教学工作计划是教师教学的重要参考依据,能够帮助教师合理安排时间,合理分配教学资源。下面是小编为大家整理的优秀教学工作计划案例,大家一起来学习和讨论。
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(2)能根据具体问题的实际意义,检验结果是否合理;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与。
活动2封面设计问题的探究。
活动3草坪规划问题的延伸。
活动4课堂回眸。
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与。
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究。
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸。
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸。
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
学习一元二次方程的解法,最终是要落实到它的应用上。本节课通过学习列一元二次方程解应用题,解决两类问题:面积问题及增长率问题,使学生体验“知识来自实践,又作用于实践”的辩证唯物主义观点。史老师围绕这一知识应用开展课堂教学。现就本节课的课堂教学评价如下:
首先,从教学目标制订来看,本节课的教学目标是掌握列一元二次方程解应用题的一般步骤:审--设--列--解--验--答;学会列一元二次方程解应用题。学会寻找增长率问题中的等量关系;了解数学源于生活,从数学的无穷奥秘,感受生活的丰富多采。培养学生理解问题、解决问题的能力。
这一目标比较全面、具体、适宜,能从知识、能力、思想情感等几个方面确定,并且知识目标有量化要求,能力、思想情感目标要有明确要求,体现学科特点。同时确定的教学目标,能以大纲为指导,体现年级、单元教材特点,符合学生年龄实际和认识规律,难易适度。从目标达成来看,教学目标体现在每一教学环节中,教学手段都紧密地围绕目标,为实现目标服务。
史老师对这一节课的知识教授比较准确科学,教师在教材处理上做了一些文章,从课前学习配备一定量的复习练习,回忆巩固列方程解应用题的一般步骤,通过模仿练习,提升学习的量,并在教法选择上突出了重点,突破了难点,抓住了关键。
(一)看教学思路设计。
教学思路是教师上课的脉络和主线,它是根据教学内容和学生水平两个方面的实际情况设计出来的。它反映一系列教学措施怎样编排组合,怎样衔接过渡,怎样安排详略,怎样安排讲练等。
因此史老师在教学思路设计上符合教学内容实际,符合学生实际,并设计合作与探究给学生以新鲜的感受,在课堂上教学思路实际运作的效果比较好。
(二)看课堂结构安排。
教学思路侧重教材处理,反映教师课堂教学纵向教学脉络,而课堂结构侧重教法设计,反映教学横向的层次和环节。它是指一节课的教学过程各部分的确立,以及它们之间的联系、顺序和时间分配。课堂结构也称为教学环节或步骤。
1、从教学环节的时间分配看,本节课前面时间安排多,内容多,后面时间少,内容密度大,讲与练时间搭配还不够合理,讲地多,练得少。
2、从教师活动与学生活动看,占用时间过多,学生活动时间不够多。
3、从学生的个人活动时间与学生集体活动时间的分配看,学生个人活动,小组活动和全班活动时间分配不够合理,集体活动过多,学生个人自学、独立思考、独立完成作业时间不够。
4、从优差生活动时间看,学生情况我们不是很熟悉,难以判断。
5、从非教学时间看,史老师控制较好,基本没有浪费宝贵的课堂时间的现象。
什么是教学方法?它包括教师“教学活动方式,还包括学生在教师指导下”“学”的方式,是“教”的.方法与“学”的方法的统一。
一种好的教学方法总是相对而言的,它总是因课程,因学生,因教师自身特点而相应变化的。也就是说教学方法的选择要量体裁衣,灵活运用。本节课采用任务驱动下的学生自主学习与教师辅导相结合的模式,设计思路较好,具体实施时仍旧感觉到传统教法占优。
现代化教学呼唤现代化手段。“一支粉笔一本书,一块黑板一张嘴”的陈旧单一教学手段应该成为历史。本节课适当运用了投影仪、计算机等现代化教学手段,提高了课堂的容量。
1、看板书。
字迹工整美观,板画娴熟。因书写地方少,体现不出教师的真实水平。
2、看教态。
据心理学研究表明:人的表达靠55%的面部表情+38%的声音+7%的言词。教师课堂上的教态应该是明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。这一方面对我们每一个教师都应该加强。
3、看语言。
教学也是一种语言的艺术。教师的语言有时关系到一节课的成败。史老师语言准确清楚,说普通话,精当简炼,有启发性。教学语言的语调高低适宜,快慢适度,富于变化。
4、看教法。
史老师运用教具,操作投影议、微机等比较熟练。
课堂效果评析包括以下几个方面。一是教学效率高,学生思维活跃,气氛热烈。二是学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成。三是有效利用45分钟,学生学得轻松愉快,积极性高,当堂问题当堂解决,学生负担合理。应该说本节课基本达到了预期的教学效果。
1.从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.
