作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么我们该如何写一篇较为完美的教案呢?这里我给大家分享一些最新的教案范文,方便大家学习。
使学生理解的含义,会根据线段比例尺图上距离或实际距离。
根据线段比例尺求图和实际距离
上节我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,除了数值比例尺外,还有线段比例尺呢?这就是我们这节课要学习的内容。
2、如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的.实际距离?让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米,再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?让学生说怎样列式。
50×5.5=275(千米)
3、你能不能把这个地图上的线段比例尺改写成数值比例尺?怎么改写?
完成练习十五的第4~8题
在地图上找出我们的家乡和北京,并计算出它们离多远。如果用50千米的线段比例尺,你能画出它们在图上的距离吗?同学们试一试。
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
从不同的角度理解比例尺的意义。
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
师:同学们,你们见过这个成语吗?(板书:以――当――)
生:以一当十。(指名回答)
师:那这样的话以三当几?以七当几?你是怎么算的?
生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)
师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?
生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。
师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米。)
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状,但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3)标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)
让生自学课本第30页什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
(一)基本运用(小黑板出示)
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是.
(1)图上宽与图上长的比是1∶2()
(2)图上宽与实际宽的比1/400是()
(3)图上面积与实际面积的比是1∶160000()
(4)实际长与图上长的比是400∶1()
(5)图上长与实际宽的比是1∶200()
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
比例尺
以一当十
比
学生的图1:100或分数图上距离:实际距离=比例尺
(贴)1:200或分数前项一般为1
(强调比例尺的前项一般为1)
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
1、使学生进一步理解比例尺的意义以及比例尺在现实生活中的应用,会根据比例尺求图上距离或实际距离。
2、进一步培养学生分析、抽象、概括的能力,体会数学知识与现实生活的紧密联系。
根据比例尺的意义求图上距离或实际距离
设未知数时单位的正确使用。
布置前置作业。小黑板。小组分工。
一、小喇叭主持
讲数学小故事。
师:谢谢你给我们带来的小故事。其实生活处处有数学。好了。同学们打开小研究本,把做好的前置作业小组里进行交流。一会儿派代表起来汇报。
二、新课引入
1、小组内交流数学前置小作业。指生汇报。
“哪个组起来汇报?”
2、谈话:我们在前面学习了比例尺的计算方法。今天我们就来学习比例尺在生活中的应用。
三、探究新知
(一)学习求实际距离的方法。
师(出示例7及右图):这道题已知什么,让我们求什么?比例尺1:8000表示什么意思?(学生自由读题思考,小组里互相说一说,指生回答。)
师:那么,根据题意怎样才能求出实际距离是多少?你能想出几种办法来呢?
请同学们先试着在研究本上做一做,然后在小组里讨论交流。(师巡视辅导。)
师:你是怎么想的?你觉得做的时候特别要注意什么?哪个小组到台上来汇报?
老师提个要求,别人回答问题的时候,请同学们认真倾听,你们能做到吗?
生1、生2、生3
师:刚才同学们还想到了用解比例的方法求出了实际距离,真不简单!
那你说说你是根据什么列出比例式的?
首先解设什么?设未知数时用什么做单位呢?
为什么不用米做单位?做的时候要注意什么呢?
小组里再互相说一说。
生1、生2、生3
师:我们知道了已知图上距离求实际距离,既可以按照实际距离与图上距离的倍数关系解决来解答,还可以按“图上距离:实际距离=比例尺”列出比例,用解比例的方法求出结果了。
师:那这些方法当中,你最喜欢用那种方法?为什么?
还有什么不明白的地方吗?还有要补充的吗?小组里互相说说,遇到不懂的可以提出来。其他同学帮忙解答。
(二)学习求图上距离的方法。
(出示“试一试”:明华小学正北方240米处是医院。先算出学校到医院的图上距离,再在图中表示出医院的位置。)
师:好了,请同学们用你喜欢的方法试着做一做。然后在小组里互相说说你是怎么想的?
(小组互动,师巡视。指生汇报。)
生1、生2、生3、生4
师:你们当中谁用算术方法做的?说说你的想法。
谁是用比例解的?你能说一说根据什么列比例的吗,应该将谁设为x?单位是什么?列比例之前首先要干什么?(单位换算)
生1、生2
师:图上距离求出来后,这道题做完了吗?还有补充的吗?
师:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以根据比例的意义及性质列出比例,再解比例求出结果。
四、反馈练习
1、练一练。
先在练习本上独立做,再小组交流,指生汇报交流。
2、选择:(出示小黑板(1)(2))
读题思考。指生回答。
五、小结
师:今天这节课我们学习了什么?你有什么收获?
六、作业
练习十一第三题。
七、课后拓展
课后找时间测量出学校操场的长和宽,然后选用适当的比例尺画出操场平面图。
一、问题的情景:
1.出示邮票。问:你能同样大小的把它画在图纸上吗?
让同学们画一画,再拿出邮票的长,比一比,怎么样?
归纳:(同样长)得:图上的长和实际的长的.比是1:1。
2.教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?
4.导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。
板书:比例尺
二、问题解决:
5.一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。
6.小组回报设计方案,教师选择以下四种方案。
(1).用9厘米表示9米
(2).用4.5厘米表示9米
(3).用3厘米表示9米
(4).用1厘米表示9米
7.说说以上方案是图上距离比实际距离缩小了多少倍?
算一算,每幅图图上距离和实际距离的比。
(1).9厘米?9米=9?900=1?100
(2).4.5厘米?9米=4.5?900=1?200
(3).3厘米?9米=3?900=1?300
(4).1厘米?9米=1?900
8.这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。
齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。
比例尺怎样求:(看上述四个比例式得出):
图上距离?实际距离=比例尺或图上距离
实际距离
9.讨论汇报:上面四幅图,比例尺是多少图最大?
比例尺是多少图再小?为什么?
10.练习:
(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。
(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。
(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?
(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?
(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?
上述四题分层练习,后讲评。
11.比较(3)、(4)两题的比例尺有什么不同?
教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。
12.比例尺有多少种表示方法?让生说一说
(常见的有:比的形式分数的形式线段形式)
1.通过学习,初步了解比例尺的意义。
2.认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。
3.能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。
4.情感、态度、价值观:体会数学与日常生活的密切联系。
(1)理解比例尺的含义。
(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。
小黑板、课件、备一幅地图
同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:
1.要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?
2.随便在纸上画一个长方形,这一定是教室的平面图吗?小组合作并完成汇报,在实物展示台上展示自己的作品。
教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。
揭示课题:今天我们一起来学习比例尺的知识。
1.学习比例尺的意义。
(1)动手操作
请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。
学生们计算并汇报,集体订正。
一个教室长8米,宽7米,如果我们要画这个教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设计:
1、用几厘米表示8米和7米。
2、你设计的方案是图上距离比实际距离缩小了多少倍?
3、算一算、每幅图的图上距离与实际距离的比。
同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。
请学生重复说一遍什么叫做比例尺。
板书:图上距离:实际距离=比例尺
请每个人算一算自己所画的教室的平面图的比例尺是多少。
(2)观察地图,自由交流。
引导学生充分发表意见,教师辅助讲解:
1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。
(3)学习不同的比例尺。
补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。
(4)学习例1。
板书:图上距离:实际距离
=1cm:50km
=1cm:cm
=1:
请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。
2.知识运用。
(1)即时训练。
学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。
集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。
(2)拓展训练。
课件出示下列四个问题:
1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。
2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)
4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。
请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。
3.教学例2。
多媒图上距离15cm实际距离450km
回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/qitafanwen/737742.html