大家可以尝试一些有趣的活动,比如读书、旅游、参加社交活动等,以充实自己的生活。在写总结时,可以运用一些修辞手法和变换句式,增加语言的变化和表达的层次。推荐给大家几篇总结范文,希望能对大家的写作有所帮助。
请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的.数字,是你所选出的那些数中当中的一个。为了达到这些目的。
(1)请你说明:11这个数必须选出来;。
(2)请你说明:37和73这两个数当中至少要选出一个;。
(3)你能选出55个数满足要求吗?
答案与解析:(1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。
(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。
(3),同37的例子,
01和10必选其一,02和20必选其一,……09和90必选其一,选出9个。
12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。
答案与解析:
一位数1-9一共用了9个数字。
三位数中,先考虑100-199的情况。其中,111用了1个数字;100,122…199一共有9个数,每一个都用到了2个数字;101,121,131…191一共9个数,每一个都用到了2个数字;其他的每一个都用到了3个数字。所以一共用了3x(100-9-9-1)+2x9+2x9+1=280.
原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土方。
答案:
方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。
解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,
原计划每人每天挖土的方数:1÷(1/3)=3(方)。
所以24x(y-5)=18(x+1)×(y-5),
根据题意得出y必须大于5,
所以24x=18x+18。
6x=18。
x=3。
答:原计划每人每天挖土3方,故答案为3。
答案与解析:
那么甲效率提高三分之一后,合作总效率为8+乙效率。
所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4。
原来总效率=6+4=10。
乙效率降低四分之一后,总效率为6+3=9。
所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间。
解得规定时间为675分。
答:规定时间是11小时15分钟。
答案与解析:“第一次相遇点距b处60米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距a地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以a、b相距=180-10=170米。
答案与解析:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
答案与解析:
10%与30%的盐水重量之比为(30%-22%):(22%-10%)=2:3,因此需要30%的盐水20÷2×3=30克。
瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的a、b两种酒精,瓶子里的酒精浓度变为14%.已知a种酒精的'浓度是b种酒精的2倍,答案与解析:
依题意,a种酒精浓度是b种酒精的2倍.设b种酒精浓度为x%,则a种酒精浓度为2x%.a种酒精溶液10o克,因此100×2x%为100克酒精溶液中含纯酒精的克数.b种酒精溶液40o克,因此400×x%为400克酒精溶液中含纯酒精的克数.
解:设b种酒精浓度为x%,则a种酒精的浓度为2x%.求a种酒精的浓度.
答案与解析:
那么除掉起步的3千米的距离,之后增加的距离为:9.59.95。
也就是说除起步价距离,增加的距离介于4个2米和5个2米之间。
所以就按照5个2千米来进行收费;。
应该支付的钱数为:8+3×5=23元。
奥数题七。
计算4.75-9.63+(8.25-1.37)。
原式=4.75+8.25-9.63-1.37。
=13-(9.63+1.37)。
=2。
解:题中的条件,两个不同的骑车速度,行两地路程到达的时间分别是下午1时和上午11时,即后一速度用的时间比前一速度少2小时,为便于比较,可以以行到下午1时作为标准,算出用后一速度行到下午1时,从甲地到乙地可以比前一速度多行15×2=30(千米),这样,两组对应数量如下:
转载自 FaNweN.chaZIdiAN.COm
每小时行10千米下午1时正好从甲地到乙地。
每小时行15千米下午1时比从甲地到乙地多行30千米。
上下对比每小时多行15-10=5(千米),行同样时间多行30千米,从出发到下午1时,用的时间是30÷5=6(小时),甲地到乙地的路程是10×6=60(千米),行6小时,下午1时到达,出发的时间是上午7时,要在中午12时到,即行12-7=5(小时),每小时应行60÷5=12(千米)。
答:每小时应行12千米。
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
解答:解:45+5×3。
=45+15。
=60(千克)。
答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
亲
爱
的小朋友们,小学
频道为你准备了六年级奥数题及答案:奇偶性应用(中等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:逻辑推理(高等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利10.5万元.这套房子原标价()万元.
分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.
解答:解:10.5÷(1+30%-95%),
=10.5÷35%,
=30(万元),
答:这套房子原标价30万元;。
故答案为:30.
点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.
文档为doc格式。
甲、乙、丙、丁四人经常为学校做好事。星期天,校长发现大操场被打扫得干干净净,找来他们四人询问:
甲说:“打扫操场的在乙、丙、丁之中。”
乙说:“我没打扫操场,是丙扫的。”
丙说:“在甲和乙中间有一人是打扫操场的。”
丁说:“乙说的是事实。”
答案与解析:
已知四人中有两人说真话,有两人说的是假话,所以从这一点出发进行推理。
注意乙和丁的说法一致,所以这表明他俩要么同说真话,要么同说假话,同样可以推理出甲和丙也是同说真话或同说假话。但是甲和丙中至少有一个人说真话,因为他们指明了做好事的在四人中,所以甲、丙同说真话,再根据她们说的话可以判断乙是打扫操场的人。
解答:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.
