现自己的梦想!

考研数学心得体会

现代社会的竞争如此激烈,本科所学习的知识已远远不能满足社会发展的需要,因此深造已成为每个有志青年的必然选择。除极少数幸运的人可以保研外,大多数人要想继续深造,必然要走考研之路。我大三下学期就决定报考清华大学自动化系模式识别与智能系统专业,“人生难得几回搏”,这是我和家人的梦想,也是我最后一次机会。下面我主要讲一下发挥得比较好的数学学习心得。

(1)通读大纲。大纲发布后,首先通读大纲,了解数学(一)对各类知识点的要求。2003年,大纲对考研初试课程进行了调整,数学满分由原来的100分增加到150分,即在总分没有增加的情况下,数学的分数增加了50%,极大地加大了数学在总分中的分量。而数学由于其自身学科的特点,一直都是“拉分”的科目,即高分考生和低分考生之间的分差比较大,数学成绩往往决定着考研的成功与否。对于英语和政治,大部分理科考生的分数都集中在55分到70分之间,相对来说对总分的贡献不如数学那么明显,因而经常听到“得数学者得天下”的说法,这种说法可能并不那么正确,但却充分说明了数学的重要性。

(2)通读教材。暑假期间,我利用上辅导班的间隙通读了教材,几本比较经典的教材有陈老师本书所提到的陈老师均为陈文灯教授。在课堂上推荐的同济大学的《高等数学》和浙江大学的《概率论和数理统计》,此外同济大学的《线性代数》也相当不错。有很多同学认为读教材是浪费时间,只是埋头做题,结果题目做了很多,但效果并不好。我认为知识点是不变的,变的只是出题的方式和角度,只有对基本概念、基本定理有充分的理解、把握和运用,以不变应万变才是取胜之道。我将教材精读了三遍,定理的证明及课后的习题也已熟练掌握,为考高分打下了坚实基础。在其后遇到模棱两可的问题时,也经常重翻课本。对于像我一样数学成绩一般的学生来说,上数学强化班是非常必要的,而且一定要看完书后再去。因为讲课的速度非常快,许多知识点都是只讲关键部分,一带而过,不看书根本跟不上进度。我非常感谢陈老师,他的讲解深入浅出,言简意赅,总是一语就能抓住题目的关键,使我获益良多,极大地增强了考研的信心。在此对强化班的各位辅导老师致以最诚挚的谢意!

(3)适量做题。大四上学期开学后,课业负担不很重。9月至11月是考研数学复习中最重要和最累的阶段,即在该阶段内要有针对性地适量做题,这个阶段基本就决定了你的考试水平。我推荐陈文灯老师的《复习指南》本书所提到的《复习指南》、《数学复习指南》、《指南》均指陈文灯教授的《考研数学复习指南》一书。和《数学题型集粹与练习题集》以下简称为《题型集粹》。,经过多年的实践考验和不断修正,这两本书已经集考研之大成,成为每个考研学子的必备书。这两本书并不是看一遍两遍就可以的,对于大学数学成绩一般的学生来说,至少应该看三遍,尤其是一些理解得不太透彻的地方,需要反复地研读、揣摩、练习。第一遍是最吃力的,我大约用了一个半月的时间。看第二遍、第三遍的时候速度会快得多,尽管有很多以前不会做的题还是不会,但对题目的感觉强了很多,这样做能为下一轮的复习打下坚实的基础。题目做得越多,往往越能一眼抓住问题的关键所在,有的放矢。在第一遍复习过程中我把曾经做错的和不会做的习题都抄在一个笔记本上,并且随身携带、经常复习,了解自己错误的根源所在,搞清楚问题是出在理解得不透彻,还是思维出现了误区。开始的时候一天能抄30道错题,那自然是非常郁闷的,后来随着水平的提高,一天只有十几道了。这是一个蛹化蝶的过程,很漫长,也很痛苦,希望大家一定要坚持住。

