教学工作计划能够帮助教师合理分配时间和资源,提高教学的质量和效果。大家可以参考以下的教学工作计划,制定自己的教学计划。
(高效课堂模式教案定稿)
教案说明:本教案严格按照高效课堂模式进行编写,同时注重了培
优辅差及学困生的转化,注重学生的全面发展,教案环节齐全、内容详细,可以a4纸直接打印。
学科:;
任课班级:;
任课教师:;
年月日
个人说明:本教案还有许多不足之处,望广大网友谨慎下载。
第一单元小手艺展示
——分数乘法
本单元是在学生掌握了整数乘法,分数的意义和性质、分数加减法以及约分等知识的上进行学习的,是学习分数、比、分数四则混合运算及百分数的重要基础。本单元的主要学习内容有:整数和分数相乘,分数和分数相乘,分数连乘,“求一个数的几分之几是多少”的问题,倒数的意义和求一个数的倒数。
1.在解决具体问题的过程中,理解分数乘法的意义;掌握分数乘法的计算方法,能正确的进行计算;会解决“求一个数的几分之几是多少”的实际问题;理解倒数的意义;掌握求一个数倒数的方法。
2.经历分数乘法计算方法的探索过程,体会数形结合思想在解决数学问题中的作用,培养初步分析、比较和推理的能力。
3.在解决问题的过程中,感受分数乘法在现实中的应用,培养应用知识和兴趣。
重点:理解一个数和分数相乘的意义及“求一个数的几分之几是多少”用乘法计算。
难点:理解分数乘分数计算的算理。
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2.发展学生的观察推理能力。
1.多媒体课件。
2.每个学生准备一张长15cm、宽10cm的长方形纸。
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“2小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×2)。
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)。
让学生计算,并说说怎样计算。
学生讨论汇报。(根据“2小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)。
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20。
学生讨论交流汇报。
教师归纳(用多媒体演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)。
小组讨论并操作:怎样列式?涂色表示1/5的3/4。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)。
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
3/4x2/94/7x7/85/6x3/257/12x9/14。
让学生独立计算。通过请学生在黑板演算过程及结果交流计算情况,强调能约分的`要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
课后反思。
通过今天的课我对数形结合的思想有了进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元的教学中数形结合的思想就显得尤为重要了。
教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等。小学生分数乘法的数学教案,我们来看看。
1.根据例题制作的挂图、投影片或多媒体课件。
2.每个学生准备一张长15cm、宽10cm的长方形纸。
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)。
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)。
让学生计算,并说说怎样计算。
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)。
小组汇报(把涂出的'1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20。
学生讨论交流汇报。
教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)。
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)。
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2.发展学生的观察推理能力。
:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出分数乘以分数的结果。
师生共同归纳和推理
教学参考书、教科书
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
1/33/72/54/97/105/14
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)
二、课堂练习:
学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。
学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。
学生做第4题,让学生能够学会比较1/2的3/4和4/5占整体1的大小。
学生做第5题,教师注意让学生整体的几分之几是多少?
学生做第6题,让学生注意区分不同标准的`几分之几是多少;占整体的几分之几。
学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。
第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法(三)
1/23/43/8 ,2/44/54/10=2/5
是整个操场1的3/8,2/
5是整个操场1的2/5。
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
掌握分数乘整数的计算方法。
理解分数乘整数和一个数乘分数的意义。
:课件。
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)
预设: 生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为。
提出质疑:3个相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
(二)分数乘整数的计算方法
预设: 生1:按照加法计算=(个)。 生2:(个)。
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2x3都是在求什么?预设:有多少个。
2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知
1.例1“做一做”第1题 师:说出你的思考过程。
2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 l的和是多少。 预设2:还可以说成求12 l的3倍是多少。
预设3:单位量x数量=总量,所以12x3=36(l)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 l的一半,就是求12 l的是多少。”
(3)出示第2小题学生自练。引导说出:“12x表示求12 l的是多少。”在这里都是把12 l看作单位“1”。
(4)师:依据单位量x数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量x数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”
2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)
五、联系实际,灵活运用
1.算式可以列成 x ,表示 ;或者表示 ;
也可以列成 x ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了,用去了多少吨?
