首页 > 范文大全 > 文秘知识

最新人教版数学六年级数学教案 六年级数学教案(精选9篇)

最新人教版数学六年级数学教案 六年级数学教案(精选9篇)



作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

六年级数学教案

1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。

2. 培养学生对看到的、听到的事物进行了深入理解和准确把握。

3. 观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。

培养学生的对看到的、听到的事物进行了深入理解和准确把握。

开拓学生是思维能力。

要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。愿这一节课能使你的头脑更灵活。

1.课件出示:一组有趣的图片

图1:柱子是圆的还是方的?仔细看一看。

让学生先同桌互相说一说,看到了什么?

图2:看着黑点身体前后移动。

让学生跟着要求做,然后说一说看到的。

图3:有多少个黑点?

图4:是静的还是动的?

图5:“弗雷泽螺旋”是最有影响的幻觉图形。

教师介绍学生认识。

2、练习。

学生谈收获。

六年级数学教案

1、经历了解税收的意义、解决有关税收实际问题的过程。

2、了解税收的有关知识,会解答有关税收的实际问题。

3、体会税收在国家建设中的重要作用,培养依法纳税的意识。

会解答有关税收的实际问题。

学生课前去进行各种税种的调查,初步了解它们的含义。

(一)谈话导入

对,这个餐厅知法、守法,开发票对谁有好处?

开发票减少了餐厅的利润,但却增加了国家的税收,看来越来越多的人具有了纳税意识,今天我们就一起来学习有关纳税的'知识。

板书:纳税

(二)了解纳税及其作用

1、你知道哪些纳税的知识?

2、那今天这节课你还想学习哪些纳税方面的知识?

(什么是纳税?为什么要纳税?怎样纳税?……)

3、要想更多更准确地了解这方面的知识,可以通过什么样的方法或途径来学习呢?

(看书、查资料、上网、去税务局或向税务局的亲戚朋友了解这方面的知识……)

4、让学生自由说一说

纳税就是根据国家各种税法的规定,按照一定的比率,把集体或个人收入的一部分缴纳给国家,纳税是件利国利民的大事,只要人人都有纳税意识,我们的国家一定会更加繁荣、富强!

5、说得很好,同学们通过刚才的学习已经了解了什么是纳税,为什么纳税,可作为小学生,光了解这些还不够,还应争当小纳税人,学会怎样纳税!

教师介绍上网查询内容,纳税有哪几个步骤?

在这几个步骤中,哪个与数学密切相关?要运用到哪部分数学知识?

(百分数、百分数的计算)

究竟怎样运用这部分知识呢?谁知道如何纳税?怎样计算税款?

(应纳税额与各种收入的比率叫税率。应纳税额=各种收入×税率)

板书公式:各种收入×税率=应纳税额

应纳税额简单的说就是指什么?(应交的税款)

各种收入呢?是一定的吗?税率是一定的吗?你了解哪些税率(不同的税率)

那我选这个3%的来还!为什么不行?(根据税种选择税率来还。)

那你会哪种税种的计算方法?(消费税、营业税……)

都会算了吗?看这道题会算吗?(例1)

板书:230×5%=11、5(万元)

230是什么?5%是什么?230×5%表示什么?

可能说,什么是应纳税所得额。

师:谁能帮助他?个人所得税怎样计算?

师:对,只要有工资收入的公民都有可能要交个人所得税!

(出示:个人所得税图表)

能看懂吗?什么意思?

帮我算算好吗?(猜猜我的工资收入?)

板书:2100+380—20xx=480(元)

480×5%=24(元)

谢谢大家,我一定会依法纳税的!

(三)练一练

练一练1—4题

(四)总结

如果没有,那老师这有几个话题想和同学们一起探讨!

主题

1、你能为自觉纳税设计一句广告语吗?

2、如果我是税务稽查员,如何防止偷税、漏税行为?

3、我们能为纳税做些什么?

板书设计:

纳税

各种收入×税率=应纳税额

230×5%=11.5(万元)

六年级数学教案

教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。

2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。

教学过程:

一、应用广角

1、问:你在生活中发现过哪些数学问题吗?

你能运用所学的数学知识和方法解决这些问题吗?

2、完成第27题

(1)课前预先布置学生按要求去调查

(2)课上,让学生分组汇报调查得到的数据

学生根据数据计算,完成填空

(3)分析:从这些信息中,你们知道了什么?

用百分数或比表示相关的信息有什么好处?

3、完成第28题

收集一些用百分数或比表示的信息,在小组里交流

4、完成第29题

根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。

全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。

5、完成第30题

(1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板

读题,思考:剪去的`每个正方形的边长应该是几厘米?

(2)学生动手剪一剪、折一折

找一找:这个纸盒的长、宽、高各是多少?

(3)算一算:

制作这个纸盒用了多少硬纸板?

这个纸盒的容积是多少立方厘米?

6、完成第31题

学生先独立思考,再全班交流

二、自我评价

1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。

2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。

六年级数学教案

从知识角度分析为什么难。

打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

从学生角度分析为什么难。

学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

一、复习旧知,引入新课。

1、提问“一件物品打九折出售”表示什么意思?

