教学工作计划的编制需要考虑学生的年龄、学习特点和能力水平,以及教师的教学经验和教材的要求。以下是小编为大家准备的教学工作计划范文集锦,供大家参考和借鉴。
1.知识与技能:理解除数是小数的除法算理。
2.过程与方法:掌握一个数除以小数的计算方法,并能正确的进行计算。
3.情感态度与价值观:自主探索、合作交流的过程中,培养学生的分析、转化和归纳概括的能力。
理解算理,掌握算法。
当被除数、除数的小数位数不同时,以除数作为标准转化为除数是整数的除法。
一、复习旧知并板书课题。
复习商不变的性质。
二、探究新知。
(一)自主探究理解算理。
课件出示信息:奶奶编“中国结”编一个中国结需要0.85米,现在有一根拉直的丝绳长7.65米。
师:从这个图上你能得到哪些数学信息?根据这些信息,你能提出哪些数学问题?
生交流。
师:同学们这个问题你能自己解决吗?该怎样列式呢?试着用自己的方法解出来。
生:1。
生:2。
生:1。
生:2。
(二)尝试用迁移法,来掌握算法。
师:这个题如果用竖式小数点又该怎么移动呢?你准备用什么方法计算,试着做出来。
集体交流。
生:1被除数和除数一定都要扩大相同的倍数,否则结果就错了。
(2)学生自主用竖式计算,师巡视。
反馈交流,统一竖式方法。
课件展示老师的方法并回顾竖式的书写过程。
师小结并屏显例5。
集体核对。
出示做一做1、2、3。
师:一个数除以小数的知识我们已经讲完了,大家来回顾一下它的计算法则是什么?
生:1。
生:2。
师屏显课件学生讨论情况。
师屏显老师总结的“一看”“二移”“三算“。
三、课堂达标基础过关。
(1)算一算强化巩固技能,深入理解方法。
(2)运用所学知识解决问题。
四、课堂总结。
1、通过本节课的学习,你有哪些收获?。
2、师小结:通过本节课的学习,我们学会了用转化和迁移的方法把除数是小数的除法,转化成整数,然后再用除数是整数的方法进行计算。在计算中一定我们还要注意在把被除数和除数扩大和缩小相同倍数时,一定要看除数小数的位数。
教学目标:
1、知识与技能:掌握除数是小数的除法计算方法,注意被除数位数不够时的计算方法,会正确地计算。
2、过程与方法:经历一个数除以小数的计算过程,体验迁移应用的学习方法。
3、情感、态度与价值观:在学习活动中,体验知识之间的相互联系和数学知识的应用价值,感受发现知识的快乐,激发学习的兴趣。
教学重点:
(一)复习准备。
1.说一说。
(1)0.4表示什么?
(2)1.2表示什么?
(3)0.85表示什么?
(4)1.06表示什么?
2.口算:
3×2=30×20=。
300×200=3000×20xx=。
18×4=1800×400=。
180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的'小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=。
0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
板书设计(略)。
(二)掌握转化的数学思想,提高抽象概括的能力。
(一)复习准备。
1、说一说。
(1)0.4表示什么?
(2)1.2表示什么?
(3)0.85表示什么?
(4)1.06表示什么?
2、口算:
3×2=30×20=。
300×200=3000×20xx=。
18×4=1800×400=。
180×40=18000×4000=。
3、写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。
6.5×2表示2个6.5是多少或6.5的2倍是多少。
(二)学习新课。
1、出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.5。
6.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解。
6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.7。
3.5×0.25。
4.5×0.4。
3.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82.
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2、小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1、课本p4:6;p5:8。
2、根据36×24=864,很快说出下面各题的积。
3、先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4、说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5、作业:课本p4:5,7;p5:9.
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的'小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
(略)。
教学目标。
(一)理解的意义,掌握的计算方法。
(二)掌握转化的数学思想,提高抽象概括的能力。
教学重点和难点。
重点:掌握的意义和计算方法。
难点:理解的算理。
教学过程设计。
(一)复习准备。
1.说一说。
(1)0.4表示什么?(2)1.2表示什么?
(3)0.85表示什么?(4)1.06表示什么?
2.口算:
3×2=30×20=30×200=3000×2000=。
观察上面的算式,从上往下看,被乘数和乘数发生了什么变化?积发生了什么变化?积扩大的倍数与被乘数、乘数扩大的倍数有什么关系?
通过讨论得出:积扩大的倍数,就是被乘数和乘数扩大的倍数的乘积。
根据这一规律,你能很快说出下组题的积吗?
18×4=1800×400=180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)。
这就是我们今天要研究的。(板书课题)。
(2)理解的意义。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:的意义是什么?(的意义是求这个数的十分之几,百分之几,千分之几,……)。
(3)探讨的计算方法。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=10o倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。
(2)的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
课堂教学设计说明。
是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
(二)掌握转化的数学思想,提高抽象概括的能力。
教学重点和难点。
教学过程设计。
(一)复习准备。
1.说一说。
(1)0.4表示什么?
