教师需要仔细研读教材,分析教学内容,才能编写出有效的六年级教案。接下来是一些经验丰富的老师总结的六年级教案,希望对大家的教学有所启发。
学生的数学学习过程就是利用学生已经学过的只是和现在有的经验基础,然后理解更高更深更复杂的知识。数学强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的.运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重、难点。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程。
向大家介绍一位德国数学家,狄利克雷,他在数学上的贡献涉及数学的各个方面,他痴迷于数学,关于他有一件趣事:他的第一个孩子出世时,向岳父写的信中只写上了一个式子:2+1=3。
今天我们就来学习狄利克雷首先明确提出来的抽屉原理。
齐读课件上的话。
下面让我们一起探究抽屉原理。
抽屉是做什么用的呢?-----放东西的板书抽屉。
有了放东西的,还要有什么?----要放的东西我们就假设要放的东西是苹果板书苹果。
下面我们就来研究往抽屉里放苹果,(1)苹果数抽屉数。
师解释:今天我们研究物品数比抽屉数多的情况,比如,7个苹果任意放入6个抽屉……。
(2)任意放………任意放是什么意思呢?
生:想怎么放就怎么放。
如果我们来把4个苹果任意放入3个抽屉会有几种放法呢?
学生发言,师点击课件。
判断:把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。(课件出示)。
指明判断并说出理由。(大家听明白他的发言了吗?)。
大家看老师把“总有”加圈圈了。
“总有”是什么意思?
生……。
师:总有就是肯定存在,抽屉原理就是对存在性的研究板书:存在性。
有的同学要说好简单,这就是抽屉原理吗?我告诉你,比其他抽屉放的苹果多的抽屉就是抽屉原理的研究对象.
第一种放法里我们要研究的抽屉是哪一个?
第二种放法里我们要研究的抽屉是哪一个?
第三种放法里我们要研究的抽屉是哪一个?
第四种放法里我们要研究的抽屉是哪一个?
研究对象我们已经找到了,研究什么呢?请看题.
把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。这个抽屉里至少有()个苹果。(课件出示)。
师:“至少有2个苹果是什么意思?”“至少有2个”加圈圈。
生:(也可能比2个苹果多)。
师:为什么比其他抽屉放的苹果多的抽屉里至少有2个苹果?
学生很自然说1、1、2的放法。
师:你为什么选择用这种方法说明至少放2个苹果,而不是其他三种呢?
生:其他三种都有空抽屉,做“至少”的结论没有说服力。
同学们,考虑最糟糕的情况这在数学上叫做“最不利原则”板书最不利原则。
师:谁能用一个除法算式来表示这种放法呢?
生4÷3=1……1。
师板书并问:4表示什么?板书苹果。
3表示什么?板书抽屉。
1表示什么?
1表示什么?
这个算式其实是在把4个苹果怎样分给3个抽屉?
生:平均分师板书:平均分。
课件:5个人中至少2人在同一个季节出生的.
这位算命先生算得准吗?为什么?
这个原则可以用一个什么算式表示呢?
生5÷4=1……1。
师板书并问:5表示什么?板书苹果。
4表示什么?板书抽屉。
1表示什么?这个1表示什么?
怎样得到至少几人在同一个季节出生?1+1=2。
刚才算命先生的判断中什么相当于苹果?什么相当于抽屉?
我给大家介绍抽屉原理时说,抽屉原理也叫做鸽巢原理。
下面的练习就用鸽子和鸽笼。
课件6只鸽子飞回5个笼子,至少有2只鸽子飞进同一个笼子。为什么?
什么相当于苹果?
什么相当于抽屉?
用一个什么算式表示呢?
生6÷5=1……1……。
师:一个抽屉里至少放几个苹果与什么有关?
生:与苹果数量和抽屉数量有关。
师:这几个算式有什么共同特点?
生:苹果总比抽屉多一个。
那么如果改变苹果总比抽屉多一个的条件,你还能找出一个抽屉里至少放几个苹果吗?下面我们继续研究抽屉原理.
7只鸽子飞回5个笼子,至少有()只鸽子飞进同一个笼子。为什么?
课件演示。
用一个什么算式表示呢?
生7÷5=1……21+1=2。
把5本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进()本书。这是为什么?
用一个什么算式表示呢?
生5÷2=2……12+1=3。
8只鸽子飞回3个笼子,至少有()只鸽子飞进同一个笼子。为什么?
用一个什么算式表示呢?
生8÷3=2……22+1=3。
你发现什么规律了呢?
一个抽屉里至少放几个苹果与什么有关?
生:与苹果数量和抽屉数量有关。
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(课件返回配合演示)。
总结:苹果除以抽屉数,再用所得的商加1。
板书:商加1。
2、要保证有2种不同花色至少抽多少张?
生:5张牌。
若不除去大小王,从中随意抽几张牌,总有两张牌是同一花色的?
4、若不除去大小王,要保证有2种不同花色至少抽多少张?
