首页 > 范文大全 > 其他范文

逆向思维教学论文范文(实用6篇)

逆向思维教学论文范文(实用6篇)



逆向思维教学论文范文 第1篇

【关键词】初中数学 逆向思维 重要性 培养策略

初中数学抽象性、理论性较强,初中也是学生的思维模式由直观形象思维向抽象逻辑思维过渡的重要阶段,也是数学教学从具体形象思维向抽象逻辑思维转变的关键一步,教师引导学生学会用逆向思维方式解决数学难题,有利于帮助学生适应初中数学的学习,克服学生对数学学习的恐惧。

一 初中数学逆向思维的重要性

1.有利于提高学生的基础能力,加强对基础知识的理解和巩固

数学基础对数学学习意义重大,概念学习是初中数学学习的基础部分,学生对数学知识的应用能力很大程度上取决于其对基本概念的理解程度,基础能力的提升对学生数学能力整体水平的提升具有十分重要的影响。逆向思维能弥补定向思维的不足,进一步加深学生对数学公式及数学概念的理解程度,明确概念的用处,加强逆向思维的培养能为学生日后的学习打下深厚的基础。

2.有利于拓展学生的想象空间,提高分析问题能力

逆向思维在初中数学学习中的应用颇多,许多问题需要学生用双向思维来解决,而且在初中数学需掌握的内容里还有运算和逆运算、定理和逆定理这些需要双向思维理解的知识点。另外在教师在教学过程中,从源头进行理论推导使学生更容易掌握相应的数学公式和数学法则,可防止学生思维被禁锢。培养学生习惯用逆向思维思考,可大大地提高学生数学想象能力和逻辑计算能力,大大地拓展学生的想象空间,也可以扩展学生综合素质提升的空间。

3.有利于提高学生的创新能力,开拓学习新思路

初中生大多习惯用定向思维思考问题、解决问题,但是定向思维并不适用于所有问题的解答,善用逆向思维,学会换个角度思考则会大大降低许多数学问题的难度,数学问题的解决方法不是唯一的,巧妙使用逆向思维能发现更多的解答技巧,有利于学生探索出更多的学习技巧,使数学学习变得轻松,因此培养学生的数学逆向思维能力可以提高学生的创新能力。

二 初中数学逆向思维培养策略

1.充分利用教材,在数学基础教学中培养学生的逆向思维

数学概念都是双向性定理,在数学概念教学中,教师不仅要讲解基本概念的来源,还要引导学生学会正确应用概念,不仅要教会学生掌握一些常规应用方法,还可以加强学生对具有创新意义应用方法的了解,开拓学生的视野。同时在课堂教学时教师需要注意加强学生对数学概念的反向理解,强化概念应用训练和公式法则的逆向运用训练。

2.发挥教师在课堂的主导作用,在数学思考教学中培养学生的逆向思维

在课堂教学中要充分发挥教师的主导作用,引导学生养成逆向思维的习惯。许多初中生无法很快适应思维方式的转变,习惯于定向思维,教师需要逐步启发引导学生用逆向思维解决数学问题,专门设计针对培养逆向思维的训练,让学生认识到定向思维分析问题不足时逆向思考可以弥补,学会巧妙使用双向思维模式思考解决问题。教师需重视解题思路的逆向分析,在解题过程中合理采用分析法,培养学生双向思维的习惯。加强反证法的训练,这也是培养学生逆向思维的重要方法,很多数学问题用直接证法解决难度较大,用间接证法则相对容易,从待证结论的反向出发推导出矛盾,通过否定待证结论的反面来肯定待证结论。

3.在数学习题教学中,培养逆向思维的深刻性和创造性

数学习题教学是数学教学的重中之重,在习题课练习中,教师可以引导学生通过观察、联想、运用逆向思维把复杂问题简单化,用特殊解法去解决一般问题,坚持正难则反的解题原则,从而快捷轻松地解题。教师可以用分析法培养学生的逆向思维能力,分析法是几何证明法中最能培养学生逆向思维能力的方法,执果索因,由结论推出题设,从中找能使之成立的条件,由未知推出已知从而证明命题真实性,这正是逆向思维的解题模式。在习题讲解中加强反例训练也可以加强逆向思维的培养,让学生学会构造反例则能加深对定义和公式的理解,及时纠错,也可以锻炼思维能力。教师可以不断地改变题目条件来活跃学生思维能力,一个固定类型的题目改变其中某个条件,就能改变题目的解题思路,初中数学几何求证类题目都是较好的一题多变练习的素材,进行一题多变练习也能从角度进行思维运动,对逆向思维的培养大有裨益。