2.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.
3.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.
教学重点。
二次函数的最大值,最小值及增减性的理解和求法.
教学难点。
二次函数的性质的应用.
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】。
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】。
通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。
【教学重点】。
【教学难点】。
(一)引入新课。
配方,得。
(四)小结作业。
作业:课后练习题,试着用多种方法解答。
略
1、柳树的生长能力较强,一根主干能生长出m根支干,而每根支干又能生长出m根小分支,则小分支共有()根。
3、某生物实验室需培植一群有益茵。现有60个活体样本。经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出相同数目的.有益菌。
(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?
(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?
4、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2450张照片,如果全班有x名同学,根据题意,列出方程为()。
5、有一种野蚕繁衍的方式比较特别,一个蚕妈妈产下四个蚕宝宝后自己就随之消亡。这样,一个蚕妈妈经过四代繁衍后,共有蚕宝宝()个。
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式”一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
并运用它们进行二次根式的化简。
“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程——一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
“22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章旋转。
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
“23.1旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。
“23.2中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
“23.3课题学习图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章圆。
圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
教学要求:
1、在生活中看关于“左右”的真实情境激发学生的学习兴趣。
2、能初步运用“左右”的数学知识解决实际问题。
3、认识“左右”的位置关系,体会其相对性。
教学重点:认识“左右”的位置关系,正确确定“左右”。
教学难点:“左右”的相对性。
教学准备:动物头饰笔橡皮尺子文具盒小刀。
教学过程:
一、通过左手、右手的活动,感知自身的左与右。
师:小朋友们,今天谁有信心上好这节课?请举起你的小手。
1、感知左手和右手。
师:看看你举起的这只手,是你的----右手?
再看看你的另一只手,是你的----左手?
师:大家说说,我们常常用右手(或左手)做哪些事?
(学生自由发言)。
师:左、右手要多锻炼,特别是左手,多锻炼会使我们的小脑袋越变越聪明。
2、体验自身的“左与右”
(学生自由回答)。
3、小游戏听口令做动作(由慢到快)。
伸出你的左手,伸出你的右手。
拍拍你的左肩,拍拍你的右肩。
拍拍你的左腿,拍拍你的右腿。
左手摸左耳,右手摸右耳。
左手抓右耳,右手抓左耳。
4、揭示课题。
师:小朋友们刚才已经熟悉了自己身体的“左”和“右”,其实生活中的“左”和“右”还有许许多多,今天我们就来确定一下“左”和“右”。
(板书课题:左右)。
师:请小朋友们记住,“左”字下边是个“工”字,“右”字下边是个“口”字。
5、做“左右”操。
拍拍我的左肩,拍拍拍;
拍拍我的右肩,拍拍拍;
拉拉我的左耳,拉拉拉;
拉拉我的右耳,拉拉拉;
这是我的左边,嘿嘿嘿;
这是我的右边,嘿嘿嘿;
这是我的左脚,跺跺脚;
这是我的右脚,跺跺脚。
二、玩学具,理解左边和右边。
1、摆一摆。
师:同桌合作,像老师一样的顺序摆放好事先准备好的学习用品。
(按顺序摆好:铅笔橡皮尺子文具盒小刀五样学具)。
师:大家先来确定一下,摆在最左边的是什么?摆在最右边的是什么?
2、数一数。
师:按左右的顺序来数一数。(点着学具来数,数好后请学生回答,从而完成黑板上的填空题)。
从右数橡皮是第个。
从左数橡皮是第个。
师:同样的东西,按不同的方向去数,顺序也不同。
3、说一说。
尺子的左边是什么?右边呢?
(1)启发、引导学生观察图说出左边有什么?右边有什么?
(2)说出尺子的左边或右边各有哪二样学具?