板书设计:。
抽屉原理研究:存在性问题。
方法:平均分。
依据:最不利原则。
苹果抽屉至少。
4÷3=1……12。
5÷4=1……12。
6÷5=1……12。
7÷5=1……22。
5÷2=2……13。
8÷3=2……23。
通过复习,使学生进一步理解、掌握数的概念,掌握有关性质,并能正确地判定数的范围。
数的概念。
灵活理解数的`概念。
自然数十进制的计数法多位数的读法。
整数。
小数的意义小数大小的比较。
数小数小数的分类无限小数(循环小数)。
有限小数。
小数的性质。
2、
3、整数和小数的数位顺预表。
4、整数、小数的读法。
5、万、亿做单位记数。
较大的数可用万、亿作单位进行改写不是整万、整亿的数可用小数表示。
如:18000000=1800万。
110600000=1.106亿。
6、近似数表示:
(1)四舍五入法(常用)。
(2)进一法。
(3)去尾法。
(1)填空。
a.学生练习。
b.反馈:说出正误理由,并讨论如何改正。
(2)判断。
a.学生练习判断。
b.反馈并说明理由。
(3)。
这个五位数是()。
b.把下列各数从小到大用符号连接起来0.70.7550.760.75。
c.用0、1、2、3、9这十个数字,每个数字只能、用一次,写出一个最接近十亿的整数。
d.课本第1-----6题。
1、用2、3、4分别去除一个数,正好都能整除,这个数最小是(),把它写成两个质数相加的形式是()。
2、互质的两个数的积是68,这两个数是()和()或()和()。
3、甲、乙、丙三个小朋友绕操场滚铁环,绕一周甲要3分,乙要6分,丙要9分。3人同时从同一地点出发,至少要()分,3人才能同时在出发地点相会。
作业本。
1、通过复习,使学生进一步掌握已学统计图的特点及绘制方法。
2、能够对统计图进行分析和,培养学生初步的分析辨异能力。
3、在绘制统计图中培养学生的审美情趣和负责态度。
一、揭示课题,展示目标。
要求通过对统计图的复习,达到下面的目标:
1、掌握统计图的特点及制作的方法、步骤。
2、会对统计图进行一些简单的分析。
3、绘制统计图时讲究整洁、美观。
二、回忆梳理,结成络(15分)。
组织回忆:统计这一单元的学习,你掌握了哪些知识?
三、组织记忆,融会贯通。
同桌间相互讨论,边说边记忆:复式条形统计图和复式折线统计图有什么异同?
经过讨论,使学生明白:复式条形统计图和复式折线统计图绘制步骤基本一样,如果连接每个直条的端点,就使条形统计图变成了折线统计图;而沿着折线统计图的各点画出直条,就转变成了条形统计图。
四、练习矫正,形成技能。
第11题。
(1)从图上可以看出旅行车从8:00到11:00行走的路程为180千米,时间是3时,所以速度是每时60千米。
(2)可以这样描述,先以每时60千米的速度行驶了3时,休息了1时后,又以每时60千米的速度行驶了1时,然后浏览了2时的景点,再以每时60千米的.速度行驶1时,总共行驶了300千米。
旅游车停留的3时,学生只要叙述合理就行。
第21题。
复习复式条形统计图。本题可以用排除法,由跑步可排除c,由跳远可排除a,再比较跳高可以排除b,选择d。
第22题。
复习复式折线统计图,纵轴可以1格代表2个人,可以让学生用两种颜色的笔描画折线图。鼓励学生从图中获得尽可能多的信息。学生也可以议一议,造成这种现象的原因,学生也许会说:从折线统计图也可以看出,营养不良的学生数大致呈逐年下降的趋势,说明人们的生活水平逐年提高。但肥胖的人数也比0年有较大幅度的增长,在生活提高的情况下,人们的饮食也要有所节制,要养成好的饮食习惯。
六年级下册第38—40页1—5题。
1、使同学牢固地掌握整数,小数、正负数等概念的意义,沟通知识之间的联系和区别。
2、使同学能熟练地读、写数,并进行数的改写。
3、通过自主探索和合作学习,使同学在整理复习中形成知识网络,学会复习方法,提高综合运用能力。
掌握有关数的意义和多位数的读写法,沟通联系,形成知识网络。
多媒体课件,练习纸等。
一、联系实际,引入课题。
1、谈话激趣。
谈话主题:日常生活中的整理话题。
同学联系实际举例,教师和时渗透整理的意义和整理方法。
2、迁移导课。
师:生活中我们很多地方用到了整理,整理也是一种非常重要的学习方法,这节课我们一起整理和复习有关数的基础知识。(板书课题)。
二、回忆整理,沟通联系。
1、数的搜集。
师:同学们,回忆一下我们学过哪些数呢?
同学回忆搜集学过的数(随着同学回忆屏幕上显示:整数、小数、自然数、正数、负数……)。
2、分类整理。
师:大家还记得这些数的意义吗?咱们看着大屏幕,小组内互相说一说。
各小组在班上交流,然后独立完成书38页第1题,集体证正。
3、数的读写和改写。
小组探究,一起参与。
同学自身举例,出示多位数,提出问题考考大家。
通过同学之间、组与组之间、师生之间相互提问、相互质疑、相互争辩、相互评价,完成知识构建。
三、综合练习,加深理解。
填空:(1)在0、8、-15、10、3.15、-3.7、0.43中()是自然数,()是小数,()是整数,()是正数,()是负数。
(2)九亿六千万四百三十写作(),四舍五入到亿位记作()。
(3)二百零七零零四写作()。
(4)53005300读作()。
(5)3.92保存一位小数约是()。
四、总结全课学习情况。
五、作业。
教科书39—40页3、4、5题。
抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的.思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
1.通过复习进一步了解间隔现象、简单搭配、排列现象、简单周期现象和简单图形覆盖现象中的规律。
2.能正确、熟练地运用发现的规律解决相应的实际问题,提高分析推理能力。
3.在探索规律、运用规律的过程中,感受数学与生活的联系,体验探究的乐趣。
教师准备四、五年级教材中的相关内容。
谈话:数学无处不在,在同学们生活的周围,存在着许许多多的数学规律,运用这些规律我们又能解决很多实际问题。今天这节课,我们复习以前学习过的《找规律》的一些知识。
1.间隔现象的排列规律。
植树现象:
在首尾相接的封闭排列中,物体的个数与间隔数是相等的。类似的现象还有锯木头、爬楼梯等。
学生读题后独立思考并解答,然后交流。