(2)1.2表示什么?
(3)0.85表示什么?
(4)1.06表示什么?
2.口算:
3×2=30×20=。
300×200=3000×=。
18×4=1800×400=。
180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=。
0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
课堂教学设计说明。
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
板书设计(略)。
练习五的第3-10题。
使学生理解和掌握除数是小数的除法的计算法则,能够正确地计算除数是小数的除法。
小黑板出示复习用的口算题。
1、小黑板出示下面的口算题,指名口算。
3.2?0.8=40.81?0.09=92.4?1.2=2。
42?0.7=606.4?0.08=8036?0.06=600。
2.6?0.13=20xx?0.5=704.8?0.04=120。
84?0.7=1206.3?0.09=7072?0.6=120。
指名说一说口算“6.4?0.08”、“36?0.06”和“2.6?0.13”时,是怎样移动被除数的小数点的。
2、教师出示下在两道题,请两名学生板演,其他学生在练习本上做。
85.1?0.23=3704644?0.86=5400。
做完后,让两名学生对照自己做题的过程,说一说除数是小数的小数除法的计算法则。
1.练习五第3题。
让学生审题,找出每道题错在哪里?原因是什么,教师指名回答。
2.练习五第4题。
学生独立计算。
3.练习五第5题。
让学生把答案直接写在书上,做完后,集体订正。
4.练习五第6题。
先让学生观察左面一栏各题被除数和除数的小数点的移动情况。要求学生根据第1小题的计算结果,直接写出第2、3小题的得数。教师巡视时,注意学生是怎样根据除数和被除数同时缩小相同的倍数,而使商不变的。
教师让学生自己计算右面一栏的.3小题。做完后问:被除数和除数各有什么变化?商有什么变化?(被除数不变。除数是第2题比第1题缩小100倍,也就是除数的小数点向左移动两位;商扩大了100倍,也就是小数点向右移动了两位。第3题的除数比第1题的除数缩小1000倍,也就是小数点向左移动三位;商扩大了1000倍,也就是小数点向右移动三位。)。
5.练习五第7题。
让学生先审题,第4道小题的被除数和除数有什么特点?怎样根据这些特点来做题。做完后,教师让学生说一说:“是怎样根据被除数和除数的特点来计算的?”“哪道题的商比被除数大?”
6.练习5第8题中第1行的3道小题。
让学生独立计算。做完后,集体订正。
7.练习五第9题。
教师要求学生按照题意列式计算。做完后集体订正。
练习五第8题中第2、3行的6道小题和第10题。
1、使学生初步掌握除数是小数的除法的计算法则。
2、提高学生的知识迁移能力。
3、培养学生细心做题的好习惯。
1.把下列各数的小数点去掉,原数扩大了多少倍?
13.84.670.725。
2、除数扩大10倍,要使商不变,被除数应怎样怎样变化?
4、把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?
5、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
学生小结运用了什么规律?(商不变的性质)。
学生做43.5÷5=8.7。
然后改题:4.35÷0.5猜一猜得数是多少?为什么?
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85。
(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的`除法来计算。)。
(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
1、书上第22页“做一做”
2、练习:判断并改错:
教学的节奏是由教师来把握,但是把我的前提是学生接受的程度,如果大面积的学生显示出需要“加强营养”的话,那我们就得反思自己的教学是不是有什么问题了,如果听之任之的话,将会收获一堆青涩的果实。
这是一节关于《一个数除以小数》的计算课,本节课由回顾“商不变的性质”导入新课,让学生再次感受当被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。从而自然而然的让学生面对一道一个数除以小数的题目让孩子们自己想解决问题的方法,大多数学生想到了利用商不变的性质去解决。但是从个别学生的表情上我观察到了一种茫然,于是我想到了再次让学生跟着我一起回顾上学期学习过的“商不变的性质”,用最简单的整数除法的例题引导她掌握规律,充分的进行相关的练习,直到离下课还剩下5分钟的时候才给这个孩子出了一道简单的例题:45÷1.5,让这几个学生探索,让他们先观察这个算式与45÷15的不同之处,然后再想想有没有什么方法去解决问题,如果这里的除数是什么样的数字就好办了?学生立刻想到了如果是整数就好办了,可是如果把除数变成整数的话,得出来的商肯定要发生变化的不是吗?因此,让孩子们跟着我来回忆商不变的性质是怎么说的……耐心的讲解和启发,是会让一朵朵小花开的很灿烂的!这种静待花开的感觉真好!
