首页 > 范文大全 > 其他范文

新人教版高一数学必修一教案(精选16篇)

新人教版高一数学必修一教案(精选16篇)



教案是指教学过程中教师为了达到教学目标、组织学生学习而事先设计的指导性文件,它承载着教学理念和教学内容,是教学活动的重要组成部分。每一个教案都应该经过认真的思考和精心的编写,以确保教学的科学性和有效性。编写完美的教案需要做好充分的教学准备工作,对教学内容有深入的理解。这些教案范文对于教师编写教案和改进教学方法都有很大的借鉴意义。

新人教版高一数学必修一教案篇一

一、除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。植物的导管细胞是死细胞(主要运输水分、无机盐),筛管主要运输有机物。

二、细胞核控制着细胞的代谢和遗传。

三、细胞核的结构。

2.染色质(主要由dna和蛋白质组成,dna是遗传信息的载体。

4.核孔(实现核质之间频繁的物质交换和信息交流)核孔有选择透过性,上面有载体,大分子物质(蛋白质和mrna)出入细胞需要能量和载体,细胞代谢越旺盛,核孔越多,核仁体积越大。

四、细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清晰可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。

五、细胞既是生物体结构的基本单位,又是生物体代谢和遗传的基本单位。

新人教版高一数学必修一教案篇二

用坐标法解决几何问题的步骤:

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论、

重点与难点:直线与圆的方程的应用、

问 题设计意图师生活动

生:回顾,说出自己的看法、

2、解决直线与圆的位置关系,你将采用什么方法?

生:回顾、思考、讨论、交流,得到解决问题的方法、

问 题设计意图师生活动

3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题

生:自 学例4,并完成练习题1、2、

生:建立适当的直角坐标系, 探求解决问题的方法、

8、小结:

(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、

生:阅读教科书的例3,并完成第

问 题设计意图师生活动

题的需要准备什么工作?

(2)如何建立直角坐标系,才能易于解决平面几何问题?

(3)你认为学好“坐标法”解决问题的关键是什么?

新人教版高一数学必修一教案篇三

(1)理解函数的概念;。

(2)了解区间的概念;。

2、目标解析。

(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。

【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

【教学过程】。

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.

1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?

1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?

设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。

问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。

问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

新人教版高一数学必修一教案篇四

3.通过参与编题解题,激发学生学习的爱好.

教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.

实物投影仪,多媒体软件,电脑.

研探式.

一.复习提问

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知等差数列中,首项,公差,则-397是该数列的第x项.

(2)已知等差数列中,首项,则公差

(3)已知等差数列中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知等差数列中,求的值.

(2)已知等差数列中,求.

若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知等差数列中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….

类似的还有

(4)已知等差数列中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判定?引出

3.研究等差数列的单调性

4.研究项的符号

这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第x项起以后每项均为负数.

三.小结

1.用方程思想熟悉等差数列通项公式;

2.用函数思想解决等差数列问题.

四.板书设计

等差数列通项公式1.方程思想的运用

2.基本量方法的使用

3.研究等差数列的单调性

4.研究项的符号

新人教版高一数学必修一教案篇五

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式。

会从实际情境中抽象出一元二次不等式模型.

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题。

会从实际情境中抽象出二元一次不等式组.

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

新人教版高一数学必修一教案篇六

>教学目标

落实情况.

解 绝对值不等式注意不要丢掉 这部分解集.。

五、作业。

1.阅读课本 含绝对值不等式解法.。

2.习题 2、3、4。

课堂教学设计说明。

1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.

2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.

3.针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.

新人教版高一数学必修一教案篇七

三、在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质。

细胞质:包括细胞器和细胞质基质。

四、电子显微镜下看到的是亚显微结构,普通显微镜下看到显微结构。

光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁。

实验:用高倍显微镜观察叶绿体和线粒体。

健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。

材料:新鲜的藓类的叶(叶片薄,直接观察)。

菠菜叶稍带叶肉的下表皮(上表皮起保护作用,几乎无叶绿体;下表皮海绵组织,有气孔保卫细胞,有叶绿体)。

五、分泌蛋白的合成和运输。

有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递)。

核糖体内质网高尔基体细胞膜。

(合成肽链)(加工成蛋白质)(进一步加工)(囊泡与细胞膜融合,蛋白质释放)。

分泌蛋白从合成至分泌到细胞外利用到的细胞器?

