首页 > 范文大全 > 条据书信

比和比例数学教案(优质14篇)

比和比例数学教案(优质14篇)



通过教学工作计划,教师可以合理安排时间,确保每个教学环节能够得到充分的准备和实施。希望以下的教学工作计划范文能够为广大教师提供一些借鉴和启示,实现教学目标。

数学《比例尺》教学教案

教科书30到32页。

1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

2、通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

3、通过教学情境,培养学生热爱祖国的思想感情。

一、导入新课。

1、同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)。

2、请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

3、按大小分类。(讨论后说明随意画的长方形不是教室的平面图)。

5、分别请同学说说自己画的设想。

6、在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

7、板书课题。“认识比例尺”

二、新课展开。

1、自学课文。

说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的'比。

改写自己所画的图的比例尺。

2、出示中国地图(投影)。

1找出这幅地图的比例尺:1:30000000。

讨论:比例尺1:30000000表示什么实际意义?(图上距离1厘米表示实际距离300000000厘米)。

2观察这幅图的比例尺你还发现了什么?

(电脑演示放大效果)。

介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

4同学们,阳春三月正是春游的好季节,假如我们602班准备两天的行程出去旅游,请你设计一条合适的路线。(拿出自己准备的地图,四人小组讨论)。

5小组反馈,评比优秀方案。

2电脑课件演示。

3求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

4根据讨论板书:

比例尺把实际距离缩小一定的倍数如1:30000000。

把实际距离扩大一定的倍数如200:1。

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1。

三、练习。

1|试一试。

四、作业:31页练一练。

《反比例》数学教案

[设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。

同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。

1、判断。

(1)一个因数不变,积与另一个因数成正比例。()。

(2)长方形的长一定,宽和面积成正比例。()。

(3)大米的总量一定,吃掉的和剩下的成反比例。()。

(4)圆的半径和周长成正比例。()。

(5)分数的分子一定,分数值和分母成反比例。()。

(6)铺地面积一定,方砖的边长和所需块数成反比例。()。

(7)铺地面积一定,方砖面积和所需块数成反比例。()。

(8)除数一定,被除数和商成正比例。()。

2、选择。

(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量()。

a、成正比例b、成反比例c、不成比例。

(2)和一定,加数和另一个加数()。

a、成正比例b、成反比例c、不成比例。

(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是()。

a、汽车每次运货吨数一定,运货次数和运货总吨数。

b、汽车运货次数一定,每次运货的吨数和运货总吨数。

c、汽车运货总吨数一定,每次运货的吨数和运货的次数。

3、判断题:自主练习第3题。

学生判断各题中的两个量是不是成反比例。并说说理由。

重点引导学生运用反比例的意义进行判断。

4、印刷厂用6000张纸装订练习本。

每本的页数。

(1)先填写上表。

(2)思考每本的页数与装订的本数有什么关系?

6、自主练习第2题。

这是一道用抽象形式巩固反比例意义的题目。学生先思考,根据x和成反比例,确定x和的乘积一定,再根据第一组数据找到x和的乘积,然后利用这个乘积和每组中的已知数据,求出另一数据。

介绍反比例图像,学生了解反比例关系也能用图像表示。由于理解难度较大,只作了解,不做学习要求。

教学反思:

本节课课堂练习。课上要重视学生掌握的情况,正确判断的同时,还要说理清楚。学生对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?判断时会较为困难,说理也不是很清楚。所以教师在补充这些练习时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后再进行相关形式的练习,我想对学生的后继学习必然有所帮助。

这节课我们研究了什么问题?你有什么收获?

(引导学生进行总结,能用自己的话说出学习主要内容。)。

教学反思:

本节课首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。然后启发学生主动、自觉地去观察、分析、概括、发现规律。通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,有效地培养了总结、区别、沟通的能力。再加以练习的及时,使学生加深概念的理解。

数学教案:正比例的意义

反思整节课,体现了学生自主探究,从生活情境出发,真正解放了学生,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的体现了事先的教学设想,感触较深。

这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比和比值。两个数相除叫做这两个数的比。所得的商叫做比值。比有两种写法,一种是比号写法,另一种是用分数写法。只有比值一样的两个比才能组成比例。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了春游路程和时间表中之后,发现路程和时间比的比值是一样的,都是500米。让学生理解相对应的路程和时间的比的比值都是500米,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。然后,老师例子说明,并且请学生互动找例子。

不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。

《反比例》数学教案

教材第56页复习第4~l0题。

1、使学生加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。

2、使学生进一步掌握正、反比例应用题的解题思路和解题方法,提高解答正、反比例应用题的能力。

加深认识正比例关系和反比例关系的意义。

提高解答正、反比例应用题的能力。

在“比例”这一单元里,除了认识了比例的意义和性质外,还学习了成正、反比例量的有关知识。这节课,我们复习正、反比例。(板书课题)通过复习,一要加深对成正比例关系和成反比例关系量的认识,提高两种相关联量成正比例还是反比例关系的判断能力;二要进一步认识正、反比例的应用题,加深理解正、反比例应用题的解题思路和方法,提高用比例知识解答应用题的能力。