6、想怎么摆就怎么摆,然后同桌互说。
三、体验“相对”,加强理解。
师:老师现在要请两个小朋友上讲台来?(每个小朋友拿一束花排成一队,然后听口令做动作,复习左右,最后让小朋友面对面站着,再来一次,让学生知道“相对”)。
(学生讨论)。
小结:我们面对面地站着,因为方向相对,举的手就会刚好相反。
练习:老师和学生一同举左手体验。
四、解决问题,增强应用意识。
1、说一说:你相邻的同桌都有谁?
问:相邻是什么意思?
面对黑板说说你相邻的同学有谁?
背对黑板说说你相邻的同学有谁?
侧转身再说说你相邻的同学有谁?
师:每转一次前、后、左、右的人都发生了变化,但相邻的同学总是这几个。
2、口述同学们上下楼梯的情景。
问:我们平时都是靠右边上下楼梯的(学生讨论,也可以让学生试着走一走,体会一下)。
小结:方向不同,左右不同,判断时以走路的人为标准。平时我们上下楼梯时要有秩序地走,不会相撞,保证安全。
3、摆一摆。
老师说,学生摆。
把本子放在书的下面。
把尺子放在书的左面。
把铅笔放在书的右面。
五、总结。
我们学习了什么?(左右)对!是表示方向的左和右。在生活中,我们一定要分清左和右,特别是行走时,人注意靠右走。
板书设计:左右。
文档为doc格式。
。
(一)创设情景,引入新课。
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。
练习。
2:一元二次方程的一般形式(形如ax+bx+c=0)。
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。
3:讲解例子。
5:讲解例子。
6:一般步骤。
练习。
(三)小结。
(四)布置作业。
一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于它的概念,学生很容易理解。通过这节课的教学我有如下几点感想:
一、引导学生观察、类比、联想已学的一元一次方程、二元一次方程,归纳、总结出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。
二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。
不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。
将本文的word文档下载到电脑,方便收藏和打印。
一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。
2、教学目标及确立目标的依据。
九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。
知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。
德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。
3、重点,难点及确定重难点的依据。
“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。
二、教材处理。
在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
三、教学方法和学法。
教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。
四、教学手段。
采用投影仪。
五、教学程序。
1、新课导入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)。
(2)列方程解应用题的方法,步骤?(并引例打基础)。
课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)。
设出求知数,列出代数式,并根据等量关系列出方程。
一、课前预习:
1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。
二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。
2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:
二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。
3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。
4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。
本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重中难点的体现。
在本节课的活动1中,通过实际问题引入学生熟悉的一元一次方程,让学生掌握利用方程解决问题,从而顺利过渡到后面的问题。活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。活动3意在强化学生所学知识,并运用到实际问题中去。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。
用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型――方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的解题技能,所以也成了教学难点。
分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800―10)元;(30+2)时人均旅游费用(800―10×2)元;(30+3)时人均旅游费用(800―10×3)元;(30+4)时人均旅游费用(800―10×4)元…自然增加x人,即(30+x)时人均旅游费用(800―10x)元。根据基本数量关系式,不难得到[800-10(x-30)]・x=28000或(800-10x)・(x+30)=28000。”
(2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。
(3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。
尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。
随着核心素养的提出,作为一直奋战在一线的一名教师,对自己的课堂应该提出一个更高的要求,应该把培养孩子的们的数学核心素养作为一节课的目标。通过本节课的教学,总体感觉达到了自己预期的一个教学目标,但还有很多不足之处,现从收获和不足两个方面加以说明。
本节课的收获。
1整节课的整体设计能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。
2总体上较好的达到了教学的目标,课后通过作业和练习做了一个统计,孩子对知识的理解达到78%,作业的正确率达到65%。
3本节课例题的设置比较贴合实际、例题由易到难,孩子容易接受和理解。
4本节课的教学方法主要以提问―讨论―总结的形式进行,更利于孩子的发挥。
5本节课在课堂的设置上更注重孩子“数学抽象”能力的培养,并在能力培养的过程中注重方法,以实例为载体,循序渐进让孩子逐步接受,自然生成结论,这样培养能力的过程孩子更易接受,理解更深刻。
本节课的不足。
1、在课堂时间的把控上做得还是不够好,由于孩子的能力层次不齐,所以在分组讨论过程中为了让更多的'孩子能够给掌握讨论的结论,给孩子们讨论留的时间多了一些,最后在做课堂总结的时候做得很草率,甚至最后拖堂,最后利用数学的自习课给孩子做了补充,。
2、在第2道例题的讲解过程中,没有板书的一个落实,让很多孩子在例3练习时书写过程出了很多问题。
3、在给孩子设置的问题很单一,没有涉及更多的问题的变化,当然这是我预期就想到的,主要还是考虑到了多数孩子的接受能力。
以上就是我在本次实践案例中的收获以及感觉到的不足,如有不当之处,望能不吝赐教!