(2)一堆煤有吨,5堆这样的煤有多少吨?
3.拓展练习
1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
六、课堂小结,拓展延伸
这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
1.根据例题制作的挂图、投影片或多媒体课件。
2.每个学生准备一张长15cm、宽10cm的长方形纸。
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)。
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)。
让学生计算,并说说怎样计算。
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)。
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20。
学生讨论交流汇报。
教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)。
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)。
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2.发展学生的观察推理能力。
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的.结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出整数乘以不同分数的结果。
教学方法:
师生共同归纳和推理
教学参考书、教科书
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
教师让学生思考这个例题,并对学生进行提问。
学生自己动手填完课本例题上的方格。
教师提问学生说一说自己是怎样计算的?
教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。
做课本5页试一试,36的 和 分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
整数乘以分数的数学意义:就是求整数的几分之几是多少?
能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出整数乘以不同分数的结果。
师生共同归纳和推理。
教学参考书、教科书。
一、复习导入:
教师出示教学板书,请学生计算下列分数乘法运算题。
3/11×39/16×1221×5/14。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)。
二、讲授新课:
教师让学生思考这个例题,并对学生进行提问。
学生自己动手填完课本例题上的方格。
教师提问学生说一说自己是怎样计算的?
(学生1:6×1/2=6×1/2≤3个;学生2:6×1/3=6×1/3≤2个)。
教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。
三、巩固练习:
做课本5页试一试,36的1/4和1/6分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
四、课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点、难点:学生能够熟练的计算整数乘以分数。
教学方法:师生共同归纳和推理。
教学准备:教学参考书、教科书。
教学过程:
一、复习导入:
教师出示教学板书,请学生计算下列分数加减运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。
二、讲授新课。
同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?
学生同桌之间讨论,教师提问学生回答问题。
教师板书例题,让学生想一想如何计算?
学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?
教师提问学生说一说自己是怎样计算的?
(学生1:3×==;学生2:3×====……)。
教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)。
三、巩固练习:
做课本2页涂一涂,算一算,2个的和是多少?
让学生熟练计算,教师及时纠正学生错误的计算方法。
做课本试一试1、2题。
四、课堂小结:
同学们,这一节课你学到了哪些知识?(提问学生回答)。
板书设计:
3×==3×====。
分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)。
教学反思:
将本文的word文档下载到电脑,方便收藏和打印。
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
理解他数乘整数的意义,掌握分数乘整数的计算方法。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少?9个11是多少?8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)。
(2)计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
(1)分析演示。
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃个意思什么?(每人吃了整个蛋糕的)。
确定标准量(单位1)和比较量。每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意。
根据题意列出加法算式。
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和125两种算式异同。
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,125是整数乘整数。
(4)概括总结。
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。学生计算。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)。
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)。
观察结果:的分子部分23就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)。
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。 单元重点: 分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
授课课时:11课时
第一课时分数乘整数
教学内容:人教版六年级上册《分数乘法》教材第2、3页。
授课时间:1.2
教学目标:
2. 通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。 教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。 教学难点:引导学生总结分数乘整数的计算法则。发现规律,创造规律。
在计算的过程中,能约分的要先约分,然后再乘。
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
教学第83页的例2,完成随后的“练一练”和练习十六第1—4题。
1、使学生理解并掌握用分数乘法和减法解决一些稍复杂的实际问题。
2、使学生进一步积累解决问题的策略,增强数学应用意识。
一、复习导入。
岭南小学六年级有45个同学参加学校运动会,其中男运动员占。男运动员有多少人?
独立解答,说说“其中男运动员占”的含义及解题思路。
如果把问题改成:“女运动员有多少人?”就成了今天我们要研究的新内容了。
二、教学例2。
(1)比较复习题与例2的不同。
问题不同:复习题要求“男运动员有多少人?”而例2要求“女运动员有多少人?”
(2)说说“其中男运动员占”的含义
是哪两个量比较的结果?比较时把哪个量看作单位“1”?单位“1”的是哪个量?