让学生看第4题,思考各成什么比例。指名学生口答,说明理由。

小黑板出示,指名学生口答,并说明理由。说明:根据实际问题里相关联量所成的正比例或反比例关系,可以用比例知识解答相应的应用题。

让学生读题,思考各成什么比例的应用题。指名学生说明各是什么应用题,为什么。指名两人板演,其余学生做在练习本上。集体订正,让学生说明根据什么列式的。

让学生读题。提问:“药粉和水的比是1:500”你是怎样想的?(引导学生看出药粉和水的份数以及1:500表示比值一定等)这两道题成什么比例,为什么?让学生做在练习本上。指名学生口答等式,老师板书。再让学生说说怎样想的,根据什么列式的。追问:这道题还可以怎样做?(让学生思考按比的意义,应用分数知识或归一方法,口答算式)。

要求学生思考有哪些方法解答第一个问题,指名一人板演,其余学生做在练习本上。要求列出不同解法的式子。集体订正,说说各是怎样想的。

这节课复习了哪些内容?谁来说一说这节课你掌握了哪些知识或方法?

复习第7、9题,第10题第二个问题。

六年级数学比例教案

1、口答正比例的意义。

2、怎样判断两种量成正比例?

3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

(1)已知每小时加工零件数和加工时间,求加工零件总数。

(2)已知每本书的价钱和购买的本数,求应付的钱。

(3)已知每公亩产量和公亩数,求总产量。

数学教案-正比例应用题

教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

比和比例数学教案

数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!

培养学生的观察能力、判断能力。

引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。

比例的意义和基本性质。

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

一、回顾旧知,复习铺垫。

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来。

2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。

2:34.5:2.710:6。

80:44:610:1/2。

提问:你是怎样分类的?

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:612:16=3/5:4/580:4=10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)。

二、引导探究,学习新知。

1、教学比例的意义。

(1)教学例题。

先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。

师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

提问:根据求出的比值,你发现了什么?(两个比的比值相等)。

教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式。

2.4∶1.6=60∶40像这样由两个相等的比组成的式子我们把它叫做比例。

师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

比例也可以写成分数形式:4.5/2.7=10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。

(2)引导概括比例的意义。

同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)。

(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)。

根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。

(4)比较“比”和“比例”两个概念。

引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(5)反馈训练。

用手势判断下面卡片上的两个比能不能组成比例。

6:3和12:635:7和45:9。

20:5和16:80.8:0.4和4:2。

(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。

(2)检查自学情况:指名说出黑板上各比例的内外项。

(3)探究比例的基本性质。

两个外项的积是4.5×6=27。

两个内项的积是2.7×10=27。

(4)计算验证,达成共识。

师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。

(5)引导小结比例的基本性质。

师:通过计算,大家,谁能用一句话把这个规律概括出来?

教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6)“这个比例的外项是哪两个数呢?内项呢?”

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。

三、巩固深化,拓展思维。

(一)判断。

1.两个比可以组成一个比例。()。

3.8:2和1:4能组成比例。()。

(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。

(1)6:9和9:12(2)14:2和7:1。

(3)0.5:0.2和5:2(4)0.8:0.4和0.3:0.6。

(三)填空。

(1)一个比例的两个外项互为倒数,则两个内项的积是(),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。

(2)如果2:3=8:12,那么,()x()=()x()。

(3)写出比值是4的两个比是()、(),组成比例是()。

(4)如果5a=3b,那么,a:b=():()。

(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。

2、3、4和6。

拓展题:猜猜括号里可以填几?

5:2=10:()2:7=():0.71.2:2.5=():25。

四、全课小结,提高认识。

五、布置作业。

练习六2、3、5。

六年级数学比例教案

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

反比例函数数学教案

教学目标:

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;。

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;。

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;。

4、体会数学从实践中来又到实际中去的研究、应用过程;。

5、培养学生的观察能力,及数学地发现问题,解决问题的能力。

教学重点:

教学用具:直尺。

教学方法:小组合作、探究式。

教学过程:

我们在小学学过反比例关系。例如:当路程s一定时,时间t与速度v成反比例。

即vt=;。

当矩形面积s一定时,长a与宽b成反比例,即ab=。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

一般地,函数(k是常数,)叫做反比例函数。

如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数。

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论。

解:列表。

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图。

一般地反比例函数(k是常数)的图象由两条曲线组成,叫做双曲线。

3、观察图象,归纳、总结出反比例函数的性质。

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证。

(1)的图象在第一、三象限.可以扩展到k=0时的情形,即k=0时,双曲线两支各在第一和第三象限。从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限的讨论与此类似。

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程。

(2)函数的图象,在每一个象限内,y随x的增大而减小;。

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势。从列表中也可以看出这样的变化趋势。有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小。由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小。

同样可以推出的图象的性质。

(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子。同理,抽象出图象的性质。

函数的图象性质的讨论与次类似。

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中。

5、布置作业习题13.81-4。

数学反比例教案

知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。

情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。

重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

难点:掌握反比例的特征,能够正确判断反比例关系。

(一)复习猜想导入,引出问题。

1、成正比例的量有什么特征?什么叫正比例关系?