教师及时小结:要求需要多少棵树苗,先要求出这条公路有多少个20米,即先算出间隔数。因为是在公路一侧从头到尾种树,所以杨树棵数比间隔数多1。
2.简单搭配、排列现象中的规律。
师:生活中经常会遇到与搭配有关的实际问题,如:服饰选配、饮食搭配、路线选配用符号表示,有顺序地思考是解决这类问题的有效方法。
学生独立思考并解答,然后交流想法。
3.简单周期现象中的规律。
师:通过观察发现简单周期现象中的规律,能根据规律确定某个序号所代表的是什么物体或图形,计算周期规律排列的某类物体或图形一共有多少个。
学生独立思考并解答后交流。
教师及时小结:因为北京奥运这四个字依次重复出现,所以把每4个字看作一组,244=6组,没有余数,说明第24个字是第6组的最后一个字,也就是运字。(同理分析第2个问题。)。
4.简单图形覆盖现象中的规律。
师:可以用平移的方法探索并发现简单图形覆盖现象中的规律,根据某个图形平移的次数推算出被该图形覆盖的总次数,从而解决相应的实际问题。
在探索和发现规律的过程中,画图、列举、计算都是常用的策略。
学生独立思考后解答,再交流想法。
课前思考:
现在进入到复习阶段,在和学生一起学习的同时,也越来越感受到自己本身知识的缺乏,就拿孙老师所说的间隔问题。这是学生之前学过的知识,而且也有一定的规律,很多学生都没有掌握好。作为一个新老师,我也不了解这方面的知识。但由于在练习中遇到这类题型,知道是间隔问题,所以我去请教了任教四年级的数学老师。从另一个层面来说,作为一名毕业班的教师,我一直是处于被动的状态中,一直要发现问题才想去解决问题。在讲解练习的过程中,我和学生一起学习了有关间隔问题的求法,从学生的反馈来看,大部分学生是一脸茫然。孙老师本节课的安排,可以让学生再次巩固一下。
课前思考:
在6月3日与5日的会议上,朱红伟老师与苏主任都谈到了在检测中要对《找规律》与《解决问题的策略》这两个内容需要检测,检测的难度限于例题与试一试,我想要进行系统的复习可能化时比较多。看了四~六年级的教材,其中替换、倒推是解决问题策略中学生比较难理解的内容,图形的平移规律是找规律中不太用,学生可能已经遗忘的知识点,否可以补充一些五六年级这两方面内容的例题,在讲解分析例题的同时帮助学生复习整理。建议将这两个内容花一课时时间复习。
课后反思:
有关植树问题较之前相比,很多学生都能掌握,但在做巩固练习第一题时有一小部分学生都没有做对,究其原因主要是这题求的是间隔数而不是通常求的棵数再加上在公路的两边都种月季花,所以一部分学生没能转过弯来。
在巩固练习第3题的基础上,我让学生思考:如果把李老师在张老师的右边,王老师在李老师的右边这一条件去掉,一共有多少种不同的坐法?学生完成得也不错,从这节课的复习情况来看,找规律的知识学生基本都能掌握。
义务教育课程标准实验教科书第12册89页“与反思”和“练习与实践”2、3-5,第90页上第6题。
1、进一步复习巩固加法和乘法运算律以及减法和除法中的一些运算规律。
2、能运用运算律使计算变得简单。
3、培养学生合理、灵活计算的能力。
运用运算律使计算变得简单。
1、我们已经学过的运算律有哪些?请先将第89页上的表格填写完整。
2、说说各运算律用语言文字怎么理解?
3、除了这几个运算律,在减法与除法中还有哪些规律?引导学生得出减法与除法中的规律,并用字母表达式表示。
1、第89页上第2题。
要求先分析各题特征,看能否运用运算律使计算简便?怎样简便计算?
要求学生独立完成,指名板演。
分析校对。
2、第89页上第3题。
分析这4题特征,看能否运用运算律使计算简便?怎样简便?
要求学生独立完成,指名板演。
分析校对。
3、拓展练习(一)出示:(见补充练习纸)。
拓展练习(二):第90页上第6题。
先让学生用计算器计算。再观察前两题的简便计算过程,再按照这样的方法计算后两题。
拓展练习(三)出示:(见补充练习纸)。
(由于补充的习题中有分数,无法发帖,所以只能发在共享空间了)。
复习这部分的内容主要抓住两点进行:一是明确整数.小数和分数的混合运算顺序相同。没有括号的,如果是同一级运算从左往右依次计算;如果是含有两级运算的先算第二级,再算第一级。有括号的,先算小括号里面的,再算中括号里面的,最后算括号外面的。二是加法和乘法运算律既适用于整数,又适用于分数和小数的运算。练习与实践中,要借助第2题,让学生补充其它一些运算性质或运算规律,高教导又补充了一些具体的题目丰富学生的运算知识。
四则混合运算主要是让学生掌握运算顺序,以提高自己的计算能力。一些经常练习的简便计算学生基本掌握得不错,但也有个别学习困难生掌握的不好,在复习的时候要特别关注他们的学习情况。
我的几点看法:
最近我一直正在关注抽屉原理,刚好听了高玉东老师的这节课,我来谈一下我的几点看法。
一:我认为高老师的课三言两语直入主题,节省了时间,这是构建高效课堂的基础。有的老师讲课导入部分太长,浪费了时间,我们应该借鉴一下,缩短我们导入新课的时间。
二:过程清晰。高老师吃透了教材,把教学过程呢设计的由易到难,层层递进,是学生易于接受。这凸显了高老师把握教材的能力,使我感受很深,也是我今后努力的'方向。
三:我讲一下我的几点看法。我研究了抽屉原则的几个主要方面。
1.我认为在教学的过程中应结合具体的例题讲一下什么是至少,让学生先理解了至少的含义在具体的教学。抽屉原则这类的题我考过其他的成年人,他们刚读题时不理解至少的含义,所以做错了,我认为学生也不好理解,所以讲一下至少的含义再继续往下教学。
1、通过阅读统计图表以及实际调查和测量,了解我国城市以及所在学校的人均绿化面积,体会绿地对于改善居住环境的意义。引导学生认真阅读统计图表,对所阅读的材料和所调查所得的材料能够进行科学的分析与反思,培养学生分析数据的能力。通过调查和阅读等活动,体会到我国与先进国家在绿化方面的差别,从小培养学生的绿化和环保意识。
2、阅读分析教材提供的材料,了解我国水资源的现状。小组合作实验获得滴水龙头、洗脸,洗手的用水量,完成统计表和统计图。估算、推算出相关数据。通过对数据的分析对比,增强节水意识。
3、通过综合应用,培养学生应用数学知识与方法解决实际的能力,提高学习数学的兴趣。
一、复习绿地面积。
(一)阅读分析。
1、出示两张统计图(书上第121页的图)。
2、从图中你获得了哪些信息?