(3)让学生在线段图上分别表示出男女运动员所占的部分。
独立完成在书上,评讲。
(4)要求“女运动员有多少人?”可以先求什么?并列出综合算式。
板书:45-45
说说45的含义,独立解答。
(5)想一想,还可以怎样计算?
板书:45(1-)
说说(1-)的含义,独立解答。
(6):怎样解答这类应用题?
三、巩固练习。
1、做练一练第1题。
先说一说可以怎样想,再独立解答。
2、做练一练第2题。
独立完成,可以先画图思考,再列式解答。
3、做练习十六的第1题。
让学生先画线段图表示题中的已知条件和所求问题,再列式解答。
独立解答,说说解题思路。
4、做练习十六的第3题。
先说说题中两个分数的含义,再列式解答。
四、全课,揭示课题。
通过这节课的学习,你有什么收获?在解题时要注意什么?
结合学生的回答,揭题板题。
五、课堂作业
6、做练习十六的第2、4题。
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。
师生共同归纳和推理
教学参考书、教科书
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)
二、课堂练习
学生做第10题,让学生计算一个分数的几分之几是多少?注意提醒学生及时约分。
学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。
学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。
学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
练习二
1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。
2、培养学生认真审题,独立思考的学习习惯。
3、训练学生分析、解题问题的能力。
一、书上第44页上的第12题
1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。
从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。
2、书上第44页上的第13题
引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。
二、说说分数的意义,并把数量关系补充完整
(1)今年的产量比去年增产1/8。
×1/8=
(2)钢笔枝数的2/5相当于圆珠笔的枝数。
×2/5=
(3)花布的米数比白布长1/4。
×1/4=
(4)实际每月比计划节约了1/10。
×1/10=
(引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)
二、对比练习。
1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?
2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?
3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?
(1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?
(2)比较3题有何异相点?
三、综合练习。
1、一种商品原价是250元,现价是原价的4/5,现价是多少?
2、一种商品原价是250元,后来降价了1/5,降价多少?
3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。
(1)两天分别修了多少米?
(2)第二天比第一天多修多少米?
(3)还剩多少米没修?
四、作业
潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。
第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。
上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。
由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。
第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。
通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。
今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。
从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。
教材第8页例6、例7,做一做1~2,练习一5~11。
1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
会计算分数混合运算,能利用乘法的运算定律进行简便运算。
根据题目特点,灵活地运用定律进行简便计算。
1、提问:整数混全运算顺序是怎么样的?
预设:先算乘、除法,再算加、减法。
2、追问:遇到有括号的题该怎么来计算?
预设:有括号的要先算小括号里面的,再算中括号里面的。
3、计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。
1/23+2/5
68-54
1/2(3/6-1/4)
1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
1/3/+1 1-5/21/学生独立完成,小组内订正。
2、分数混合运算
出示例题6:一个画框,长 米,宽 米,做这个画框要多长的木条?
3、学生读题,理解题意。已知长方形画框的长是45m,宽是12m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。
4、学生独立列式或启发自学,交流收获。
教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?
(1)请学生自学教材第9页的内容。
(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。
5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?
教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。
1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。
2、使学生进一步积累解决问题的策略,增强数学应用意识。
一、复习导入
林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?
独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。
如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。
二、教学例3
1、出示例3
林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?
(1)比较复习题与例3的不同。
问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”
(2)说说“今年的班级数比去年增加了”的含义。
是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?
(3)让学生在线段图上表示出今年班级的数量。
(4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。
板书:24+24,说说24的含义,独立解答。
(5)(5)想一想,还可以怎样计算?
板书:24(1+),说说(1+)的含义,独立解答。
(6)小结:怎样解答这类应用题?
三、巩固练习
1、做练一练的第1题。
先说一说可以怎样想,再独立解答。
2、做练习十六的第5题。
独立完成,可以先画图思考,再列式解答。
比较两题的解法有什么联系和区别。
3、做练习十六的第8题。
让学生先画线段图表示两题中的已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。
比较两题的解法有什么联系和区别。
4、做练习十六的第9题。
先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。
比较两题的解法有什么联系和区别。
四、全课小结,揭示课题。
通过这节课的学习,你有什么收获?在解题时要注意什么?