2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

达成目标:猜想导课,激发探究愿望。

(二)共同探索,总结方法。

1、明确这节课的学习目标:

(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

2、情境导入,学习探究。

(1)我们先来看一个实验。

高度(厘米)302015105。

底面积(平方厘米)1015203060。

体积(立方厘米)。

提问:根据列表,你从中你发现了什么?

(2)学生讨论交流。

(3)引导学生回答:表中的两个量是高度和底面积。

高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

每两个相对应的数的乘积都是300.

(4)计算后你又发现了什么?

每两个相对应的数的乘积都是300,乘积一定。

教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。

(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。

小结:通过上面的学习,你认为判断两种相关联的`量是否成反比例,关键是什么?

(6)归纳总结反比例的意义。

(7)比较归纳正反比例的异同点。

达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

(三)运用方法,解决问题。

1、生活中,哪些相关联的量成反比例关系,举例说一说。

2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

3、出示反比例图像,与正比例图像进行比较学习。

达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

(四)反馈巩固,分层练习。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

(五)课堂总结,提升认识。

六年级数学比例教案

学生思考回答(挖掘学生生活经验)。

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构。

活动一:探究比例的意义。

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

(1)猜测。

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证。

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:94:2和28:405:2和10:420:5和1:4。

活动二:探究比例的基本性质。

2.小组内验证猜测结果。

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。

三、强化训练、应用拓展。

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1)6:9和9:12。

(2)1/2:1/5和5/8:1/4。

(3)1.4:2和7:10。

(4)0.5:0.2和10:4。

2.判断。

(1)表示两个比相等的式子叫做比例()。

(2)0.6:1.6与3:4能组成比例()。

(3)如果4a=5b,那么a:b=4:5()。

3.填空。

5:2=80:()。

2:7=():5。

1.2:2.5=():4。

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是()。

4.写出比值是5的两个比,并组成比例。

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验。

通过这节课的学习你有什么收获?

《正比例反比例》教案

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

实物投影。

一、复习。

要求学生说出成正反比例量的关键,根据学生回答板书关系式。

2、判断下面各题中的两种量是不是成比例,成什么比例。

(1)圆锥的体积和底面积。

(2)用铜制成的零件的体积和质量。

(3)一个人的身高和体重。

(4)互为倒数的两个数。

(5)三角形的底一定,它的`面积和高。

(6)圆的周长和直径。

(7)被除数一定,商和除数。

二、练习。

完成练习十三9~13题。

1、第9题。

观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习。

1、a与b成正比例,并且在a=1。。时,b的对应值是0。15。

(1)a与b的关系式是a/b=()。

(2)当a=2。5时,b的对应值是()。

(3)当b=9。2时,a的对应值是()。

2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?

六年级数学正比例教案

教科书第63页的例2,“练一练”和练习十三的第4、5题。

1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的'习惯。

能认识正比例关系的图像。

利用正比例关系的图像解决实际问题。

多媒体。

一、复习激趣。

1、判断下面两种量能否成正比例,并说明理由。

数量一定,总价和单价。

和一定,一个加数和另一个加数。

比值一定,比的前项和后项。

二、探究新知。

1、出示例1的表格。

根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

2、学生尝试画出正比例的图像。

3、展示、纠错。

每个点都应该表示路程和时间的一组对应数值。

4、回答例2图像下面的问题,重点弄清:

(1)说出每个点表示的含义。

(2)为什么所描的点在一条直线上?

(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

借助直观的图像理解两种量同时扩大或缩小的变化规律。

三、巩固延伸。

1、完成练一练。

小玲打字的个数和所用的时间成正比例吗?为什么?

根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

估计小玲5分钟打了多少个字?打750个字要多少分钟?

2、练习十三第4题。

先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。

3、练习十三第5题。

先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

组织讨论和交流。

4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

根据表中的数据,描出所对应的点,再把它们按顺序连起来。

同桌之间相互提出问题并解答。

四、反思。

这节课你学会了什么?你有哪些收获?还有哪些疑问?

五、作业。

完成《练习与测试》相关作业。

板书设计。

六年级数学比例教案

在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)。

相关内容

热门阅读
随机推荐