三 结束语

初中数学逆向思维培养对学生学习水平的提高意义重大,其有利于提高学生基础数学能力,可以拓展学生想象空间提高学生分析问题能力,对学生创新能力的培养也大有帮助。教师可以在数学概念教学、习题教学、思考教学的过程中不断引导学生用逆向思维解决问题,强化相应逆向思维训练,从而促进学生的全面发展。

参考文献

[1]王蔷.转换思维角度,学会逆向思维――初中数学课堂教学中学生逆向思维的培养[J].考试周刊,2011(46):95~96

逆向思维教学论文范文 第2篇

关键词: 数学教学 逆向思维 培养方法

数学是初中课程中的重点学科,是物理、化学等科目的基础,学好数学至关重要.我国教育改革实行以来,数学思维能力的培养受到越来越多的关注,逆向思维能力是数学思维能力的一个重要组成部分.

一、逆向思维的概念

逆向思维又名反向思维,是指在思考问题时独辟蹊径,从问题的反面出发,由结论推出条件,从而得出问题的答案.

逆向思维具有普遍性、创新性和批判性.

逆向思维体现在生活中的案例有司马光砸缸、反口令游戏、发电机的发明、洗衣机脱水缸的发明等.将逆向思维应用到初中数学中体现在将公式、定理和法则进行逆用、反证法等等[1].

二、逆向思维的作用

首先,逆向思维能够大大提高学生的积极性.在大多数情况下,顺着问题的正方向思考缺乏新意,而逆向思维具有创新的特点,能够大大激发学生的积极性.例如,在讲倒数的性质时,若学生直接对倒数相乘等于1的定理进行背诵,则容易遗忘.老师在教学时可以提出“什么样的两个数互为倒数?”“5和它的倒数1/5有什么关系?”这一系列的问题,引发学生的思考,调动学生的积极性.

其次,逆向思维能够加强学生对于知识的理解.学生利用逆向思维思考问题能够让学生从正反两面看待问题,加强学生对于知识的理解.在讲解相反数的性质时,先让学生自己举出互为相反数的例子,对学生提出问题:“5和-5是什么关系?”“2和-2相加得出什么结果?”从而得出互为相反数的两个数相加为0的结论.学生通过自己的观察得出结论,对相反数性质的理解更透彻.

三、如何培养学生的逆向思维

(一)逆向理解概念和公式

初中数学课本中出现了很多概念.老师在进行概念的讲解时,可以提出逆向问题,进行逆向讲解,加深学生的理解.例如,讲解绝对值的几何意义时,可以先在黑板上画出一条数轴,在数轴的左右两端分别找出3和-3,让学生数一数这两个点到原点的距离,提出问题:“3和-3到原点的距离一样不一样?”“距离是多少?”“3和-3这两个点到原点的距离为什么相等?”“我们把这个距离命名为什么?”再例如,在学习圆柱的侧面积时,老师可以将圆柱的侧面展开让学生观察是什么形状,学生会发现是长方形,再用长方形的面积公式进行变化,发现圆柱的底面周长和高就是长方形的长和宽,从而推理出圆柱的侧面积公式[3].

(二)对公式进行逆运用

以上题型仅仅是一些典型例子,还不够全面,初中涉及的内容量大,可以用来锻炼逆向思维能力的题很多.老师在布置课后作业时,要根据实际情况决定作业量的多少和练习的内容.

总之,逆向思维的培养在初中数学教学中至关重要,老师在教学过程中要改进教学方法,对概念、公式、定理及法则的逆向理解和运用融入到课堂教学中.只有这样,才能提高学生的数学思维能力,提高教学效率.

参考文献:

[1]李黎明.初中数学教学逆向思维能力培养初探[J].教书育人:教师新概念,2012(6):53-54.