又因为42=14×3,故可将42:13+14+15,一共有3个加数;。
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子。
考点:列方程解含有两个未知数的应用题;差倍问题。
专题:和倍问题;列方程解应用题。
分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.
解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:
10x﹣x=288,
9x=288,
x=32;。
则桌子的价格是:32×10=320(元),
答:一张桌子320元,一把椅子32元.
点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元。
原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的.30.2%,那么第二次降价后的价格是原来定价的百分之几?(b级)。
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%。
x%=25%。
(1+25%)÷(1+100%)=62.5%。
答:第二次降价后的价格是原来价格的62.5%。
据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约5%的智力超常儿童适合学习奥数。下面是六年级奥数题及答案,为大家提供参考。
六年级。
1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有2013名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。
2.正方体一个面的面积是144÷4=36平方厘米,根据长方体的表面积可得:
36×(4n+2)=3096。
144n+72=3096。
n=21。
答:n是21。
答案与解析:
顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)。
无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12.5(秒)。
答案与解析:
假设ab两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).
答案与解析:
本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)。
1.关于0,下列几种说法不正确的是()。
a.0既不是正数,也不是负数。
b.0的相反数是0。
c.0的绝对值是0。
d.0是最小的数。
2.下列各数中,在﹣2和0之间的数是()。
a.﹣1。
b.1。
c.﹣3。
d.3。
3.2008年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()。
a.14℃。
b.﹣14℃。
c.38℃。
d.﹣38℃。
4.下列计算结果为1的是()。
a.(+1)+(﹣2)。
b.(﹣1)﹣(﹣2)。
c.(+1)(﹣1)。
d.(﹣2)(+2)。
5.计算﹣1+,其结果是()。
a.
b.﹣。
c.﹣1。
d.1。
6.下列单项式中,与﹣3a2b为同类项的是()。
a.3a2b。
b.b2a。
c.2ab3。
d.3a2b2。
7.下列计算正确的是()。
a.2a+2b=4ab。
b.3x2﹣x2=2。
c.﹣2a2b2﹣3a2b2=﹣5a2b2。
d.a+b=a2。
10.2008年5月5日,奥运火炬手携带着象征和平、友谊、进步的奥运圣火火种,离开海拔5200米的珠峰大本营,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时珠峰大本营的温度为﹣4℃,峰顶的温度为(结果保留整数)()。
a.﹣26℃。
b.﹣22℃。
c.﹣18℃。
d.22℃。
11.商店运来一批苹果,共8箱,每箱n个,则共有__________个苹果.
12.用科学记数法表示下面的数125000000=__________.
13.的倒数是__________.
14.单项式﹣x3y2的系数是__________,次数是__________.
15.多项式3x3﹣2x3y﹣4y2+x﹣y+7是__________次__________项式.
16.化简﹣[﹣(﹣2)]=__________.
17.计算:﹣a﹣a﹣2a=__________.
18.一个三位数,百位数字是x,十位数字是y,个位是3,则这个三位数是__________.
19.计算:10﹣24﹣28+18+24.
20.计算:(﹣3)(﹣)(﹣)。
21.计算:(﹣1)2008﹣(﹣14+2)[2﹣(﹣3)2].
22.先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.
23.把下列各数填入表示它所在的数集的大括号:
﹣2.4,3,21.08,0,﹣100,﹣(﹣2.28),﹣,﹣|﹣4|。
正有理数集合:{}。
负有理数集合:{}。
整数集合:{}。
负分数集合:{}.
解因为女生为b人,所以男生为__________人.根据题意,男生共植树__________棵,女生共植树__________棵,所以他们共植树__________棵.
(1)问收工时离出发点a多少千米。
(2)若该出租车每千米耗油0.3升,问从a地出发到收工共耗油多少升。
26.四人做传数游戏,甲任报一个数给乙,乙把这个数加1传给丙,丙再把所得的数乘以2后传给丁,丁把所听到的数减1报出答案.
(1)如果甲所报的数为x,请把丁最后所报的答案用代数式表示出来,
(2)若甲报的数为9,则丁的答案是多少。
(3)若丁报出的答案是15,则甲传给乙的数是多少。
27.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度0.60元收费.