1、教学结构。
新课程改革的核心目标是全面推进以培养创新精神和实践能力为重点的素质教育,培养21世纪所需的创新人才,这就要求在教学过程中既重视基础知识、基本技能的教育,又要重视创新精神和实践能力以及良好道德情操的培养。因此教学结构采用“以学生为主体―以教师为主导”的教学结构。通过对教学内容、学习活动等的设计,使学生在学习过程中既有很大的自主权,又能保证其学习不会发生质的偏离,能在适当的时候得到教师或伙伴的指导。学生处于这种开放式的学习环境是有程度限制的,这节课的教学过程中虽然在每一个小的学习环节都是采取的学生自主学习的方式。
但从整来教学的主导性太强,学习一直被老师牵着鼻子走。对一些思维速度的学习是可行的,而对于一些反应速度慢的学生来说跟着吃力,很快就失去学习的积极性。因此教师还要再放一把,给学生更广阔的思维空间。尤其是在环节的衔接过程,由学生思考下一步要做什么。学生是完全能够做到的,因为在复习时已把解决实际问题的一般过程复习了。
2、学生学习方式和学习效果。
在教学过程中虽然以学生为主体,以自学为主。但是其积极主动性在某些同学来说还是不高的。对知识的获得的成就感也没有表现得那么明显。对于知识的广度和深度也没有举一反三的效果展示,更何况创新思维的培养。例如应在例题完成时,根据老师提出可以用设速度的方法为例,同学们还有什么方法?这样就起到了点睛的作用,为学生思维的开发提供了一个空间。只是重视了知识的巩固和运用,和解决问题的训练。虽说在总结时进行了思想教育,也没有见其明显的反馈。培养学生合作的小组学习不免有些形式化。因为在小组协作时都属于自我陈述,无合作解题的意向。
3、教师的教学方式和教学效果。
教师在教学过程中处于主导地位应关注学生分析,解决解决能力的培养;应关注学生交流协作表达能力的培养,应关注学生创新意识、能力的培养。从这些方面本节课教学过程中都表现的不足。还应提高在这方面的设计。还应提高驾驭课堂能力。
教学方法单一。几乎都是教师提问学生回答的形式。使整个课堂的也十分音调。学生的自主学习,探究学习,协作学习效果也不是很好。
教师的语言,在教学过程中教师的语言的地位是非常重要的,直接影响教学效果的成败。每一次出公开课都是一个锻炼学习的机会,从中能找到自己的一些缺点和不足。如在教学过程中由于语速过快而出现吐字不清的现象,口误出现频率也很高。语言表达能力还需要不断的锻炼。
培养学生的分析和解决问题能力,虽然不是一朝一夕的事情,但是必须重视每一次机会。特别提出的是王亮这名同学。这是一个比较特殊的学生,他的计算能力非常之强,速度非常之快,全班第一。记忆力也如此。而分析能力和解决问题能力就反过来了。举个例子,三角形的两个直角边是9厘米,三角形的面积是10平方厘米。如果设其中一个为x,那么另一个直角边可以表示为什么?这样的分析题都不能完成。他这种情况主要是没有掌握分析方法。因此每到一些简单的分析题时都要求他独立完成。在这节课上又出现了所问非所答的情况问“跳水运动员跳到最高点时的速度是多少?”而他回答的却是平均速度。显然他平时不认真分析老师说的话或应用题的题意。只有从平时,从基础抓起。不放过一次机会。
还有一点值得提出的是教学过程中一定及时纠正学生的错误。在这堂中有多处学生的错误没有得到老师的纠正。如:在计算过程中,最大数加上最小数的和除以2或可以说(最大数+最小数)/2。学生没有加括号,也没有说“的和”都是错误的,要及时加以纠正。
4、应注意的几个问题。
1)教学目标的完成。
基本完成了基本知识和基本技能的学习目标,也对学生进行了情感教育,但是创新思维的培养没有体现出来。从始至终,学生都是有理有据的回答老师的提问。在总结分析时,教师只提到了有多种做法,学生可能是一头雾水。很可惜的失去了一次对学生创新思维培养的机会。
2)教学环节的灵活性。
教学的主动权牢牢的抓在教师的手里。更要重视教学环节的灵活性。这样才有可能抓住学生的思维的火花,深入探究。推动学生思考的深度和广度,培养学生的创新能力。
3)个别化学生的全面发展。
基于以上对教材的分析,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。
二、实施教学所遇到的难点。
在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。
三、教学后的及时改进。