答:核糖体、内质网、高尔基体、线粒体。

分泌蛋白从合成至分泌到细胞外利用到的结构?

核糖体、内质网、高尔基体、线粒体、细胞核、囊泡、细胞膜。

六、生物膜系统。

1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统。

2、作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反应的场所;把各种细胞器分隔开,保证生命活动高效、有序进行。

3、内质网膜内连核膜外连细胞膜还和线粒体膜直接相连。

经过囊泡与高尔基体膜间接相连。

新人教版高一数学必修一教案篇八

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法。

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观。

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点。

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具。

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学思路。

(一)创设情景,揭示课题。

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知。

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本p8,习题1.1a组第1题。

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化。

练习:课本p7练习1、2(1)(2)。

课本p8习题1.1第2、3、4题。

五、归纳整理。

由学生整理学习了哪些内容。

六、布置作业。

课本p8练习题1.1b组第1题。

课外练习课本p8习题1.1b组第2题。

1.2.1空间几何体的三视图(1课时)。

新人教版高一数学必修一教案篇九

(2)了解区间的概念;。

(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。

【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.

1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?

1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?

设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。

问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的`图象,都有的一个臭氧层空洞面积s与之相对应。

问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

新人教版高一数学必修一教案篇十

本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。

二、教学目标。

(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

三、设计思路。

本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点。

(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

四、学生现实分析。

本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。

五、教学方法。

(1)教学方法及教学手段。

针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。

在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。

(2)学法指导。

力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。

新人教版高一数学必修一教案篇十一

1.阅读课本练习止。

2.回答问题:

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3.完成练习。

4.小结。

二、方法指导。

1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。

一、提问题。

1.对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明。

二、变题目。

1.试求下列函数的反函数:

(1);(2);(3);(4)。

2.求下列函数的定义域:。

(1);(2);(3)。

3.已知则=;的定义域为。

1.对数函数的有关概念。

(1)把函数叫做对数函数,叫做对数函数的底数。

(2)以10为底数的对数函数为常用对数函数。

(3)以无理数为底数的对数函数为自然对数函数。

2.反函数的概念。

在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。

3.与对数函数有关的定义域的求法:

4.举例说明如何求反函数。

一、课外作业:习题3-5a组1,2,3,b组1,

二、课外思考:

1.求定义域:

2.求使函数的函数值恒为负值的的取值范围。

新人教版高一数学必修一教案篇十二

教学目标。

理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.

教学重难点。

1.教学重点:两角和、差正弦和正切公式的推导过程及运用;。

2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用.

教学过程。

新人教版高一数学必修一教案篇十三

1、教材(教学内容)。

2、设计理念。

3、教学目标。

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点。

出处 FaNWen.CHAzIdiAn.cOm

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析。

6、教法分析。

7、学法分析。

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

新人教版高一数学必修一教案篇十四

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。

二、重点难点分析。

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。

三、教法建议。

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。

(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

新人教版高一数学必修一教案篇十五

一、课前准备。

问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是。

……所以n边形的内角和是。

新知1:从以上事例可一发现:

叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。

新知2:类比推理就是根据两类不同事物之间具有。

推测其中一类事物具有与另一类事物的性质的推理、

简言之,类比推理是由的推理、

新知3归纳推理就是根据一些事物的',推出该类事物的。

的推理、归纳是的过程。

例子:哥德巴赫猜想:

观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

归纳推理的一般步骤。

1通过观察个别情况发现某些相同的性质。

2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。

※典型例题。

例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和sn的归纳过程。

变式1观察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……。

你能猜想到一个怎样的结论?

变式2观察下列等式:1=1。

1+8=9,

1+8+27=36,

1+8+27+64=100,

……。

你能猜想到一个怎样的结论?

例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。

变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式。

例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、

圆的概念和性质球的类似概念和性质。

圆的周长。

圆的面积。

圆心与弦(非直径)中点的连线垂直于弦。

与圆心距离相等的弦长相等,

※动手试试。

2如果一条直线和两条平行线中的一条相交,则必和另一条相交。

3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。

三、总结提升。

※学习小结。

1、归纳推理的定义、

新人教版高一数学必修一教案篇十六

了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

了解数列是自变量为正整数的一类函数。

(2)等差数列、等比数列。

理解等差数列、等比数列的概念。

掌握等差数列、等比数列的通项公式与前项和公式。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

了解等差数列与一次函数、等比数列与指数函数的关系。

相关内容

热门阅读
随机推荐