(1)若某住户四月份的用电量是a度,求这个用户四月份应交多少电费。
(2)若该住户五月份的用电量是200度,则他五月份应交多少电费。
一、用心选一选(每题只有一个答案,3分10=30分)。
1.关于0,下列几种说法不正确的是()。
a.0既不是正数,也不是负数。
b.0的相反数是0。
c.0的绝对值是0。
d.0是最小的数。
考点:绝对值;有理数;相反数.
分析:根据0的特殊性质逐项进行排除.
解答:解:0既不是正数,也不是负数,a正确;。
0的相反数是0,0的绝对值是0,这都是规定,b、c正确;。
没有最小的数,d错误.
故选d.
点评:本题主要是对有理数中0的考查,熟记0的特殊性对解题很有帮助.
2.下列各数中,在﹣2和0之间的数是()。
a.﹣1。
b.1。
c.﹣3。
d.3。
考点:有理数大小比较.
分析:根据有理数的大小比较法则比较即可.
解答:解:a、﹣2﹣10,故本选项正确;。
b、10,1不在﹣2和0之间,故本选项错误;。
c、﹣3﹣2,﹣3不在﹣2和0之间,故本选项错误;。
d、30,3不在﹣2和0之间,故本选项错误;。
故选a.
点评:本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.
3.2008年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()。
a.14℃。
b.﹣14℃。
c.38℃。
d.﹣38℃。
考点:有理数的减法.
分析:由北京气温减去哈尔滨的气温,即可得到结果.
解答:解:﹣12﹣(﹣26)=﹣12+26=14(℃),
故选:a.
点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的'关键.
4.下列计算结果为1的是()。
a.(+1)+(﹣2)。
b.(﹣1)﹣(﹣2)。
c.(+1)(﹣1)。
d.(﹣2)(+2)。
考点:有理数的混合运算.
分析:根据有理数的加减乘除法的法则依次计算即可.
解答:解:a、(+1)+(+2)=3,故本选项错误;。
b、(﹣1)﹣(﹣2)=(﹣1)+2=1,故本选项正确;。
c、(+1)(﹣1)=﹣1,故本选项错误;。
d、(﹣2)(+2)=﹣1,故本选项错误.
故选b.
点评:本题考查了有理数的混合运算,是基础知识要熟练掌握.
5.计算﹣1+,其结果是()。
a.
b.﹣。
c.﹣1。
d.1。
考点:有理数的加法.
分析:根据有理数的加法法则,即可解答.
解答:解:﹣1+,
故选:b.
点评:本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.
6.下列单项式中,与﹣3a2b为同类项的是()。
a.3a2b。
b.b2a。
c.2ab3。
d.3a2b2。
考点:同类项.
分析:根据所含字母相同,并且相同字母的指数也相同的项叫做同类项即可解答.
解答:解:在﹣3a2b中,a的指数是2,b的指数是1;。
a、a的指数是2,b的指数是1,所以是同类项;。
b、a的指数是1,b的指数是2,所以不是同类项;。
c、a的指数是1,b的指数是3,所以不是同类项;。
d、a的指数是2,b的指数是2,所以不是同类项;。
故选a.
点评:本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.
7.下列计算正确的是()。
a.2a+2b=4ab。
b.3x2﹣x2=2。
c.﹣2a2b2﹣3a2b2=﹣5a2b2。
d.a+b=a2。
考点:合并同类项.
分析:根据合并同类项即把系数相加,字母与字母的指数不变.
解答:解:a、2a与2b不是同类项,不能合并,故错误;。
b、3x2﹣x2=2x2,故错误;。
c、正确;。
d、a与b不是同类项,不能合并,故错误;。
故选:c.
点评:本题考查了合并同类项,解决本题的关键是明确同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.
先把重点常考的专题学好,我们知道在每个专题里都有核心的知识点,可以这么说,把最简单而又最重要的那些东西掌握好基本上就够了,并不一定非得做太多的题目。比如说行程问题里,一定要熟练运用时间速度路程三个量之间的比例关系来解题。直线形面积问题其实主要就是一个面积比和线段比怎么转化的问题,等等。
每个孩子起步的早晚不同,难免有些内容是别人学过而我没学过的,一旦考到就非常吃亏。那么怎么去补呢,我想也没有必要专门做这个事情,在平时上课的时候,如果老师讲到了你不太会,没学过的地方,给你几个建议:
1.立即举手请老师详细讲解,我相信每一个负责任的老师都会帮你把问题解释清楚的,但你不问老师就很难发现你没懂。
2.课后请教老师,有的同学和家长总觉得下课时间很短,老师没时间帮我讲,其实情况确实如此,但有时候一个问题你想半天没搞懂,可能老师的一句话就会对你有启发,进而把问题弄明白。
3.回家后进一步思考,有很多同学总觉得这个题我不会,好了,那我就不用做了。我经常给我的学生说这样的话:一道题你想了30分钟突然灵机一动想出来了,难道前29分钟的思考就没用了么?事实上前面的29分钟反而是最有用的,因为我要解决这样一个问题的时候遇到了困难,通过思考我把以前学过的方法都用上了(复习以前学过的东西)但还是做不出来,这段时间绝对是有效学习时间因为在思考的'过程中你把你学过的相关内容都复习了一遍,最终无论通过自己还是请教别人把题目做出来后(学到了新的方法,或者巩固了旧知识)都是非常有益的。
时间目前已经非常宝贵,利用的好就能在接下来的各种比拼中取得先机。每天都想一下,今天我学到了些什么东西,我在哪个方面有所提高。只要你每天能找到一个进步的地方,我想你会就觉得数学越来越简单了.切记不要每天只是忙于上课,考试。一定要有消化知识的过程,否则很难取得好成绩,或者说即使突击成功,上了中学也会吃大亏。
计算! 计算! 计算!