逆向思维教学论文范文 第3篇

关键词:初中数学;逆向思维能力;培养策略

对于数学学科来说,其存在极强的逻辑性,对于学生的逻辑思维要求极高,如果学生可以掌握学习规律,就能够在某种程度上完善思维能力,继而有效解决学习中遇到的困难。有研究表明,数学教学中如果运用单一教学模式将会禁锢学生思维,长此以往促使学生思维能力变弱,而如果对学生施以逆向思维培养将会获得相对较好的教学效果。本文简要介绍了逆向思维的定义及具体教学策略,进一步促进初中数学教学质量与效率都得到极大的提升。

1.逆向思维概述

所谓逆行思维,从本质上分析属于创造思维,是正思维的对立面,与以往的思维模式具有极大的差别性,是从问题结果着手进行反向思维思考,然后得出结论。逆向思维是传统思维的一种反面,探索方向正好相反,这在某种程度上打破了学生固有思维,这对学生的帮助是非常大,可以快速找到解决问题的方法策略,极大的提升了学生的学习效率,通过逆向思维思考问题变得清晰简单,同时还可以从日常的解题中总结经验,形成规律性。基于整体教学考虑,教师应该关注这一方面的教学引导,将学生逆向思维充分调动起来,这样可以拓宽学生思维,对于其日后的学习也是非常有帮助的。

2.逆行思维培养于教学中的具体应用

数学概念应用。教师在进行数学教学时,可以在课堂中积极引导学生运用逆向思维去思考问题,继而解决问题,教师通过教学渗透让学生可以拓宽思维,运用不同的解题思路去完善学习。但是基于现状分析来看,很多学生逆向思维能力并没有得到有效开发,他们在理解数学概念遇到了一定的困难,对其抽象性难以有效分析,存在片面性,这在某种程度上将会影响到学生日后的解题方向。例如:教师在进行相反数概念教学时,可以先从正面渗透,如相反数是什么?然后再从逆向思维方面进行教学渗透,什么数属于相反数?例如:b=-6,则-a=();假如-b=-6,那么b=()。教师通过上述逆向思维的提问可以帮助学生形成逆向思维,对于学生日后的学习起到助力。实施补角内容教学时,教师基本上都会正面进行引导,α+β=180°,就可以推断出上述α、β互为补角;反之,假设α、β互为补角,就能推断出α+β=180。。教师在教学过程中运用不同的逻辑思维对学生的帮助极大,对于概念的学习非常完整,加深概念理解对日后的学习打下良好的基础。

解题技巧应用。学生逆向思维的形成是需要自身努力的,而教师在此过程中只起到了引导作用,只有学生在日常学习中不断累积经验,通过锻炼总结规律。教师在课堂教学中应该起到引导作用,逐步向学生渗透解题策略,继而从最大限度上提升其解题能力,完善逆向思维训练。

逆用运算律,例如:139×(-60)+139×52-10×139-84×61-69×66,当学生看到这一题时通常会觉得是难题,这其中涉及到运算律,并且是逆用运算律,初中阶段学生刚刚接触到混合运算,这道题对于学生而言容易出现误区,教师需要在其中发挥关键性的引导工作,要求学生认真审题,帮助学生借助逆用运算律解决,从而简化解题步骤。原式可以这样解,即=139×(-60+52-10)+61×(-84+66)=139×(-18)+61×(-18)=(139+61)×(-18)=-3600。

从上述案例中我们可以看到,逆用运算律能够帮助学生有效解决数学问题,节省习题时间,提高做题准确率,从而提升学生数学解题能力,在日常的解题训练中不断优化自身的逆向思维能力,提高学习质量。

难题解答中的应用。初中数学教学中涉及部分难以解答的问题,教师通过正面讲解无法帮助学生理解透彻,这时可以借助逆向思维方式去重新理解题目,将会获得不一样的解题思路。例如:在以下三个公式中,X2+4ax-4a+3=0,X2+(a-1)X+a2=0,,X2+2ax-2a=0,至少有一个公式,具有实数根,求a的取值范围。这道题学生从正面思考相对而言问题较多,具有一定的困难性,情况极为复杂,假设从反方向思考,三个方程式均没有实数根,从这个角度分析,a的取值范围就很好确定,即Δ1=(4a)2+4(4a-3)