通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。
四、反思。
1、备课应该更加务实。
在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。
2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。
五、教材的独到之处。
史老师采用“学生自主学习与教师指导相结合”的任务驱动教学模式,让学生课前学习,然后教师采用填空设问方法,学与教同步,使学生较好的了解了列一元二次方程解应用题的一般步骤,适合学生承受能力;课堂习题的编排,符合学生的认知结构,有助于学生对于所学知识点的'充分理解和进一步的巩固;“模仿与实践”题的设置,具有较强的层次性,由浅入深,由简到难,满足了不同层次学生的不同要求,培养了学生的创新思维,激发了学生的学习兴趣,激活了课堂的教学氛围。
整节课教师轻松而自如,教师语言亲切清晰,条理清楚,能言善辩,使学生的学习效果达到了预期目的,不同的学生在原有的基础上学习有进步,学生思维活跃,是成功的一课。
下面谈一下自己的几点体会:
一、本节课,知识的呈现作了重大调整,不是以讲解为主方式也不是以单一的知识为线条,而是在突出数学知识的同时,将数学知识和结论溶于数学活动之中,这样学生学习数学知识的过程就成了进行数学实验的过程,成了“做学问”的过程。在这样的探究学习过程中,学生得到的数学知识是通过自己实验、观察、讨论、归纳得到的。
二、以问题为主线,解放学生的身心,激发学生的灵感;体现“自主-----合作-----探究”的学习方式,培养学生小组合作的学习能力,让学生感受到过程是自己亲身体验的,结论是自己发现的,知识是自己主动获取并学会的,能够增强学生对学习的信心,再次突出本节课的亮点。
三、把课堂真正的还给学生。我参与,我快乐,我是课堂的主人。放手让学生有话可说,有疑好争,为学生深入思考、积极探索提供机会、做到师生互动、生生互动,在平等、民主、合作的氛围中分享成功的快乐。
四、备情绪,激发兴趣和学习动力,把情绪调整到高涨状态。本节课教师采用多种激励语言,如心动不如行动,跃跃欲试,不如试一试。不怕你说什么,就怕你什么也不说等激发学生兴趣,调动学习动力,把学生的学习情绪调整到比较理想的、十分高涨的状态。
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。
1、这一节课的主要内容是要求学生掌握一元二次方程的定义,定义主要从这两个方面来掌握,首先等号的两边是整式,且只含有一个未知数,其次未知数的最高次数是2。要是单纯从知识点上来看的话,这一节课的内容很少,教师可以用很短的时间讲完这节课,但是教材的设计是从实际问题出发,要求学生先列方程,将实际问题的方程化为一般的形式后去观察方程的形式,通过观察找到几个方程的共同点,再由学生总结一元二次方程的定义,表面上看教材的安排很罗嗦,其实这样安排的好处就是将难点分散了,因为一元二次方程这一章有一个教学难点就是列方程解应用题,在平时的教学中将难点分散对于学生的学习应该有很大的帮助。
2、在求一元二次方程的各项系数的时候,有一个地方没有处理好,本来按照习惯一般是将二次项系数化为正数,但是在解题中就算二次项系数是负数,给出的答案也是正确的,这样的问题最好是给出方程的一般形式后,叫学生来求各项系数比较好一点。
知识技能。
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型。
2.能根据具体问题的实际意义,检验结果是否合理。
过程方法。
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观。
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
2.教学重点/难点。
教学难点:发现传播问题中的等量关系。
3.教学用具。
制作课件,精选习题。
4.标签。
教学过程。
一、导入新课。
生:审题、设未知数、找等量关系、列方程、解方程,最后答题。
试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型。这一节我们就讨论如何利用一元二次方程解决实际问题。
二、探索新知。
【问题情境】。
【分析】。
(1)本题中有哪些数量关系?