(4)做模拟试题和真题。到了12月份的冲刺阶段,主要任务是做模拟试题和真题。我一般规定自己每天在150分钟的时间内完成一套试题,每次都当成真正的考试,认真地在答题纸上做一遍,做完整套试卷以后严格按照标准答案批改,给自己打分,将所犯错误抄在一个专门的错题集上。将错题再认真地做一遍,这样一天做一套模拟试卷,周末专门拿出一整天来研究错题,查漏补缺。我做的是陈老师出的24套模拟题,全部认真做完。有些题即使做了十遍还是出错,这确实挺打击信心,但人的惯性思维是很难改变的,需要持之以恒的精神和永不服输的态度。真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更需要注意。关于考试时的做题习惯问题,这需要平时的积累。在平时答题时,要注意培养好的习惯,如需根据题意注意是否需要分类讨论,分类讨论的结果最后记住要做一个总结,不定积分的结果不要忘记加一个常数,与实际有关的题不要忘记加单位等等。这些看上去微不足道的地方,都可能导致你的失分,如果是填空题,那就一分得不了了,被扣这样的分数是很冤枉的。随着“考研热”年年升温,竞争也越来越激烈,特别是大学的热门专业,就像今年我报考的清华自动化系仅招收41人,报考的人将近800,录取比例是20∶1,其中的热门专业更是远高于这个比例。一分的差距可能决定你录取与否,为了自己的理想,应该每分必争,不放弃任何成功的机会。

最后,谈谈关于考试的心态调整问题。考研与高考不同,并不是每个人都考。随着考研日期的一天天逼近,看到已保研和找到工作的同学整日悠闲自在,自己却早出晚归,累得头昏脑涨,心理不平衡是难免的。但转念一想,世上没有免费的午餐,只有付出才会有收获,“走自己的路,让别人说去吧”,心情自然就会平复下来。还有一些同学复习的效果不怎么好,就怨天尤人,对自己失去信心,最终放弃了考研,放弃了改变自己命运的机会。其实,考研并没有像大家认为的那么难,基础题还是占多数的,如果将会做的题全都做对,及格还是不成问题的。我们的宗旨应该是“抱的希望,付的努力,做最坏的打算”。要有一定的压力,但不要太大,要将压力转化为动力。尽自己的全力,但求无愧吾心。在临场考试中,一定要细心冷静,沉着应对,由易到难,该放弃时就放弃,不要寄希望于超水平发挥,毕竟能超水平发挥的人可谓是少之又少。

关于复习的时间与效率问题。我认为数学不是拿时间来“堆”的。数学来不得半点马虎,如果开始做错,那下面完全是徒劳的。复习数学需要清醒的意识和缜密的思维,而二者都需要在头脑清楚的时候才能够做到。每个人的兴奋时间不一样,我是在上午比较清醒,所以上午我集中精力学习3小时的数学,花费了时间一定要有所收获。其实我每天的学习时间并不很长,只有8小时左右,否则保证不了效率。我认为考研最重要的不是每天学习了多长时间,而是学到了什么,是否能持之以恒地坚持下去。在下半年的时间里,除特殊情况外,我基本上没有周末和节假日,每天的作息时间非常有规律,不给自己任何偷懒的机会和理由。

希望我的体会能使大家少走一些弯路。考研对每个人来说都是一件很不容易的事情,也是人生的一个重要分岔口,我们应该珍惜并把握住这个机会。结尾的时候,以蒲松龄的自勉联“有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。”与广大考研的战友们共勉,祝愿大家在2005年的考研过程中,能实现自己的梦想!

高分数学考研心得

无穷级数:傅里叶级数;。

微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。

以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。其中:

多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,2017年考查了第一型曲面积分及投影曲线,散度旋度常见于小题。

无穷级数中的傅里叶级数考过解答题也考过小题,31年考研试题中考过4次大题,6次小题。

多元函数微分学中考点常见于小题,切线和法平面,切平面和法线尤其喜欢出填空题,隐函数存在定理考过选择题。

微分方程中可降阶出现频率较高,常在微分方程的应用题中出现,欧拉方程单独直接考查出现过1次。

一元微分学中的曲率常见于小题如选择题填空题,隐函数求导属于常考题型,是一种计算工具,常与其他考点结合考查,如与极值、拐点相结合。

考研数学心得体会

数学经过前一个阶段的强化复习,对各个知识点都有了大概的了解,但由于知识点分散、涉及面广而多,学员们通常是看到哪,前面部分又忘光。大部分知识点还很生疏,没有形成完整的系统。只能是做题较多的部分,印象会深刻些。由于我们在基础阶段的学习中,难以将所学数学知识系统化,导致当一门课程复习结束后,另一门课程的大部分知识被遗忘。这些情况都是在该阶段复习数学中会出现的普遍性问题。既然无法逃避,就正面解决。既然没办法全记住,就各个击破。我们在强化阶段要做的就是把这些知识点通过做题、改题、总结的形式巩固起来。