2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)

二、教学新知。

(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

1、根据这些信息,学生提问题。

教师板书:

(1)在a、b两个商场买,各应付多少钱?

(2)哪个商场省钱?

2、分析问题,理解题意。

(1)结合题目给出的数学信息,哪些是关键的?

(2)怎样理解“满100元减50元”?

(3)不足100元的部分呢?怎么办?

3、独立思考,尝试解决。

师:请同学们独立思考,看能否解决黑板上的这两个问题?

4、交流并汇报方法。

师:谁来说说自己的解决方法?

学生展示自己的算式,并解释。

5、启发思考,辨析原因。

(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?

(2)什么情況下两种优惠是一样的呢?

6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:

(1)“满100减50”,就是够100才能减50,不够则不减。

(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

(3)售价刚好是整百元的时候,两种优惠结果才是一样的。

三、练习巩固,提高能力。

1、做一做。

某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

(1)在a、b两个商场买,各应付多少钱?

(2)选择哪个商场更省钱?

同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

六年级数学教案

比的应用的'练习课。(教材第55~56页练习十二第3~7题)

1、复习巩固按比分配问题的解题方法。

2、进一步培养学生应用知识解决实际问题的能力。

重难点:会灵活运用按比分配问题的解题方法解决实际问题。

教学过程

一、基础练习

1、师:比的意义和基本性质是什么?(点名学生回答)

2、教材第55页练习十二第5、6题。

(学生独立完成,集体订正)

3、师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

引导学生回顾按比分配的两种解题方法。

二、指导练习

1、教学教材第55页练习十二第3题。

(1)组织学生观察图画,理解题意,了解信息。

(2)组织学生小组讨论,如何解决问题。

教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

(3)交流后,学生独立完成,集体订正。

六年级数学教案

1.使学生能正确判断应用题中涉及的量成什么比例关系.

2.使学生能利用正、反比例的意义正确解答应用题.

3.培养学生的判断推理能力和分析能力.

教学重点

教学难点

利用正反比例的意义正确列出等式.

教学过程

一、复习准备.(课件演示:比例的应用)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间.

2.路程一定,速度和时间.

3.单价一定,总价和数量.

4.每小时耕地的'公顷数一定,耕地的总公顷数和时间.

5.全校学生做操,每行站的人数和站的行数.

(二)引入新课

教师板书:比例的应用

二、新授教学.

(一)教学例1(课件演示:比例的应用)

1.学生利用以前的方法独立解答.

14025

=705

=350(千米)

2.利用比例的知识解答.

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设甲乙两地间的公路长千米.

答:两地之间的公路长350千米.

3.怎样检验这道题做得是否正确?

4.变式练习

(二)教学例2(课件演示:比例的应用)

1.学生利用以前的方法独立解答.

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

3.如果设每小时需要行驶千米,根据反比例的意义,谁能列出方程?

六年级数学教案

教材第110页第3题,练习二十五第8~13题。

1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。

2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。

3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。

重、难点:解决三角形相关问题,画一个图形的轴对称图形。

1.复习三角形的特性。

指名说一说三角形有什么特性,并举例说明三角形特性在

现实生活中的.应用。

2.复习三角形三边之间的关系。

指名说一说三角形三边有什么关系。

强调:三角形任意两边的和都大于第三边。

3.复习三角形的分类。

三角形可以分为哪几类?你是怎么分的?

4.完成教材第110页的第3题。

二、复习轴对称、平移

1.举例说明生活中常见的轴对称图形。

2.说说轴对称图形的特点。

3.平移。

三、复习观察物体

在同一角度观察物体,最多能看到物体的几个面?

四、课堂练习

完成教材练习二十五第8~13题。

五、课堂小结

我们这节课复习了什么内容?你有什么收获?

六、同步训练

教学至此,敬请选用《新领程》相关习题。

六年级数学教案

课本第57——58页“扇形统计图“。

1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

3、提高学生的实际应用能力。

认识扇形统计图,了解扇形统计图的特点与作用。

学生的实际应用能力的提高。

课件

一、复习旧知,引入新知

1、电脑课件呈现下表

种类摄入量/克占总摄入量的百分比

油脂类50

奶类和豆类450

鱼、禽、肉、蛋等类600

蔬菜和水果类900

谷类1800

2、电脑课件呈现统计图(或以学生的作品亦可)。

3、引入新知。

二、探索交流,获取新知

1、什么样的统计图是扇形统计图呢?

2、了解扇形统计图特点

3、即时练习。

完成课后的“说一说”。

(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。

(2)说一说,你有什么体会。

学生说信息,并计算各种成分的百分比

汇报计算结果,订正

学生发言、交流

学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

观察,说出获得的信息

根据教师引导说出发现

从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

观察数据,发现,说出不同,说出自己的看法

进行计算,订正

三、小结本课学习内容

揭题,板书课题:扇形统计图。

出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)

四、巩固升华

完成课后“试一试”。

1、比较各项活动时间,说一说有什么不同。提出数学问题

2、总时间是多少?各项活动时间可以怎么计算?

3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。

五、全课小结:你今天有什么收获?还有什么不懂的地方?

板书设计:

扇形统计图

能清楚地反映整体与部分的关系。

六年级数学教案

(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)

相关内容

热门阅读
随机推荐