疑难问题是现阶段初中生极易遇到的类型,很多学生运用正向思维不能理解题意,并且难以有效解决,给学生造成一定的精神困扰,导致学生学习积极性受到影响,挫伤学生学习自信心,造成学生成绩不能有效提升。从另一角度分析,逆向思维可以帮助学生从不同角度分析问题,解题思路更为明确,有效解决教学过程中的弊端,从长远角度分析,学生逆向思维的培养是非常关键的,有利于促进学生全面发展,提升其数学问题解决能力,为提高学生成绩奠定良好的基础。

总的来说,逆向思维对学生学习数学是非常有帮助的,教师在日常教学中可以积极引导,并根据教学的具体情况拟定切实可行的教学计划,真正使学生具有逆向思维,提高解题效率与质量,从而实现高效学习。同时,逆向思维的培养还有赖于数学教师的专门研究,如果操作不当会给学生带来学习的困难和困惑。培养学生的逆向思维,需要对学生的学情充分掌握,因人而异。最好能够进行分组教学,只有这样才能把逆向思维教学取得更好的教学效果。

参考文献:

[1] 杨昭,李文铭.浅谈初中数学教学中学生逆向思维能力的培养[J].学周刊,2016(01).

[2] 刘赫.试析初中数学教学中学生创新思维能力的培养[J].中国校外教育,2012(23).

[3] 陈光萍. 小学数学教学中学生逆向思维能力培养研究[J]. 学周刊,2015(35).

逆向思维教学论文范文 第4篇

关键词:互逆;训练;逆向思维

中图分类号:G632 文献标识码:A 文章编号:1002—7661(2012)19—0065—01

在教学实践中,学生往往正向思维较为活跃,而逆向思维相对薄弱,任其发展,久之久之会形成思维定势,不利于学生智力的开发、能力的培养和素质的提高。一般的学生从正向思维转向逆向思维是存在着一定的困难的,而有能力的学生在完成这种转变时是迅速且自如的,这就是能力不同的学生在思维的运动性方面的素质差异。这种思维的运动性,是创造性思维的一个重要组成部分。所以注重对学生的逆向思维训练,是培养学生创造性思维能力的一个重要方面。

一、关注“互逆”、“对应”的知识

数学知识有许多“相反、互逆”的概念、公式、法则和定理,若能恰当地引导学生对它们进行双向思考,关注这些数学知识,无疑会提高学生的逆向思维能力。

1、关注“互逆”关系

对数学中的互逆关系,在教学过程中要下工夫把它们讲清楚,使学生知道互逆关系的两个实体是相互依赖,互为存在的。并引导学生对互逆关系进行“由此及彼”的思考、研究和比较。例如,在学习“相反数”概念时,像+6和—6这两个数,只有符号不同,一正一负,我们说+6的相反数是—6,反之,—6的相反数是什么呢?(+6)。就是说+6和—6“互为相反数”,它们是成对出现的。这样,在对知识和技能产生正迁移的同时,也为灵活运用知识打下了坚实的基础。

2、关注“对应”关系

数学中对应的思想方法为训练逆向思维提供了有利条件。为了训练学生的逆向思维,在教学中,可有意识地编排顺、逆双向配对的练习题供学生训练。如:

4的相反数是____; ____的相反数是4

—5的倒数是____; ____的倒数是—5

以上练习题,由于顺、逆双向对比,学生通过练习,可以逐步养成逆向思维的习惯,提高逆向思维的能力。在逆向思维过程中有诸多的抑制和干扰因素,不利于学生逆向思维的正常进行,因此在教学过程中要注意强化训练。

二、注意知识的逆向运用

关注了可以逆向运用的知识,就要注意在教学中对这些可逆知识加以运用,以提高学生逆向思维的能力。

1、注意公式及法则的逆运用

在公式及法则中,不乏具有可逆的公式和法则的存在。在教学中要抓住机遇,强化公式及法则的逆运用,训练学生逆向思维。如:讲授因式分解时x2(a+b)x+ab=(x—a)(x—b);与整式乘法(x—a)(x—b)= x2(a+b)x+ab进行比较。由于教学中有意识地强化了它们互逆运用训练,学生将来用因式分解法解一元二次方程时,便水到渠成了。

2、注意定理及命题的逆运用

在已学习某些定理及典型命题以后,引导学生思考它们的逆命题,并判断其真假,再进行逆向灵活运用,是培养学生逆向思维的又一途径。如:如果同位角相等,那么两直线平行;如果两直线平行,那么同位角相等。

三、训练“反面求解”的方法

1、训练反面求解方法

在解题过程中经常遇到顺向求解较为困难的习题,若采用“正难则反”、“反面求解”方法,往往会达到事到半功倍之效。

例,a为何值时,x=1不是方程2x—a=3x+5的根?