之所以写三遍,实在是因为它太重要了,大部分的题目都只需要一个得数,如果费了半天力气想出好办法却把数算错那真是太得不偿失了。我们可以做下面的两件事情:第一,把一些常见的数“背”下来,例如1-30的平方,2的1次方到2的10次方等等,考试的时候一旦用到直接写出正确得数会非常节省时间,因为平均一个题目2分钟,如果20个题目你每个题目省下15秒那么就是5分钟了,某些情况下,时间=分数,像2月5号的考试就有很多同学因为时间不够没做完题。第二,计算能力的训练,每天花10-15分钟做10道计算题,检验自己的正确率,好处有两个,一个是提高计算能力,二是提高在时间紧迫的情况下做题的抗压能力。这些基本能力都是会受用终身的,至少在高考之前如此:)
【口诀】:
和加上差,越加越大;。
除以2,便是大的;。
和减去差,越减越小;。
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;。
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
【口诀】。
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4x7=28,乙数为:4x4=16。
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36,有脚120,求鸡兔数。
(1)加水稀释。
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20x15%=3(千克)。
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)。
(2)加糖浓化。
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20x(1-15%)=17(千克)。
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)。
(1)相遇问题。
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)。
(2)追及问题。
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
先走的路程,为3x2=6(千米)。
速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。
【口诀】:
全盈全亏,大的减去小的;。
一盈一亏,盈亏加在一起。
除以分配的.差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏:则公式为:(9+7)/(10-8)=8(人),相应桃子为8x10-9=71(个)。
例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?
【口诀】:
每牛每天的吃草量假设是份数1,
a头b天的吃草量算出是几?
m头n天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是a头b天的吃草量减去b天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;。
有的草量除以剩余的牛数就将需要的天数求知。
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);。
原有的草量依此反推。
公式就是a头b天的吃草量减去b天乘以草的生长速率。
所以原有的草量=27x6-6x15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;。
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;。
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)。
【口诀】:
岁差不会变,同时相加减,
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13x3=39岁,小军的年龄是13x1=13岁,所以应该是5年后。
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
分析:我们用方程求出他们共同完成的时间,然后运用总时间除以他们制作一个零件的时间,就是要分得的个数.列式解答即可.
:设他们共用x分钟完成这批任务.
甲完成的个数:
2700÷6=450(个);。
乙完成的个数:
2700÷5=540(个);。
丙完成的个数;。
2700÷4.5=600(个);。
答:甲乙丙每人应该分配到450个零件540个零件,600个零件。
:本题先求出他们共同完成的时间,再运用总时间除以他们制作一个零件的时间,就是要分得的个数。
六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的收获。
答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标。当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间。乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80x9=720(米),甲距目()标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟)。
另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900x2(100+80)=10分钟。
六年级奥数题及答案(高等难度)
亲
爱
的小朋友们,小学
频道为你准备了六年级奥数题及答案:奇偶性应用(中等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的.花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:逻辑推理(高等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利10.5万元.这套房子原标价万元.
分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.
解答:解:10.5÷(1+30%-95%),
=10.5÷35%,
=30(万元),
答:这套房子原标价30万元;。
故答案为:30.
点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.
注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的.流量就是工作量,单位时间内水的流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。
只要设某一个量为单位1,其余两个量便可由条件推出。
每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1。
即一个排水管与每个进水管的工作效率相同。由此可知。
一池水的总工作量为1×4×5-1×5=15。
又因为在2小时内,每个进水管的注水量为1×2,
所以,2小时内注满一池水。
至少需要多少个进水管?(15+1×2)÷(1×2)=8.5≈9(个)。
答:至少需要9个进水管。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/qitafanwen/932511.html