这样的教学还是初次尝试,但是基本上想要达到的效果还是有的。希望每天的花都能开的更美更艳丽,希望每天的教学都能够跟好更精彩!
知识与能力:掌握除数是小数的除法的计算方法,理解算理,能正确进行计算。
过程与方法:经历一个数除以小数算法的探究过程,培养学生转化的数学思想,提高发现问题,分析问题解决问题的能力。
情感态度与价值观:树立良好的学习习惯,激发学习兴趣。
掌握将除数转化为整数的算理,正确运用算法进行计算。
除数是小数的除法的正确计算。
师:上课,同学们好,请坐!
师:你的手举得最高,就请你。哦,熊大的奶奶在编中国结,已经编织了好多,挂满了整个屋子,充满了中秋的气氛。
师:哦,你说编一个中国结需要0.85m的丝绳,奶奶手里还有7.65m的丝绳。
师:你观察的很认真,同学们,根据他们发现的信息,你能提出一个数学问题吗?
师:7.65米的丝绳还可以编多少个这样的中国结呢?
师:这个问题很有价值,谁来解答一下怎样列式呢?
师:同学们,观察一下,这个算式和学过的除法算式有什么不同呢?
师:回答的非常好,之前学的除数是整数,而这个式子的除数是小数!
师:那想一想,除数是小数的怎么计算?能不能将除数转化为整数来计算呢?请同学们同桌之间相互探讨并完成学习单。
师:穿红衣服女生,你利用了单位转换的方法,0.85m单位转换后是85cm,7.65m单位转换后是765cm,765除以85商是9。
师:你可真是学习小能手,有同学用不同方法吗?
师:穿蓝衣服男生,在列竖式计算时,把除数乘100,0.85转化为85,就可以计算了。
师:你说也把被除数乘100,7.65转化为765,用765÷85商是9。
师:第三排男生,请你来说,哦,除数0.85转化为85,小数点向右移动两位,被除数7.65转化为765,小数点也向右移动两位。
师:你举手最快请你来说,12.6÷0.28。
师:非常棒,同学们观察一下这个式子,除数和被除数的小数位数不相同,该怎样转化为整数计算呢?大家可以参照我们刚刚那道题的转化过程,下面我们四人小组一起来讨论,完成后小组组长举手示意老师,开始吧!
师:看同学们都完成了,谁来分享一下你的成果呢?
师:第二组请你来说,利用商不变的性质,要把除数转化为整数,除数乘100,0.28转化为28。
师:如果使商不变,被除数如何转化呢?
师:你说被除数也要乘100,12.6乘100得数是1260,是1260÷28商是45。
师:那列竖式时小数点该怎样移动呢?被除数小数位数不够该怎么办呢?
师:探索王国的小精灵给我们送锦囊来了,我们一起来看大屏幕:如果被除数和除数的小数位数不同,在进行转化时,可以先看除数有几位小数,当除数的小数点向右移动几位时,被除数的小数点也向右移动几位,如果被除数的末尾位数不够,要用0补足。
师:同学们根据提示,请把竖式写在自己的学习单上吧,老师挑一位同学来黑板上板演。
师:看到同学们都完成了,我们一起来看板演同学写的,0.28的小数位数有两位,小数点向右移动两位,那么12.6的小数点也向右移动两位,但它只有一位小数,所以我们可以在后面填0补足,就转化成了1260.按照整数除法,商是45,所以12.6÷0.28商是45。
师:你们都做对了吗?看来大家都学会了计算了,下面我们一起来总结一下除数是小数的计算方法吧。
师:计算除数是小数的除法时,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按除数是整数的小数除法进行计算。
师:经过交流合作我们学会了怎样计算除数是小数的除法,同学们掌握了吗?嗯,那下面老师要考考大家了,请看大屏幕中提,请同学写在自己作业本上,开始吧!
师:都一样啊!看来同学们都掌握了今天所学内容,老师为你们点赞!
师:学习了怎样计算除数是小数的除法,转换为整数计算,在移动小数点时,还要注意在被除数位数不够时要在末尾用0不足。
师:看来大家的收获还真不少呢!最后老师再送给大家一个开放性的数学作业,课后跟爸爸妈妈交流一下你今天的所学内容,同时寻找一下生活中遇到的小数除法问题,相信你们会从中感受到学习数学的价值,好,这节课就上到这里,同学们,下课。
1.说一说。
(1)0.4表示什么?(2)1.2表示什么?
(3)0.85表示什么?(4)1.06表示什么?
2.口算:
3×2=30×20=30×200=3000×=。
通过讨论得出:积扩大的倍数,就是被乘数和乘数扩大的倍数的乘积。
根据这一规律,你能很快说出下组题的积吗?