(2)如何理解“两轮传染”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)能否把方程列得更简单,怎样理解?
(5)解方程并得出结论,对比几种方法各有什么特点?
【解答】。
设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:
1+x+x(1+x)=121。
解方程得x1=10,x2=—12(不合题意舍去)。
因此每轮传染中平均一个人传染了10个人。
【思考】。
如果按这样的传播速度,三轮传染后有多少人患了流感?
【活动方略】。
教师提出问题。
学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题。
【设计意图】。
使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验。
三、例题分析。
解:设每个支干长出x个小分支,则。
1+x+xx=91,即x2+x—90=0。
解得x1=9,x2=—10(不合题意,舍去)。
答:每个支干长出9个小分支。
【分析】。
(1)两题中有哪些数量关系?
(3)对比两题,它们有什么联系与区别?
【活动方略】。
教师活动:操作投影,将例题显示,组织学生讨论。
学生活动:合作交流,讨论解答。
【设计意图】。
进一步提升学生在活动1中的学习效果,使学生充分体会传播问题,培养学生对传播问题的解题能力。
四、当堂训练。
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是()。
a.x(x+1)=182b.x(x—1)=182。
c.2x(x+1)=182d.x(1—x)=182×2。
【活动方略】。
学生独立思考、独立解题。
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)。
【设计意图】。
检查学生对所学知识的掌握情况。
课堂小结。
1、用“传播问题”建立数学模型,并利用它解决一些具体问题。
2。解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答。
板书。
各位评委:大家好!
今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。
(一)教材分析与学生现实分析。
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。
大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。
(二)数学新课程标准要求:
人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。
我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:。
1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。
教学重点、难点及解决措施:
重点:列一元二次方程解实际问题。
难点:发现问题中的等量关系。
教师引导,学生自主探索、合作交流。
(三)教法的确定与学法指导。
我们学校在去年实行了杜郎口中学的三三六的教学模式立体式、大容量、快节奏;自主学习三模块:预习、展示、反馈;课堂展示六环节:预习交流、明确目标、分组合作、展现提升、穿插巩固、达标测评。对于每个专题都要经历预习、展示和达标检测三个环节,经过一年的训练,学生们已经有较好的自学能力和小组合作能力,实践表明,学生给学生讲题,同学们会更有兴趣,也更容易接受,学生通过自我展示不但能激发他们的表现欲,还能提高语言表达能力和竞争意识。
我们让各个小组轮流来当课堂“小老师”,以提高他们的`合作水平和对试题的阅读理解能力,同学们和教师也会根据每个“小老师”讲解的具体情况来进行修正和补充,强调重点,总结规律。为了鼓励学生勤于思考,善于发问,我在课堂上引入“奖励分”制度,对于独特解法或有提出创造性问题的同学和小组给予1——3分的奖励。本节课是对一元二次方程应用的基本问题的学习后的探索活动课,在预习课上我已经下发了试题学案,并给每个小组分配了展示任务。学案上我选用了了四道实际问题,要求同学们找出试题特点和关键词语以及易错点,并用硬纸板和铁丝做出相应的试题模型。预习课上学生先做题再合作,同学们之间有充分的交流和讨论。
(四)教学过程分析。
心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:
这是一节复习一元二次方程解法的课,主要通过复习一元二次方程的解法,了解学生对知识的掌握情况,加强对学生的学法指导。
本章内容中重点为一元二次方程的解法和应用。我将复习设为两节,第一节重点讲解法。思路:以学生为主体,注重学生自我发现,了解自己的不足,同时,注意加强运算。总的设计思路较好,过程中有一个地方费时较多,主要是我没有吃透“课标”,对于一元二次方程公式法的推导过程不应让学生推导,因为在此费时过多,所以最后的小测试没来得及做。另为,在练习中解方程时,由于时间关系,没有让学生比较,而是由我代办,这样效果反而不好。
通过复习,我感到,在复习时一定要好好研究课标,吃透课标。另为,注意学生的分析,教师不要代办太多。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/tiaojushuxin/509634.html