(1)先自己观察。
(2)再把观察到的与同桌交流。
(3)再集体交流。
3、解决表后问题。
(1)学生独立完成。
(2)集体交流。
4、你还能提出哪些问题?
5、我国绿化情况与世界其他国家相比,情况怎样?你了解吗?
(1)看书了解。
(2)学生补充介绍。
(3)对于这些信息,你有什么想法和看法?
(二)实践反思:我校的绿化情况怎样呢?
课前同学们进行了调查和走访,说说你们的调查情况。
(1)实物投影(或黑板出示)学生的调查情况。
(2)通过调查和统计,你有什么收获?
(3)你认为可以怎样改善学校的绿化环境?
(4)阅读你知道吗?并算一算有关问题。
二、复习保护水资源。
(一)创设情景,引起思考。
1、播放2007年5月太湖水污染,无锡自来水变质,市民抢购纯净水的场景。
2、播放我国北方干旱的场景。
说说你有什么想法,揭示课题《保护水资源》。
(二)阅读资料,了解国情。
阅读教材提供的这段资料后,先让学生结合具体情境,说说资料中有关分数和百分数的实际含义,再让学生说说相关的感想:重点要使学生体会到:我国是一个水资源比较少的国家,而且水资源的分布很不均衡。
(三)合作实验,完成图表。
从下面任意选择一项实验,先小组合作获得数据,再通过计算完成统计图表。
实验一、了解一个滴水的龙头在一段时间里流失的水量。
实验二、比较刷牙、洗脸时连续放水或用容器盛水的用水量。
实验三、比较用不同流量的水洗手时的用水量。
小组分工合作,老师分头指导。
做滴水龙头在一段时间内流失水量的实验时,一要为每组学生准备好量杯和计时工具;二要提醒学生每隔半分钟作一次记录。推算1小时、1天、1年流失的水量时,先要根据实验数据算出平均每分钟流失的水量,再用这个数据依次乘60、(6024)、(6024365)。要提醒学生使用计算器,并注意单位的换算。
先记录一个同学用流水刷牙、洗脸的时间,再把相同时间流出的水收集起来,并量出有多少升。
做不同流量的水洗手时的用水量实验时,可用容器直接接住流水,并用量杯量出有多少升。推算全班一年共可节约多少吨水时,可以先算出全班同学1天能节约多少升,再用算出的结果乘365天,最后根据1升水重1千克算出一年节约的水有多少千克,并换算成以吨作单位的数。
(四)分析数据,畅谈体会。
通过实验和计算,你有哪些收获和体会?
观察口常生活中有哪些浪费水的现象,想想哪些节约用水用水的办法,在全班交流。
(五)顺势引领,课外延伸。
节水、护水从我做起,从现在做起!
课后每人写一条节水、护水的广告词。
三、巩固练习。
详见共享空间。
课前思考:
《保护水资源》是有关环保主题的一次活动。主要让学生通过阅读用数表达的信息以及试验和计算,体会数据对于分析和解决问题的作用,感受节约和保护人类生存资源的意义。
教材提供的一段有关我国水资源的文字材料需要学生认真阅读,初步认识到保护水资源的重要性和迫切性。
关于教材涉及的三项不同的实验,都需要学生在课外完成,所以我们可以利用双休日的时间让学生在完成书面作业的同时任选一项开展活动。对于很多学有余力的学生来说,让他们灵活运用所学知识去解决实际生活中的一些数学问题并发现问题是非常有意义的事情,更能激发他们学习数学的兴趣。
课后反思:
生活中需要综合应用数学知识来解决的实际问题有很多,除了教材提供的这两题外,为了便于学生进一步感受数学知识在生活中的应用,我在课上补充了这样两题,让学生独立思考,尝试解决。
1.光明小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的单价都是25元,但各商店的优惠办法不同。
甲店:买10个足球免费赠送2个,不足10个不赠送。
乙店:每个足球优惠5元。
丙店:购物满每200元,返现金30元。
为了节省费用,光明小学应到哪个商店购买?为什么?
1.图形的平移,图形的旋转。
2.图形的平移和旋转可以变换图形的位置,不能改变图形的大小。
3.图形的放大与缩小。
4.图形的放大与缩小不能改变图形的形状,但可以改变图形的大小。
5.轴对称图形。
1.通过复习,平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。
2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。
4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。
教师准备教学光盘。
1.提问:你知道变换图形的位置的方法有哪些?
引导学生说出变换图形的位置的方法主要是平移和旋转。
火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。
2.怎样能不改变图形的形状而只改变图形的大小?
引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。
3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?
区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。
联系:两种方法都不改变图形的形状。
引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)。
1.完成练习与实践的第1题。
先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。
2.完成练习与实践的第2题。
可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。
其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的位置,或平移旋转后的位置,最后连一连。
要使学生认识到:决定平移后图形位置的关键是平移的方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的角度。
把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。
要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。
3.完成练习与实践的第3题。
可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。
4.完成练习与实践第4题。
可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。
5.完成练习与实践的第5题。
可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。
展示学生设计的图案,及时组织学生互相评价。
通过复习,你对图形变换方面的知识又有了哪些新的认识?