18×4=1800×400=180×40=18000×4000=。
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。
(二)学习新课。
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.56.5×0.82。
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)。
这就是我们今天要研究的“一个数乘以小数”。(板书课题)。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.73.5×0.254.5×0.43.2×0.125。
小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=10o倍,要使积不变,就要把积缩小100倍。)。
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的.小数位数之和。)。
(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈。
1.课本p4:6;p5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24=0.36×0.24=。
3.6×2.4=0.36×2.4=0.036×2400=。
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=。
4.说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=。
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。
5.作业:课本p4:5,7;p5:9。
课堂教学设计说明。
一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
数学中一个重要的概念就是乘法,而有些乘法题目十分考验我们的计算能力,尤其是当涉及到小数乘法时。在学习过程中,我发现一个数乘以小数不仅需要在计算上投入更多精力,还需要我们对小数的概念有更准确的了解。在本篇文章中,我将分享我通过练习小数乘法所获得的体会和经验。
第二段:小数的概念。
在学习小数之前,我们需要清楚地了解它的定义。小数是一种有限或无限循环的分数形式表示,小数点是分数的分母。例如,0.5=1/2,0.333…=1/3。因此,对小数的运算就是对分数的运算。
第三段:小数乘法。
在乘法中,我们将一个数与另一个数相乘得到结果。当有小数参与乘法时,我们需要先将小数转化为分数,再运算。因此,我们需要注意小数位数的掌握,以及将小数转化为分数的技巧,例如将小数加上0.00000…1,让小数点移到整数部分后,可以根据位数得出相应的分母。
第四段:小数乘法的应用。
小数乘法是很常见的运算,在日常生活和商业中都有广泛的应用。例如,计算价格打折、计算借款利息等等。因此,掌握小数乘法对于日常生活和职场中的计算都是非常重要的。
第五段:结论。
在学习小数乘法的过程中,我深刻地认识到了小数概念的重要性,以及这种运算在日常生活中的应用。通过不断的练习和探索,我也逐渐掌握了小数乘法的技巧和技能。在日常生活中,我会更加注重数学基础的学习和应用,相信这样才能更好地适应未来职场和生活的挑战。
教学目的:
1、使学生初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的数学思想。
3、培养学生利用旧知识解决新问题的能力,提高学生知识迁移的能力。
教学重点:理解除数是小数的除法的计算法则和算理。
教学难点:掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用0补足的方法。
教学过程:
一、复习旧知:
1、把下列各数的小数点去掉,原数扩大了多少倍?
13.84.670.725。
2、把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?
3、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
问:运用了什么规律?(商不变的性质)。
4、计算:43.5÷5=8.7。
二、引入新课:
三、新授:
1、出示例5。
观察算式和前面学习的除法算式有什么不同?
今天这节课我们就一起来探讨除数是小数除法的计算方法。
问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
问:为什么要把除数和被除数同时扩大10倍?
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
2、出示例6:
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?你能说一说除数是小数的除法如何计算?教师引导学生从一看、二移、三算三个方面进行归纳。
四、巩固练习:
1、p22做一做。
2、判断并改错:
1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。
五、小结:今天的内容你学会了吗?
“除数是小数的除法”是小学数学教学中的一个重点,又是难点,它在计算教学中处于关键地位。这一内容是在学生掌握了整数除法,除数是整数的小数除法及商不变规律的基础上教学的。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。
一、以商不变的性质为突破点。
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据表格的数据总结出商不变的规律。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
二、突出“转化”的数学思想。
引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的'数学思想方法。计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,教学中让学生在计算前多说一说除数和被除数要同时扩大到原数的多少倍,小数点同时向右移动几位。使学生习惯于把除数是小数的除法转化成除数是整数的除法来计算。
三、坚持以学生为主体的原则。
课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.65÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试”。尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
在本节课的实际教学中,自己有很多做得不够的地方,如:学生在汇报完自己的想法,引导学生观察、比较、分析例题与复习题之间的联系与区别时,太急于归纳“一个数除以小数”的计算法则,而没有让很多的学生通过更多的练习经历自己进行归纳;练习的设计虽然有层次,但是还可以设计一些体现怎样移动小数点,使除数是小数的除法如何转换成除数是整数的除法,这样的练习不需要学生计算,这样可以更好的提高教学效率,加强学生对本节课教学重点的掌握。
新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,我认为教学中成功的关健在于:教师的“教”立足于学生的“学”。
1、从学生的思维实际出发,激发探索知识的愿望,在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
1与生活的密切联系。通过合作交流、比较的方法,归纳出“一个数除以小数的除法”的计算方法。
【教学目标】。
(1)通过自主探索、合作交流,理解小数的除法计算法则,能正确地进行计算。(2)培养学生运用转化的思想,自己发现问题,解决问题。(3)通过学习活动,培养积极学习态度,树立学好数学的信心。
【教学重点与难点】。
(1)教学重点:利用商不变的规律,正确地把除数是小数的除法转化成除数是整数的除法。
(2)教学难点:除数转化成整数,正确移动被除数的小数点。【教学准备】。
一、复习铺垫。
1、游戏导入。
师:同学们,你们喜欢玩游戏吗?生:喜欢!