析:本题正面思考有相当难度,如改用反面求解则显得简单。假设x=1是原方程的根,则a=—6。显然,当a≠—6时,x=1不是原方程的根。

2、训练反面论证方法

虽初中学生接触反证法不多,但对于培养他们用反证法去解决问题仍然很重要。

例, 证明:一个三角形至少有一个角大于或等于60°。

析:如果用正向思维,对每一个三角形都去进行证明,这是不可能做到的,但采用逆向思维,我们可以把它等同于其反问题的不成立(反问:一个三角形的三个角可以都小于60°) 。然后,我们只要证明这个反问题是错的,那么原题即可得证:若这个反问题成立,则至少有一个三角形的三个角的和小于3×60°=180°,这与三角形的三个角的和等于180°的定理是违背的,因此,反问题不成立,原题得证!

3、训练逆向推理方法

逆向推理法(逆推法)就是从结论出发,逐步逆推,从而找出符合条件的结论,它是逆向思维的表现之一。

例, 将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位,得一新抛物线y=2x2+8x+3。试确定a、b、c之值。

析:这道题目按原图象变化进行思考,运算复杂,且有难度。若从结论出发,进行逆向推理,则简单易解。现在如下推理,依题意将抛物线y=2x2+8x+3 =2(x+2)2—5 (结论)向右平移2个单位,再向上平移3个单位,即得原抛物线(已知),然后利用比较系数确定原解析式中的a、b、c。

四、营造逆向思维的氛围

训练逆向思维不是一朝一夕的事情,在教学中,要注意多选编些逆向思维的习题供学生练习,以营造逆向思维的氛围,达到训练逆向思维的目的。

1、鼓励学生倒过来想问题,以构造逆向思维情境

对一些数学问题,要注意引导学生将它们倒过来想,放在新的数学情境中去认识、去思考,使学生对旧问题产生新情趣,对数学产生浓厚的学习兴趣。例如,给出一个方程(组),要求学生编拟不同类型的应用题。这样的数学活动,一则可激发学生学习的积极性,使学生觉得数学大有学头;二则可培养学生思维的深刻性,使学生认识到思得愈深,造得愈绝,解得愈妙;三则充分营造了逆向思维的氛围,使学生在愉快的情境中进行逆向思维的活动。

2、利用课外园地,创建逆向思维的环境

逆向思维教学论文范文 第5篇

一、理解定义,启发逆向思考

一般来说,数学概念是运用定义的形式来揭露其本质特征的. 数学概念是发展思维、培养数学能力的基础. 我们知道任何一个数学概念都是可逆的. 在进行数学概念教学时,遗憾的是不少教师只注意了从左到右运用,久而久之,形成了思维定式,不利于解决数学难题. 其实数学定义总是双向的,数学教师讲解概念时,一方面让学生从内涵上真正理解概念,另一方面还要注意启发学生的逆向思考,思路会更开阔一些,使得概念的外延得以拓展. 教育学生必须清楚定义是一种特殊的命题,该命题中条件和结论互为充要条件,即任何定义类命题的逆命题都是真命题.

如:“有两条边相等的三角形叫等腰三角形”. 反过来就是“等腰三角形是有两条边相等的三角形”;“乘积是1的两个数叫做互为倒数”,逆向思维则叙述为“互为倒数的两个数乘积是1”;线段中点的定义,点O把线段AB分成两条相等的线段,把点O叫做线段AB的中点. 可以逆向思考为:若点O是线段AB的中点,则点O把AB分成两条相等的线段. 教师既要从正面讲清定义的含义,也应重视定义的逆向应用,使学生对概念理解透彻,印象深刻,记忆牢固.