完成《补充习题》的相关练习。
(其他练习见学校共享空间)。
在做练习与实践第一题时,一定要强调要画出这图形所有的对称轴,有几条画几条。平移和旋转是学生在四年级就学的内容,平移学生应该都能掌握,但旋转相信有一部分学生是有困难的。要让学生知道决定平移后图形位置的关键是平移的方向和平移的距离。在实际平移的过程中,可以让学生先平移这一图形相对应的点,再画出完整的图形。旋转的时候一定要强调先确定旋转的方向,绕着哪个点旋转,哪个点就固定不动,不管是旋转还是平移后的图形只是位置发生了变化,它的大小是不变的。
重点要让学生进一步明确:平移和旋转只是变换了图形的位置,不改变图形的大小;而图形的放大与缩小也是把图形进行变换的一种方法,只不过它是改变图形的大小,而不改变图形的形状。让学生结合典型的例题再说说把一个图形平移、旋转,或把一个图形放大、缩小的具体方法。
轴对称图形概念中一定要强调是完全重合,而不仅仅是一样就可以的。在做第一题时,要找出一个轴对称图形的所有对称轴。图形的平移和旋转中,旋转的操作要求对个别学生来说有一定的困难。在把一个图形按一定的比例放大中,平行四边形的一组斜边的画法出现了不少的错,通过实物投影仪让学生注意看清楚原来占了几格,现在应该占几格。
有关平移和旋转的这些知识是学生在中年级时学习的,所以大部分学生现在解决相关问题时一般没有困难。但正如同年级组的几位老师谈及的那样,在练习过程中还是有一些小问题不断出现,主要原因是学生作图时不够规范。通过现在的系统复习后能及时纠正一些小错误,也使学生意识到读懂题目意思后再做是非常重要的。
由于教学进度比较紧张,这个知识点难度不高,所以我在教学中,将这课时内容与下一课时内容:图形与位置合并在一课时中完成。从课堂情况看,大部分学生掌握不错,但操作题作图时不规范,经常需要提醒学生有漏掉的地方。个别学习困难生还需单独个别辅导。对他们来说,这么多的知识点早遗忘了,在一节课中要回忆、巩固相关的知识,确实问题蛮大的。
一、填空。(20分)。
(1)5、2、9可以摆出()个不同的三位数。
(2)六(1)班有25人参加了语文和数学兴趣小组。参加语文兴趣小组的有15人,参加数学兴趣小组的有18人,语数兴趣小组都参加的有()人。
(3)48名学生做游戏,大家围成一个三角形,每边人数相等,三个顶点都有人,每边各有()名学生。(4)时钟6时敲响6下,10秒钟敲完。10时敲响10下,需要)秒。(5)9个零件中有1件是次品(次品轻一些)用天平称,至少()次就一定能找出次品来。
(6)笼子里有若干只鸡和兔。从上面数10个头,从下面数34只脚,鸡有()只,兔有()只。(7)有黄、红两种颜色的球各4个,放到同一个盒子里,至少取()个球可以保证取到2个颜色相同的球。
(8)把5颗梨放在4个盘子里,总有()个盘子至少要放2颗梨。(9)一串彩灯按照“红、黄、蓝、绿”的规律排列着,第8个彩灯是()颜色,第25个彩灯是()色。
(10)两个点可以连成()条线段,三个点可以连成()条线段。
二、解决问题。(50分)。
1、在的班中,至少多少人中,一定有2个人的生日在同一个月?
2、你所在的班中,至少有多少人的生日在同一个月?
3、32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同个鸽舍?
4、在街上任意找来50个人,可以确定,这50人中至少有多少个人的属相相同?
7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友中才能保证有两人选的玩具相同。
8、一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。
三、加分题:(30分)。
2、5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的.颜色的配组是一样的。
3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。
4、2、4、6、?、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
5、学校组织了象棋、绘画和舞蹈兴趣小组,小a、小b和小c分别参加了其中一项。小a不喜欢象棋,小b不是舞蹈小组的,小c喜欢绘画。画一个表来帮忙,把信息记录下来,再进行推理。小a参加()组,小b参加()组,小c参加()组。
1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。
2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。
3.夏令营有400个小朋友参加,问:在这些小朋友中,
(1)至少有多少人在同一天过生日?
(2)至少有多少人单独过生日?
(3)至少有多少人不单独过生日?
4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗。试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。
6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有?
8.口袋中有三种颜色的筷子各10根,问:
(1)至少取多少根才能保证三种颜色都取到?
(2)至少取多少根才能保证有两双颜色不同的筷子?
(3)至少取多少根才能保证有两双颜色相同的`筷子?
9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。
10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。
11.证明:在任意的37人中,至少有四人的属相相同。
12.跳绳练习中,一分钟至少跳多少次才能保证在某一秒钟内,至少跳了两次?
13.一个正方体有六个面,给每个面都涂上红色或白色。证明:至少有三个面是同一颜色。
17.体育组有足球、蓝球和排球,上体育课前,老师让一班的11名同学往操场拿球,每人最多拿两个。试证明:至少有两个同学拿球的情况完全一样。
18.口袋里放有足够多的红、白、兰三种颜色的球,现有31个人轮流从袋中取球,每人各取三个球。证明:至少有4个人取出球的颜色完全相同。
21.为了丰富暑假生活,学校组织甲、乙两班进行了一次军棋对抗赛,每班各出五人,同时对弈。比赛时天气很热,学校给选手们准备了两种饮料,有可乐,有汽水,每个选手都选用了一种饮料。
试证明:至少有两对选手,不但甲班选手选用的饮料相同,而且乙班选手选用的饮料也相同。
23.100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票。
问:在尚未统计的选票中,甲至少再得多少票就一定当选?
24.有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。证明:在200个信号中至少有4个信号完全相同。
25.库房里有一批蓝球、排球、足球和手球,每人任意搬运两个。证明:在41个搬运者中至少有5人搬运的球完全相同。
27.六年一班27个同学排成三路纵队外出参观,同学们都戴着红色或白色的太阳帽。求证:在9个横排中,至少有两排同学所戴帽子的颜色顺序完全相同。
28.有n个队参加的足球比赛,已经赛了n+1场。证明:必有一个队少赛了3场。
首先,我对本节教材进行一些分析:
本节内容在全书及章节的地位:《抽屉原理》是义务教育课程标准实验教科书第十二册第五单元第一节。本节共三个例题,例1、例2的教材通过几个直观例子,借助实际操作向学生介绍抽屉原理,例3则是在学生理解抽屉原理这一数学方法的基础上,用这一原理解决简单的实际问题。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生的展示数学原理的灵活应用,让学生感受数学的魅力,贯穿初步的数论及组合知识。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1、基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、能力训练目标:
1)、会用“抽屉原理”解决简单的实际问题。
2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。
3、个性品质目标:
通过“抽屉原理”的.灵活应用感受数学的魅力,产生主动学数学的兴趣。
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。通过设计教学环节让学生动手操作,自主探索,小组合作交流的方法找到解决问题的关键,总结出解决问题的办法。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。通过不同类型的练习,以及观看鸽巢原理演示图,建构知识,从本质上认识抽屉原理,将抽屉原理模型化,从而突破难点。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。由于本节课的教学内容较为抽象,着重采用情境教学法,直观演示法与谈话法相结合的方式进行教学。
教学最重要的就是让学生学会学习的方法。授之以渔,而非授之以鱼!因此在教学中要特别重视学法的指导。本节课学生主要采用了自主、合作、探究式的学习方式。
由鲁宾孙航海故事引入:把三枚金币放进两个盒子里,至少有一个盒子会放几枚金币?把教学内容转化为具有潜在意义的让学生感兴趣的问题,让学生产生强烈的求知欲望,使学生的整个学习过程成为“探索”,继而紧张地沉思,寻找理由,证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
本题从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
六年级数学下册70页、71页例1、例2。
1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
经历“抽屉原理”探究过程,初步了解“抽屉原理”。
理解“抽屉原理”的一般规律。
相应数量的杯子、铅笔、课件。
让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?
摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1
(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)
(学生通过操作观察、比较不难发现有与上个问题同样结论。)
(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。
师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。
教师出示课件演示让学生进一步理解“平均放”。
3、探究n+1根铅笔放进n个杯子问题
师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?
让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。
师:7根铅笔放进6个杯子,你们又有什么发现?
……
学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。
学生汇报后引导学生用实验验证想法。
师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)
师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)
4、总结规律
a、先同桌摆一摆,再说一说。
b、你怎么分的?
引导学生知道再把两根铅笔平均分,分别放入两个杯子里。
(2)探究把15根铅笔放在4个杯子里的结论。
(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。
(4)教学例2
课件出示:
1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
学生汇报
小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。
师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的`结果。
1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?
2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?
板书设计:
抽屉原理
铅笔数(物体数) 杯子数(抽屉数) 总有一个杯子(抽屉)至少放进物体数
3 2 2
4 3 2
6 5 2
7 6 2
100 99 2
n+1 n 2
5 3 5÷3=1…2 1+1
15 4 15÷4=3…3 3+1
总有一个抽屉里至少放进物体的个数:商数+1
一、复习的意义:
期末复习是教师引导学生对所学习过的知识材料进行再学习的过程,在这个学习过程中,要引导学生把所学的知识进行系统归纳和总结,弥补学习过程中的缺漏,使本学期学生所学的数学知识条理化、系统化,从而更好地掌握各部分知识的重点和关键。要重视知识的系统化,避免盲目做题,搞题海战术。要能够按照素质教育的要求确实抓好复习工作,真正提高教学质量。
二、复习原则。
1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。
2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。
3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的.教学内容和教学方法,查漏补缺,集中答疑,提高复习效果。
三、具体做法:
1、制订切实可行的复习计划,并认真执行计划。制订复习计划要全面了解学生的学习情况,切实把握复习的具体内容,贯彻落实新课程标准的精神,使复习具有针对性、目的性和可行性。领会新课程标准的精神,把握好教材,找准重点、难点,增强复习的针对性。“标准”是复习的依据,教材是复习的蓝本。在复习中,要认真研究新课程标准,把握教学要求,弄清重点和难点,做到有的放矢。要引导学生反复阅读课本,弄清重点章节,以及每一章节的复习重点。要能够根据平时作业情况和各单元测试情况,弄清学生学习中的难点、疑点所在。做到复习有针对性,可以收到事半功倍的效果。
2、分类整理,梳理、张扬网络,强化复习的系统性。作为复习课的一个重要特点就是在系统原理的指导下,引导学生对所学的知识进行系统的整理,把分散的知识综合成一个整体,使之形成一个较完整的知识体系。从而提高学生对知识的掌握水平。
3、辨析比较,区分弄清易混概念。对于易混概念,首先要抓住意义方面的比较。如:求比值和化简比等。对易混概念的分析,能够帮助学生全面把握概念的本质,避免不同概念的干扰。对易混的方法也应该进行比较,以明确解题方法。如求比值和化简比。
4、一题多解,多题一解,提高解题的灵活性。有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养学生分析问题的能力,灵活解题的能力。不同的分析思路,列式不同,结果相同。收到殊途同归的效果。同时也给其他的学生以启迪,开阔解题思路。例如,分数和百分数应用题,虽然题目的形式不同,但它们的解题方法是一样的。复习时,要引导学生从不同的角度去思考,引导学生对各类习题进行归类,这样才能使所学的知识融会贯通,提高解题的灵活性。
5、复习题的设计不宜搞拉网式。应做到有的放矢,挖掘创新。数学复习不是机械的重复。什么都讲,什么都练是复习的大忌。复习一定要精要,有目的、有重点,要让学生在练习中完成对所学知识的归纳、概括。题目的设计要新颖,具有开放性,创新性,多角度、多方位地调动学生的能动性,让他们多思考,使思维得到充分发展,学到更多的解题技能。
6、对待学困生要细心、认真。面向全体学生,使不同层面的学生都有所提高,特别要做好补差工作。面向全体学生是实施素质教育的基本要义之一,最后的总复习更应该体现这一点。对本班学生要做到全面了解“学情”恰当对学生做出评价,正确引导学生搞好复习,以期他们取得好的成绩。这就要求我们对成绩较差的学生给与更多的关心。对他们的知识欠缺应及时给以补课,以免再一次吃夹生饭。因材施教,适当补习,不放弃任何一个学生,是我们的责任。
四、具体安排。
第一阶段:整体复习各个单元基础知识和能力的复习(书上总复习)。
第二阶段:综合练习,讲练结合(综合试卷)。
第三阶段:分层复习,查漏补缺。
给后进生特别的辅导和指导,查漏补缺。给优等生多做一些实践性较强的习题,提高分析解答能力。
12月27--29日:将知识点理顺,学生重温整册内容,了解平时错误或遗忘的内容。
12月30--31日:计算的专项复习,尤其是简便计算和解方程。
1月4--6日:分数(百分数)应用题的专项复习,将平时的错题展示,让学生在课堂上自己分析错误点,促使学生掌握正确的解题思路。计算的专项复习,尤其是简便计算和解方程。
1月7--10日:圆的专项复习,由于圆--这一知识掌握得比较好,所以主要是让学生注意在运用公式计算时的一些特殊性。
1月11--12日:统计、数学广角复习。
1月13--18日:整册教材的模拟测试。
更多。
学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的.过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
教学要求:
1.使学生理解除数是小数的除法的计算方法,初步学会除数是小数的除法计算方法,能正确地进行计算。
2.培养学生应用已经学过的知识解决新问题的能力,初步认识转化的思想和方法。
教学过程:
一、复习铺垫。
1.口算下面各题。
3.286.337.555.64。
0.3280.6330.7550.564。
提问:商的小数点位置是怎样确定的?