师:在上课前,我们来做一个接龙游戏,看看哪个组表现最好,好吗?生:好!。
(点击多媒体课件,出示四组下面这样的题目进行接龙游戏。)。
(1)0.78扩大10倍是()。
(2)9.38扩大100倍是()。
(3)6.73扩大1000倍是()。
(4)0.023扩大100倍是()(表扬表现出色的小组。)。
2、点击多媒体课件出现:
你能不用计算,判断出下面各式的商是否一样?请说明理由。270÷90。
27÷9。
2.7÷0.9(学生归纳出商不变的规律,答对的表扬,答错给予鼓励。)。
二、创设情境,激趣导入。
师:(教师手拿中国结)同学们,你们看这是什么?
生齐答:“中国结”。
师:你们知道“中国结”是用什么做?
生1:用丝绳。生2:用彩绳。
师:你们对它的了解有多少?生1:代表吉祥如意。生2:表示祝福。
学生3:是中国的一种特色手工艺品。师:你们想学吗?生齐说:想。
师:老师介绍一位老奶奶给你们认识好吗?她的手可巧,会编各种的“中国结”。这节课谁表现出色,老师就把“中国结”奖给谁。全体学生:好!
师:请同学们打开书本29页,例5。
三、探索计算方法。
(一)教学例5。
师:请同学们独立分析题目的已知条件和问题,列出算式。生:7.65÷0.85=。
(老师板书算式)师:请说说你是怎样想的?
生:要求这些丝绳可编成几个“中国结”,就是求7.65里面有几个0.85,用除法计算。
2、观察并比较式子的特点。
师:这个算式和上节课学的除法算式有什么不同?生:上节课学习的除数是整数,而这道题的除数是小数。
3、小组合作,初步探索计算方法。
小组1:我们小组愿意,把7.65米0.85米都换成分米作单位的数,然后再计算。就可以计算出结果了。
师:你们说得好!(老师、学生掌声鼓励小组1。)。
0.85米=85厘米。
765÷85=9(个)师:这个组也不错!
小组3:我们小组认为可以运用商不变的规律,把被除数和除数同时扩大100倍,变成765÷85计算就可以了。
4师:第3小组说得非常好,同学们用热烈的掌声表扬这个小组。
小组4:我们小组与他们的都不同,我们刚学过除数是整数的小数除法,根据商的变化规律,被除数不变,除数扩大到它的100倍,商就缩小到它的100倍,这样也可以算出7.65÷0.85的商。师:也说得对!
5、交流,比较寻求最佳计算方法。
师:同学们通过动脑筋想出这么多方法计算7.65÷0.85,真了不起!
师:你认为这几种做法,哪种方便,为什么?(让学生各抒己见,说出自己的理由。)。
生1:我认为第3种方法好,方便又快。
生2:我同意第一位同学的说法,因为第1、2种只适合能够进行单位换算的一些数量,没带单位的数量就不能计算了;第4种更麻烦,换来换去容易出错;第3种就不同了,利用商不变的规律,只要把除数变成整数就行了。
生3:我们小组原来用第2种方法做的,但经过比较觉得第3种方法好,把米数改写成厘米数,实际上是间接的把被除数和除数同时扩大到原来的100倍。师:对,第3种方法方便。通过比较我们发现,可以利用商不变的规律,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数的除法”来计算。(教师板书)。
板书:除数是小数的除法。
商不变的规律转化。
6、指导书写格式(竖式板书)。
〔设计意图:使学生清楚地明白转化的过程,又掌握了规范的竖式书写格式。〕。
7、反馈练习47.85÷0.75。
(学生独立完成后检验,同位交流;在学生独立做题时,教师辅导学习有困难的5学生。)。
(二)教学例6(自主学习)(教学时间:5分钟)。
1、出示例6计算12.6÷0.28。
2、尝试独立计算。(要求学生边算边思考下面的问题,这些问题用多媒体课件演示。)。
(1)这里被除数和除数各有几位小数?(2)怎样才能把除数变成整数?(3)被除数只有一位小数,小数位数不够怎么办?(在学生做题时,老师巡视用日记本做好学生错题记录。)。
3、教师把巡视时,记录的错例让学生进行对比分析。(让书写端正的一位学生到黑板做12.6÷0.28。)。
(三)通过对比,归纳小数除法的计算方法。
1、师:观察例。
5、例6,它们有哪些相同的地方?那些不同的地方?