这段时间可能不如暑假那么富足集中,但要坚信时间是挤出来的,要在有限的时间内创造更多的价值,那就必须要制定合理的时间安排表。建议每天保持三至四个小时的数学学习时间,对于具体学习时间安排在何时,同学们可以自由决定,但学习时间必须得到保证。将时间安排在上午或者晚上,因为上午精神旺盛,思维敏捷,在这段时间内,学习数学将取得很好的效果,同时晚上对所学知识进行回顾训练,进一步强化记忆,使得对知识的掌握更加牢固。数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。

在本阶段,由于政治的学习时间要增加,你可能会觉得无法均衡花在各科上的时间。但请注意数学在满分500分中的比重大,所谓“得数学者,得天下”,无论时间多么紧张,一定要保证每天3—4小时复习数学。每一轮复习保证这样一个进度:高等数学用20天时间看完,线性代数用7天,概率论用7天。

数学做题的具体要求是:求稳而不求多、不求快,力争做到做完此阶段应该做完的题,对每个题的知识点和相应的题型都有一定掌握,要多思考,做到举一反三。由于每个同学的复习情况不完全一样,但是要提醒你的是数学复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练。

近几年考研数学的一个命题趋势是:难题偏题怪题没有了,取而代之的是基础题型,至少占有60%,中档题占30%,难题大约占有10%,而对于中档题或者较难题,如果对知识点掌握扎实熟练的话,那么难题在此也不是很难了。所以现阶段仍是要抓基础,巩固基础,争取在强化阶段有所突破。

考研数学心得体会

数学是考研的一门重要科目,也是许多考生最担心的科目之一。在备考期间,我深深感受到了数学的难度和挑战,但也因此积累了一些心得体会。在这篇文章中,我将分享我在考研数学备考过程中的一些心得体会,希望能够给即将备考的同学们一些启示和帮助。

第二段:建立坚实的数学基础。

数学是一门渐进的学科,后面的知识都建立在前面的基础之上。因此,在考研数学备考前,要先夯实自己的基础知识。这包括熟练掌握高中数学的各个章节,以及大学数学的基本概念和定理。建议同学们从整理、复习高中知识开始,巩固数学基础,确保对基础知识的理解和记忆。只有建立了坚实的基础,才能更好地应对考研数学的复杂题目。

第三段:理清思路,反复总结。

在解答数学题目时,理清思路是非常重要的。对于每道题目,可以先审题,明确要解的问题,然后再寻找已知条件,分析解题思路。在解题过程中要善于运用所学的数学知识,善于建立方程、直观图和数学模型等。解题过程中,可以运用一些技巧,比如估算、化简、递推等方法,从而更好地解决问题。同时,在解题过程中要注意反复总结思路,总结方法和技巧,不断提高解题能力。

第四段:多做题,加强练习。

数学是一门需要练习的科目,只有通过大量的练习,才能够熟悉各种数学题型,掌握不同解题方法。在备考期间,同学们可以选择一些经典的数学题集进行练习,或者参加一些模拟考试。在练习过程中,要注意解题速度和准确性,这样才能真正提高解题能力。同时,要有计划地安排练习时间,避免盲目地做题。在练习过程中,要多注意一些易错的地方,及时进行巩固和弥补。

第五段:坚持不懈,不断反思。

备考考研数学是一项漫长而艰辛的过程,需要考生们保持坚持不懈的努力和毅力。在备考过程中,遇到困难和挫折是难免的,但是要相信自己的能力,保持积极的心态。同时,要不断反思自己的备考策略和方法,找出适合自己的学习方式,从而提高学习效率。备考考研数学是一次全面提高自己的机会,相信只要坚持下去,就一定能够取得好的成绩。

结尾:

通过考研数学的备考过程,我深刻体会到了数学的魅力和挑战。建立坚实的数学基础,理清思路,反复总结,多做题,加强练习,坚持不懈,不断反思,这些都是备考数学的关键。只有通过不懈的努力,以正确的方式备考,才能顺利应对考试,取得好的成绩。希望我的经验和体会能够帮助到即将备考的同学们,共同实现我们的考研梦想。

相关内容

热门阅读
随机推荐