二、重视公式,激活逆向思维

数学公式是我们解决数学题的重要依据之一,一般数学公式是从左到右运用的,教师也就习惯了正向思维的教学,殊不知数学中的公式都具有双向性. 为促进双向思维能力的培养,数学教师要精心备课,重视公式教学,认真推导公式,探索公式能否逆向运用,力争做到活学活用,这样不仅能加深学生对公式的理解的掌握,还可以激活逆向思维,真正地培养学生的双向思维能力.

数学公式实际上是一条左右通用的公式. 平时教学中,加强公式的互逆应用,加强训练,深化理解,可以激活学生的创造性思维,更能培养学生灵活运用公式的能力.

三、解读定理,培养逆向意识

“定理”是经过逻辑推理得到的,它是经过验证成立的,是正确的命题. 每个定理都有它的逆命题,逆命题是寻找新定理的重要途径. 但逆命题不一定成立,课本中有一些用途较广的定理,教师要鼓励学生探求它们的逆命题,验证、辨析、判断其正误,尝试运用,灵活解疑. 在教学中,有效地判定逆命题的真假,能调动学生的学习兴趣,激发他们钻研新知识,培养他们的逆向思维,学生也会养成主动探索、勤于思考、大胆质疑的良好习惯.

勾股定理是几何学中一颗光彩夺目的明珠,被称为几何学的基石,学生在勾股定理及其逆定理的证明中,积极主动,敢于挑战,把定理题设和结论在一定条件下进行转换,形成有异于原命题基本思想的新题型,进而提高创造能力,为以后解决数学难题奠定了坚实的基础.

四、探究法则,强化逆向训练

逆向思维教学论文范文 第6篇

关键词:逆向思维、拓展

逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。它是数学思维的一个重要原则,是创造思维的一个组成部分,也是进行思维训练的载体,培养学生逆向思维过程也是培养学生思维敏捷性的过程。课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。因此,加强逆向思维的训练,可改变其思维结构,培养思维灵活性、深刻性和双向能力,提高分析问题和解决问题的能力。迅速而自然地从正面思维转到逆向思维的能力,正是数学能力增强的一种标志。因此,我们在课堂教学中务必加强学生逆向思维能力的培养与塑造。

传统的教学模式和现行数学教材往往注重正向思维而淡化了逆向思维能力的培养。为全面推进素质教育,本人在多年教学实践中常注重以下几个方面的尝试,获得了一定的成效,现归纳如下:

一、在概念教学中注意培养反方向的思考与训练。

数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定性思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:讲述:_同类二次根式_时明确_化简后被开方数相同的几个二次根式是同类二次根式_。反过来,若两个根式是同类二次根式,则必须在化简后被开方数相同。例如:若与是同类二次根式,求a,解题时,只要将a3+3a+a=2a+3,即可求出a的值。在平面几何定义、定理的教学中,渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。例如:“互为余角”的定义教学中,可采用以下形式:∠A+∠B=90°,∠A、∠B互为余角(正向思维)。∠A、∠B互为余角。∠A+∠B=90°(逆向思维)。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。

二、重视公式逆用的教学

公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维的能力的体现。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。如=|a| 的逆应用|a|= ,多项式的乘法公式的逆用用于因式分解、同底数幂的运算法则的逆用可轻而易举地帮助我们解答一些问题,如:计算(1) 22000×52001;(2)( 2 )100×(-2)200;(3)2m×4m×等,这组题目若正向思考不但繁琐复杂,甚至解答不了,灵活逆用所学的幂的运算法则,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、加强逆定理的教学。

每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理的重要途径。在平面几何中,许多的性质与判定都有逆定理。如:平行线的性质与判定,线段的垂直平分线的性质与判定,平行四边形的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维大有益处。

四、多用“逆向变式”训练,强化学生的逆向思维。

“逆向变式”即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。例如:已知,如图,直线AB经过0上的点C,且OA=OB,CA=CB,求证:直线AB是O的切线。可改变为:已知如

图,直线AB切O于C,且OA=OB,求证:AC=BC。或直线AB切O于C,且AC=BC,求证:AC=BC。再如:不解方程,请判断方程2x2-6x+3=0的根的情况。可变式为:已知关于x的方程2x2-6x+k=0,当K取何值时?方程有两个不相等的实数根。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、强调某些基本教学方法,促进逆向思维。

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。

相关内容

热门阅读
随机推荐