指出:小数除以整数,按整数除法算,商的小数点要和被除数的小数点对齐。
2.提问:
(1)除数扩大了10倍,要使商不变,被除数应该怎样?除数扩大了100倍呢?
(3)把5.344扩大10倍,小数点应该向哪边移几位?要扩大1000倍呢?
3.引入新课。
我们已经知道,被除数和除数扩大相同的倍数,商不变。(板书:被除数和除数扩大相同的倍数)而且也知道,把小数点向右移动一位、两位、三位......原来的数就扩大10倍、100倍、1000倍......今天就要应用这两方面的知识来继续学习小数除法。
二、教学新课。
1.出示例4。
学生读题。
提问:求平均每小时织多少米要怎样算?(板书算式)。
提问:这道除法计算题和上节课学习的除法计算题,有什么不同的地方?(板书课题)。
先启发学生思考:我们已经学会了除数是整数的小数除法。这道题的除数是小数,能不能依据过去的知识,把除数是小数的除法转化成除数是整数的除法来计算呢?让学生先作讨论,并在全班交流。
您现在正在阅读的冀教版《除数是小数的除法》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!冀教版《除数是小数的除法》教学设计现在再来说一说:怎样才能使除数变成整数?(把除数扩大10倍,要使商不变,也就是要得出原来的商,被除数应该怎样?(被除数也应该扩大10倍)教师在竖式中作出示范。结合说明:要把除数7.5扩大10倍,就是把除数的小数点向右移动一位,除数就变成整数了。为了简便,只要把除数7.5的小数点划去。除数扩大了10倍,要使商变,被除数47.85也要扩大10倍,只要把原来的小数点划去,向右移一位重新点上小数点,使被除数变成478.5。
追问:怎样把刚才的题转化成除数是整数的除法的?这样做的根据是什么?
提问:这题转化后,现在变成多少除以多少了?这样的题在会计算了吗?让学生把这道题做完后,教师检查学生在计算时,要注意说明商的小数点要和转化后的被除数的小数点对齐。
提问:除数是小数的除法要转化成怎样的除法再计算?是怎样转化的?把被除数和除数扩大相同的倍数,只要把小数点怎样移动?(在前面板书后接着板书:吟小数点同时向右移动)如果被除数不是47.85,而是4.785,除数仍是7.5(板书:
2.进行转化的专项训练。
(1)做练一练中的第1题。
(2)小结:把除数是小数的除法转化成除数是整数的除法的方法是:第一步,把除数中的小数点划去,使它变成整数;第二步,看除数扩大了多少倍,就把被除数也扩大同样的倍数,只要把被除数的小数点向右移动若干位。这样,就可以按照除数是整数的除法进行计算了。
三、巩固练习。
1.试做练一练中的第2题。
学生练习时,教师注意学生在转化时被除数和除数是否扩大相同的倍数,竖式中没有用的o是否划去。评讲时,再让学生说一说是怎样把除数是小数的除法转化成除数是整数的除法的。
2.让学生将练习十的第2题、第4题做在课堂作业本上。
四、课堂小结。
五、家庭作业。
练习十第3题。
六年级共有学生53人,通过一学期的努力,学生的学习习惯有一定的改善,思维水平有了一定的提高,绝大多数学生已能按时完成作业。其中还有少部分同学基础较差,只好想办法争取让他们获得一定的进步。
二、复习内容及要点:
1、分数乘法。
复习分数乘法和意义和计算方法,记熟单位“1”的判断方法,巩固训练简便计算;复习“求一个数的几分之几是多少”和“求一个数比另一个数多(或少)几分之几”的应用题,能快速确定一个数的倒数。
2、可能性。
复习时,能对生活中简单的随机现象发生的可能性大小做出确定性的描述。
3、分数除法。
复习巩固分数除法的意义和计算方法,强化训练解答“已知一个数的几分之几是多少求这个数”和“求一个数比另一个数多(或少)几分之几”的实际问题。
4、比。
复习比的意义,比与分数、除法的关系,比的基本性质,进一步巩固化简比和求比值,让每个学生都能运用比的知识解决有关的实际问题。
5、圆。
复习圆的组成、直径与半径的相互关系、扇形的组成、圆周率的意义、圆的周长与面积的计算公式、环形面积的计算公式,强化训练求圆的'周长与面积、环形的面积。
6、百分数。
复习百分数的意义、读法、写法,进一步训练小数、分数和百分数的互化。复习巩固求百分率的方法,并运用这些方法进行简单的计算。复习在理解、分析数量关系的基础上,正确地解答有关百分数的问题。
8、拓展平台。
复习“黄金比之美”和“智慧广场”,了解黄金比,能够用“一一列举”的方法解决简单的实际问题。
三、复习思路。
先分块复习,按照“数与代数”、“图形与几何”、“统计与概率”的顺序进行,然后进行综合练习,最后按单元引导学生查缺补漏、分层复习,让不同能力的学生得到不同的发展。
注重在复习中引导学生总结和提炼数学思想方法,并发挥好评价的激励功能。
四、具体安排。
12月19——23日引导学生分块复习查缺补漏。
12月26——1月6综合练习总结提升。
1月9——1月10再次查缺补漏。
1月11——1月12期末检测。
上衣的价钱是这套西服的()%。
2、从学校到文化宫,甲要20分钟,乙要16分钟。乙的时间比甲少(。
乙的速度比甲快()%。
3、()千米的60%是3千米;比40吨少20%()吨。
4、甲数是乙数的比是5:2,乙数比甲数少()%,甲数比乙数多()%。
5、五月份销售额比四月份增加15%,五月份销售额相当于四月份的()%,四月份销售额比五月份少()%。
6、六一期间游乐场门票八折优惠,现价是原价的()%。
儿童文具店所有学习用品一律打九折出售,节省()%。
7、1:5=()%=()40=4:()=()分数=()(填小数)。