生1:相同的是,两题的除数都是小数;不同的是,例5被除数与除数小数的位数相同,例6被除数与除数小数的位数不同。
生2:相同的是,都是把除数的小数点去掉,使除数变为整数;不同的是,例6的被除数在移动小数点时,位数不够要在末尾用“0”补足。
(1)鼓励学生大胆地用自己的语言描述一个数除以小数的计算方法。(2)引导学生把“一个数除以小数的除法”的计算方法,分三个步骤总结。教师加以提炼得出:
一看:看清除数有几位小数;
三算:按照除数是整数的除法的方法计算。(点击多媒体课件出示计算方法)。
6(3)找出计算方法的关键。
师:你认为除数是小数的除法计算,关键是什么?
生1:我认为,在计算一个数除以小数的关键是把除数转化成整数然后计算。生2:我认为,“除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不够时,用0补足”是计算的关键。
生3:我认为,关键是转化时看除数有几位小数,就把除数的小数点向右移几位,同时被除数的小数点也要向右移动几位。
(四)阅读与质疑。
(1)认真阅读书本例5和例6的内容。
(2)质疑。
(2)。
四、展示练习,深化认识。
(1)在()里填上适当的数。
0.12÷0.3﹦()÷。
33.72÷2.4﹦()÷240.672÷0.28﹦()÷28。
1.36÷0.16﹦()÷16(学生回答后表扬)。
(2)书本“做一做”第1题。
(你要认真审题,完成后还要认真检验哦!)(3)数学医院:(书本“做一做”的第2题)。
(看看谁是个好医生,要细心点哦!)。
(4)现场实践活动(在教室内设置几个购物点,由几位同学扮演售货员,同学们前往购物。)师:同学们,你们表现这么出色,老师带你们去购物好吗?全体生:好!出现下面情景:
7※情景1:学生拿25.2元到商店买日记本,每本日记本3.6元,能买几本。※情景2:到书店购买书每本10.5元,带了31.5元,可以买几本。※情景3:到超市买巧克力,每块2.5元,10元可以买几块。
五、谈收获:
(3)。
1、这节课你有什么收获?请和你的同学交流。
2、发奖,表扬表现出色的同学。
六、板书设计:
除数是小数的除法商不变的规律。
【设计思路】。
一个数除以小数是人教版五年级上册第二单元的内容。是在学生学习过除数是整数的除法后进行的。在教学时,我是这样做的:
一、先创设情境,媒体出示两种价格的笔记本图,先让学生审清题意,再说数量关系并列式。列式后提问你会算哪个算式?学生算完除数是整数的除法后说说要注意什么。
二、让学生观察另一个算式与以前学过的除法有何异同,即引导学生通过与旧知识的比较,发现新旧知识的主要区别是“除数由整数变成了小数”。你能用我们学过的本领尝试解决今天的除法是小数的除法?小组讨论。这时学生的思维就会变得十分活跃,想出解决问题的许多办法:有的组联想到利用商不变性质,被除数和除数同时扩大10倍,;也有的组联想到化成较低单位的数。
三、优化方法,教师把学生的表达用简练的语言总结。让学生明白,小数除8以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的小数点画去,再把被除数的小数点向右移动,移动的位数取决于除数的小数位数。除数有几位小数,被除数的小数点就向右移动几位。最后通过一些课后练习及生活中的数学,让学生巩固方法。
在作业反馈中,我发现学生计算错误较多。主要表现在:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。
三、商的小数点与被除数原来的小数点对齐。
四、算时用商乘以移动小数点后的除数。
五、除到哪位商哪位,不够时忘记在商的位置上写0,再拉下一个数。新课标要求数学课程不仅应重视教学的内容和要求,更应充分关注课程中的学习过程,创设有利于学生发挥主体性和创造性的条件。在学习小数除法的时候,其实有很多性质和常识可以帮助我们初步判断商是否准确,比如被除数比除数小,商就比1小,被除数比除数大,商就比1大,被除数除以小于一的数,商反而大,包括之前提到的商不变的性质。可是学生由于缺乏生活经验,并不能很灵活的利用这些性质和意义,在求出错误商时,不注意检查!
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。这节课我努力做到以下几点:
一、情境教学培养数学兴趣。
数学来源于生活,创设生活情境,列举生活中的问题,更能唤起学生的生活经验,产生很想解决生活问题的冲动。这种生活味的数学带来的现实感和亲切感更能激发学生学习数学的兴趣。使枯燥的计算生活性、生动性、趣味性,让学生愿算、会算、算准、算活!