结合学生的回答,揭题板题。
五、课堂作业
做练习十六的第6、7题。
3、能正确运用“先约分再计算”的方法进行计算。
能正确运用“先约分再计算”的方法进行计算。
2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。
3、 组织全班交流。 师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗? 教师在学生讨论的过程中,把加法的板书和乘法的.板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。
4、练一练:教科书第2页“涂一涂,算一算”。 学生独立完成后,让学生说说自己的思路。 讨论:你能用自己的语言说一说整数乘分数的计算方法吗? 小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。 练习:教科书“试一试”第1、2题。
5、探讨“先约分再计算”的方法。
出示 6x5/9。让学生独立完成,指名板演。 学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。 教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。
练习:
(1)教科书“练一练”第1题。
(2)计算
1、教科书第4页“练一练”第2、3、4、题。 学生先独立完成,指名板演,在集体讲评。
3、教科书第4页“数学故事”。 先让学生说说,你从每幅图中得到了哪些信息?如何解决图中提出的问题。
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出分数乘以分数的结果。
师生共同归纳和推理
教学参考书、教科书
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)
学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。
学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。
学生做第4题,让学生能够学会比较 的 和 占整体1的大小。
学生做第5题,教师注意让学生整体的几分之几是多少?
学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。
学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。
第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。
同学们,这一节课你学到了哪些知识?(提问学生回答)
是整个操场 1的 , 是整个操场1的 。
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
3、能解决简单的分数与整数相乘的实际问题,体会数学与生活的密切联系。
理解并掌握求一个数的几分之几的解答方法。
1课时
一、理解并掌握求一个数的几分之几的解答方法。
可能会出现两种解法:6÷2=3(个)6×1/2=3(个)
教师引导学生说说算式的意义,让学生明白这两个算式都表示求6的1/2是多少。
继续让学生求出(2)笑笑有多少个苹果?
让学生理解求一个数的几分之几用乘法计算。
2、练习:
(1)教科书第5页“试一试”第1题。
学生独立完成,指名板演,集体讲评。
(2)教科书第6页“试一试”第2题。
先说说“九折”是什么意思?然后独立计算。
二、课堂练习。
1、教科书第6页“练一练”第2题。
学生在课本上计算,指名板演,集体讲评。强调“先约分再计算”。
2、教科书第6页“练一练”第1、3题。
提醒学生认真读题。学生完成后再讲评。
3、教科书第6页“练一练”第4题。
先让学生完成,在说说解题思路。
1.理解分数乘整数的意义。
2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。
使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。
情感态度与价值观
1.感受数学与实际生活之间的联系,激发学习兴趣。
2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。
理解分数乘整数的意义,探究计算法则。
正确计算及约分方法。
一、以旧引新,唤醒认知
(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)
(二)口答
(三)感受分数乘整数的意义
21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。
二、出示问题,探索新知
1、自主学习红点1。
(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。
(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。
(3)交流、质疑。
(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)
2、自主学习红点2。
(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。
(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。
3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)
三、分层练习,强化认知 .巩固分数乘整数的意义
1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。
2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。
3、明辨是非。
4、结合实际,解决问题。
四、总结
本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。
本单元是在学生掌握了整数乘法,分数的意义和基本性质,以及分数加减法以及约分等知识的基础上进行教学的。本单元所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法、比、分数四则混合运算以及百分数的重要基础。所以在教学这部分内容时,应切实让学生理解一个数和分数相乘的意义,掌握一个数和分数相乘的计算方法,并能解决求一个数的几分之几是多少的实际问题,为后续学习打好基础。
六年级共有24名学生,部分学生还没有养成良好的学习习惯,计算能力也还有待加强;大多数学生对新鲜事物比较敏感,喜欢动手操作,但思想不易长时间集中;有30%的同学基础相对薄弱,对数学学习的兴趣不高。
1、使学生能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。
2、能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。
3、培养学生独立运用知识解决问题的能力,体验成功的快乐和学数学的价值。培养学生的迁移类推能力和自主探索的精神。
教学重点:让学生体验分数乘分数、分数乘整数的简便计算方法(先约分后相乘)。
教学难点:分数乘分数或分数乘整数先约分再相乘的书写格式。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/xindetihui/152887.html