8、光明饭店今年一月份的营业额是40万元,按规定要缴纳5%的营业税,还要按营业税的7%缴纳城市维护建设税,那么,这个饭店一月份需缴纳营业税()元和城市维护建设税()元。
9、爸爸去年一月份把0元存入银行,定期二年,如果年利率是2.5%,到期时一共可取回()元。
10.修一条公路,第一天修了全长的40%,第二天修了全长的37.5%,还剩180米没有修,这条公路共长()米。
修一条公路,第一天修了全长的40%,第二天修了全长的37.5%,第二天比第一天25米,这条公路共长()米。
二、判断。
1、100克的水里放入10克的盐,盐占盐水的10%。()。
2、李师傅今天生产的101个零件全部合格,合格率是101%。()。
3、3千克的.30%和30千克的3%重量相等。()。
4、一件衣服打七五折出售就是按原价的7.5%出售。()。
5、甲数比乙数少20%,那么乙数比甲数多20%.()。
三、选择。
1、某种商品打九折出售,说明现在售价比原来降低了()。
a、90%b、9%c、1/9d、10%。
2、今年油菜产量比去年增产1/5,就是()。
a、今年油菜产量是去年的102%b、去年油菜产量比今年少20%。
c、今年油菜产量是去年的120%d、今年油菜产量是去年的100.2%。
3、男工人数的25%等于女工人数的30%,那么男工人数和男工人数相比()。
a、男工人数多b、女工人数多c、一样多d、无法比较。
4、一种录音机,每台售价从220元降低到120元,降低了百分之几?正确的列式是()。
5、王宏4月5日在银行存了活期储蓄2000元,月利率是0.12%,到6月5日,他可以得到税后利息是多少元?(税后利息为5%)正确的列式是()。
a、20000.12%(1-5%)b、20000.12%2。
c、20000.12%2(1-5%)d、2000+20000.12%2(1-5%)。
四、解方程。
40%x+25%x=1301/5x+3/7=3/7x。
五、只列式,步不计算。
学校图书馆有科技书350本,故事书400本。
(1)科技书的本数是故事书的百分之几?
(2)故事书的本数是科技书的百分之几?
(3)科技书的本数比故事书少百分之几?
(4)故事书的本数比科技书多百分之几?
六、解决问题。
1、一个食堂十一月份烧煤50吨,比原计划节约了5吨,节约了百分之几?
2、学校数学小组的人数比美术小组的人数多20%,如果数学小组有30人,那么美术小组有多少人?(列方程解答)。
7.求阴影部分的面积,外圆的直径为6厘米。
一、认真思考,细心填(18分)。
1、2005年末全国总人口为1299880000人,约是()亿人。其中0――14岁的人口为279470000人,横线上的数读作(),改写成“亿”作单位的数是()亿,约是()亿,0――14岁的人口约占全国总人口的。
2、4.08立方米=()立方米()立方分米。
3、=12:()=×()=()÷5=2。
4、两个自然数共同的质因数只有3、5,那么它们的公约数有()个。
5、2006年宁夏空气质量为“良”以上的天数占全年天数的80%,宁夏空气质量为“良”以上的天数有()天。
6、在3、4、12三个数中增加一个能组成比例的数是(),这个比例是()。
7、少先队员表演体操,每行有男生x人,女生y人,站成8行,共有()人。
8、在0.25、125%、、2.5、2.这几个数中,最大的数是()。
9、一个圆柱和一个圆锥的底面半径和体积分别相等,圆锥的高1.5分米,圆柱的高是()。
10、某张平面示意图的比例尺是1:60000,2400米长的马路在图上应是()厘米。
二、火眼金睛,辩真假,并说明第5小题判断的理由(6分)。
1、《北京新闻报》报道:2004年北京市职工人均年工资超过3万元。这则消息表明北京市职工年工资都在3万元以上。()。
2、订阅《小学生学习报》的钱数与份数成正比例。()。
3、电视机厂为了能清楚地表示出上半年月产量的多少与增减变化的情况,应绘制折线统计图。()。
4、用98粒黄豆做发芽实验,结果全部发芽。发芽率是98%。()。
5、一个三角形的两个内角之和是100°,那么这个三角形一定是锐角三角形。()。
理由:
三、反复比较,精挑细选。(6分)。
1、中央电视台晚上新闻联播开始,用24小时计时法表示是()。
a、7:00b、19:00c、晚上7:00d、19小时。
2、要使623能同时被2、3整除至少要加上()。
a、1b、2c、5d、6。
3、甲、乙两个数的和是300,甲、乙两数的比是5:7,甲数是()。
a、120b、125c、175d、180。
4、右图是一个长3厘米、宽与高都是2厘米的长方体。将它。
挖掉一个棱长1厘米的小正方体,它的表面积()。
a.比原来大b.比原来小c.不变d.无法确定。
5、修一条3千米长的公路,单独修甲队要10天修完,乙队要8天修完。如果两队同时合修,几天能修完?列式正确的是()。
a、1÷(+)b、3÷(+)c、3÷(+)。
6、王强把1000元按年利率2.25%存入银行。两年后计算他缴纳20%利息税后的实得利息,列式应是()。
a.1000×2.25%×2×(1-20%)+1000。
b.[1000×2.25%×(1-20%)+1000]×2。
c.1000×2.25%×2×(1-20%)。
将本文的word文档下载到电脑,方便收藏和打印。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/tiaojushuxin/681866.html