二、计算方法学生自主探索。
课前,教师出示问题,简便快速地引出这节课的问题----如何计算除数是小数的除法。因为之前学生已经掌握了相关的知识及小数除以整数的除法,所以学生可以利用这些知识经验探索一个数除以小数的计算方法。之所以能放手让学生在自主探索、反馈校正中获得经验,得出计算方法,关键在于我对计算教学有了新的认识:着眼学生可持续发展能力的培养。计算教学的目标不仅仅是让学生学会计算,还要对学生探究能力、知识迁移、合作交流能力进行培养。为以后的数学学习积累经验,打下基础。
三、学生自主优化计算方法。
《数学课程标准》非常强调:计算教学时,要鼓励算法多样化,要避免繁杂的运算,避免将运算与应用割裂开来。课堂上,我引导学生呈现各种方法,学生在理解各种方法的过程中,不仅思维得到锻炼,而且提高了自己对方法的优化。教师不强求学生用一种固定的方法,这会局限学生的思维,同时应该引导学生掌握好的方法。教学时我也注意到了不能一味地追求算法的多样化,而是让学生积极、主动地去探索众多算法中更简便的方法。学生在选择合理方法进行计算时,处理了算法的多样化与一般化之间的关系,渗透策略优化的思想。
四、实践应用感受数学价值。
过去的.解决问题,总是一些数学模式化后的习题。学生按照模式能很快地找到解决问题的方法。可以说,这些数学化的习题,降低了学生分析问题的能力。而本节课的实践应用,较真实地呈现给学生各种方案,学生在进行了比较的时候,自然地发现要运用今天所学的知识解题。这样的习题设计,一方面巩固了学生知识技能的掌握,另一方面也培养了学生学习数学的兴趣。
文档为doc格式。
。
学生试算,小组交流。(学生出现了几种列式计算方法,有的对,有的错了。)。
交流讨论:四人小组讨论:你认为这几种方法对吗?(在学生交流的基础上,师生归纳出:先把除数扩大成整数,再根据整数除法的`法则进行计算。)。
1.再次尝试:26.88÷0.96。
2.校对交流:除数是小数的除法,既可以把被除数和除数都转化成整数,也可以中把除数转化成整数,这两种方法都是正确的。
3.感受发现:先把除数扩大成整数,再根据整数除法的法则进行计算方便多了。
4.归纳小结。
1.判断:0.81÷0.9=81÷9。
6.6÷0.2=6÷2。
2.列式算一算:7.56÷1.2和3.216÷0.16。
3.实践运用。
学校要修建数学活动室,现有三家承包商参加招标,情况如下:在建造时间不超过6天的前提下,请你算一算,哪家承包商每平方米造价最便宜?(1)你会先考虑什么?再考虑什么?(2)四人小组讨论交流。(3)代表汇报。
承包商。
活动室设计面积(平方米)。
平均每天建造面积(平方米。
总造价(元)。
甲
14.4。
3.6。
374.4。
乙
15.6。
2.6。
413.4。
丙
19.6。
2.8。
446.88。
1.基本练习。
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。
一个数除以小数是人教版五年级上册第三单元的内容。是在学生学习过除数是整数的除法后进行的。除法的学习由口算过渡到笔算,在三年级学生已经接触到了,不过所认识的都是除数是一位数的除法,学生基本上明白了要怎样去操作,但是到了五年级学生学习小数除数时,他们往往都存在着不同程度的疑惑,主要是小数点的位置把握不准。由于对教材把握不太透彻,这节课有地方讲的不够透彻。在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,
也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、算时用用商乘以移动小数点后的除数。
五、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
时地指点,这样或许效果会好许多。
就应该当作整数除法来算,当整数部分除完还有余数时,应该先在商中间打上小数点,再添0计算。我改学生的.作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。在以后的教学中,要尽量避免以上情况。
听了冯老师执教的《一个数除以小数》一课,收获颇多。总的认为这一课设计巧妙、思路清晰,流畅,重点突出,充分体现教师主导,学生主体作用。具体评议如下:
1.加强知识之间的联系,由旧引新。在课堂开始,采用复习的方法。出示三组算式,复习了一个数除以整数的计算,在最后一组算式中很自然的引出了今天所要学习的知识《一个数除以小数》。
2.充分发挥学生主动性,引导学生积极探索。教师通过让学生自己去观察每组算式中被除数、除数、商的变化,探索总结出了商不变原理。并在随后探索一个数除以小数出现被除数位数不够时,都是先由学生自己去观察思考总结,教师知识对学生的`表达做出规范。
3.教师点拨及时到位,做好总结。当学生板演出现问题时,教师耐心纠正他们的错误,让学生对错误有深刻的认识。课堂上教师注重知识的条理性,适时对学法进行总结。有商不变原理的总结,还有在进行一个数除以小数时,让学生注意:商的小数点要和被除数移动后的小数点对齐。这是在计算一个数除以小数时,特别要注意的地方。
4.题型设计多样,富有梯度性。题目有填空乐园、神医诊断、列竖式计算等,题目由易到难,符合学生的认知水平和接受能力。
建议:
1.在观察三组算式时,教师应给出每个算式的结果。那样更便于学生理解商不变的原理。
2.1.19/0.17当学生进行板演后,教师应在黑板上呈现正确的书写过程,因为这毕竟是学生第一次计算一个数除以小数,教师应给学生最标准的示范。
3.上的字和背景的颜色不太合适,学生看起来比较费劲。
将本文的word文档下载到电脑,方便收藏和打印。
教学目标:
1.初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。
2.掌握将小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的思想。
教学重点:
理解除数是小数的`除法的计算法则和算理。
教学难点:
掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用“0”补足的方法。
教学工具:
课件,实物投影。
教学过程:
1、复习除数是整数的小数除法。
5.04÷6=50.4÷60=。
(1)竖式计算5.04÷6=。
(2)不计算说出50.4÷60的商。(根据被除数和除数变化相同,商不变)。
2、新课引入。
(1)列式。
(2)与前面两题比较有何不同。(板书:一个数除以小数)。
(3)能转化成除数是整数的除法来算吗?为什么?
(4)怎样列竖式?
小结:一个数除以小数,根据“被除数和除数的变化相同,商不变”,可通过把除数和被除数的小数点同时向右移动相同的位数,转化为除数是整数的除法来计算。
3、基本练习一。
竖式计算下列各题。
62.4÷2.6=0.544÷0.16=12.6÷0.28=。
(1)说一说,怎样以上各式转化成除数是整数的除法。
(2)竖式计算,学生1号本上演算,三位学生板演。
(3)集体评讲。注意第三题,被除数的小数位数不够时,怎么办?(用“0”补足)。
基本练习二。
1.8÷0.24=21÷1.4=。
小结:当被除数的小数位数不够足时,用“0”补足。
4、基本练习三。
独立完成书22页“做一做”的第2题,先判断对错,说明错在哪里并且改正。
5、总结:通过今天的学习,说一说一个数除以小数的计算方法是什么?
6、作业布置。
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。这节课我努力做到以下几点:
一、情境教学培养数学兴趣。
数学来源于生活,创设生活情境,列举生活中的问题,更能唤起学生的生活经验,产生很想解决生活问题的冲动。这种生活味的数学带来的现实感和亲切感更能激发学生学习数学的兴趣。使枯燥的计算生活性、生动性、趣味性,让学生愿算、会算、算准、算活!
二、计算方法学生自主探索。
课前,教师出示问题,简便快速地引出这节课的问题----如何计算除数是小数的除法。因为之前学生已经掌握了相关的知识及小数除以整数的除法,所以学生可以利用这些知识经验探索一个数除以小数的计算方法。之所以能放手让学生在自主探索、反馈校正中获得经验,得出计算方法,关键在于我对计算教学有了新的认识:着眼学生可持续发展能力的培养。计算教学的目标不仅仅是让学生学会计算,还要对学生探究能力、知识迁移、合作交流能力进行培养。为以后的数学学习积累经验,打下基础。
三、学生自主优化计算方法。
《数学课程标准》非常强调:计算教学时,要鼓励算法多样化,要避免繁杂的运算,避免将运算与应用割裂开来。课堂上,我引导学生呈现各种方法,学生在理解各种方法的过程中,不仅思维得到锻炼,而且提高了自己对方法的优化。教师不强求学生用一种固定的方法,这会局限学生的思维,同时应该引导学生掌握好的方法。教学时我也注意到了不能一味地追求算法的多样化,而是让学生积极、主动地去探索众多算法中更简便的方法。学生在选择合理方法进行计算时,处理了算法的多样化与一般化之间的关系,渗透策略优化的思想。
四、实践应用感受数学价值。
过去的.解决问题,总是一些数学模式化后的习题。学生按照模式能很快地找到解决问题的方法。可以说,这些数学化的习题,降低了学生分析问题的能力。而本节课的实践应用,较真实地呈现给学生各种方案,学生在进行了比较的时候,自然地发现要运用今天所学的知识解题。这样的习题设计,一方面巩固了学生知识技能的掌握,另一方面也培养了学生学习数学的兴趣。
2.检复:复习与本节教学相关的知识,打好铺垫,为知识迁移、完成教学任务奠定知识基矗例如,列式解答以下四道题:(1)一台拖拉机每小时耕地5公顷,3小时耕地多少公顷?(2)一台拖拉机每小时耕地0.5公顷,0.6小时耕地多少公顷?(3)一台拖拉机每小时耕地15公顷,3小时耕地多少公顷?(4)一台拖拉机每小时耕地5公顷,15小时耕地多少公顷?比较以上4道题,有什么异同?(数量不同(有整数、小数、分数);数量关系相同。)。
(二)新授阶段。
1.认知。
2.练习。
(1)巩固练习,教材练习三第2题。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/wenmizhishi/158894.html