首页 > 范文大全 > 其他范文

分数除法说课稿一等奖范文(16篇)

分数除法说课稿一等奖范文(16篇)



教案模板能够帮助教师规范教学步骤,确保教学环节的完整性。教案模板范文的收集和分享可以促进教师之间的交流和互相学习。

分数除法说课稿

师:你知道画面上的人是谁吗?一起说!

生:(齐)屈原!

师:对,他就是我国伟大爱国诗人屈原,屈原的故乡就在咱们……。

生:(齐)秭归!

生:200×3=600(g)。

生:3个脐橙有600g,每个约重200g,请问一个有多重?

师:你想提一个什么数学问题呢?

生:3个脐橙有600g,每个有多重?

师:(板书问题)怎样解决这个问题呢?

生:用总重量600g除以每个的重量200g等于3个。

师:咱们先来解决黑板上的这个问题,好吗?来,旁边的同学帮帮他!

生:用总重量600g除以脐橙的总数3个,等于200g。

师:你直接说算式可以吗?

生:600÷3=200(g)。

师:还可以怎样改编用除法计算的问题呢?

生:3个脐橙的重量约600g,每个重200g,问有多少个脐橙?

师:同不同意他的说法?你来说说看?

生:有一些脐橙,它的总重量有600g,知道每个脐橙约200g,问有多少个脐橙?

师:可以吗?

生:(齐)可以!

生:600÷200=3(个)。

师:非常好!在咱们刚才的这几个问题里,脐橙的重量我们用克来作单位,如果用千克来作单位,200g又可以看作是多少呢?请你说!

生:200g等于0。2kg。

师:用分数表示又是多少呢?

生:0。2千克等于15kg。

师:好的,那每个脐橙的重量约是15kg(板书),那刚才的乘法算式又可以怎样写呢?

生:15×3=35(kg)。

师:那下面两个除法算式又可以怎样改写呢?

生:3个脐橙约重35kg,每个有多重?

师:直接说算式可以吗?

生:15除以3等于15。

师:别着急!

生:35÷3=15(kg)。

师:下面的除法算式又可以怎样写呢?

生:35÷15=3(个)。

师:那今天这节课我们就一起来研究分数除法问题。(板书课题)。

师:仔细观察黑板上的这两组算式,你发现了什么?

生:已知3个脐橙的总重量和其中一个因数,求另一个因数的运算。

师:你的意思是你观察左边的三个整数算式,是吗?谁来帮他说得更清楚些?

师:你们看,黑板上的这两组算式,左边都是……。

生:(齐)整数的算式。

师:右边都是……。

生:(齐)分数的算式。

师:那接着再来观察,(指着整数的算式)下面的两个除法算式同上面的乘法算式有怎样的关系呢?大胆说说吧!

生:下面除法算式的600g是上面乘法算式的积,3和200是上面的两个因数,已知两个因数的积和其中一个因数,求另一个因数用除法计算。

师:她说到了咱们学过的整数除法的意义,

那整数除法是这样的,分数除法又是怎样的呢?

生:整数除法的意义同分数除法意义相同。

师:是这样的吗?还有谁想说说?

生:整数除法的意义同分数除法意义相同。

师:非常好,同学们观察得非常仔细,也很会动脑筋,其实分数除法的意义同整数除法意义相同,都是已知两个因数的积和其中一个因数,求另一个因数的运算。那下面我们一起来看看做一做!

师:根据乘法算式直接写出除法算式的得数。谁先来说?

生:821÷47=23。

师:谁接着说?

生:821÷23=47。

师:对吗?

生:(齐)对!

师:谁来告诉大家,你是怎么这么快就知道结果呢?

生:我知道了两个因数的积是821,积除以一个因数就得到另一个因数。

师:你们也是这样想的吗?真好!今天希望小学的小伙伴们正在为秭归脐橙设计包装纸呢,瞧,第一组的设计师们正遇到了问题。(课件出示问题:我们将一张长方形纸的'45平均分成两份,在其中一份画上了同学们设计的秭归脐橙图标,你知道这一份是这张包装纸的几分之几吗?)。

师:谁能用简洁的语言来说说这个问题?

生:一张长方形纸的45,把它平均分成两份,求一份占这张包装纸的几分之几?

师:同意吗?

生:(齐)同意。

师:怎样列式呢?

生:45÷2=25。

师:哦,你已经计算出结果了!(板书算式)同意他算的这个结果吗?

生:(齐)同意。

师:你们都认为是25,那25是怎样算出来的?老师请四人小组的同学利用我们学过的知识或方法来进行实验,也可以借助手中的材料,注意实验时记下各自不同的算法。小组活动开始!

生小组活动,师巡视辅导师:哪个小组先来汇报?到前面来!

生:先把这张纸平均分成5份,找出这样的4份,把空白的一份折起来,然后把这4份对折,对折之后再摊开,这样的2份就是25。

师:这样的2份是?

生:这样的1份是25。

师:你怎么不把这一份用颜色标出来?这样我们就看得更清楚些。哪个小组和他们的想法一样,并且又涂了颜色的?请你说!

生:我的想法和他们不一样。

师:你是怎么想的?

生:把这张纸平均分成5份,45就是其中的4份,把4个15平均分成2份,每份是2个15,也就是25。

师:其实你的想法同他们是一样的,只不过他们没有涂颜色,我们不能看得更明了些。老师把你们的想法再演示一遍,好吗?(课件演示)。

师:把咱们这么好的想法用算式表示出来吧:45÷2=25,这里的2是怎么算出来的?(板书算式)把4个15平均分成2份,每份是2个15,也就是25。

师:其他组还有没有别的想法?

生:把15折到后面,再把45横着对折,用红色的彩笔涂出其中一份。

师:我想问问你了,涂色的部分是45的多少呢?

生:(齐)12。

师:那是这整张纸的多少呢?

生:25。

生:12。

师:求45的12可以怎样算?

生:45×12。

师:还有谁想说?

生:45×12。

师:那45÷12我们也可以这样算(板书)45×12=25。还有别的算法吗?

生:(齐)25。

师:第二小组的同学们也想问问大家了:如果把这张纸的45平均分。

成3份,每份是这张纸的几分之几?

生独立思考。

师:已经有同学想试试了,那就请同学们选择自己喜欢的方法试着写出算式,算出结果,再想办法验证,最后把你的想法在小组内说说。

生小组活动。

师:已经有同学举手了,想把自己的想法同大家分享一下,请你说!

生拿出折纸。

师:先来说说你是怎么算的?

生:用45乘13等于415。

师:我们把45平均分成3份,也就是45×13,可不可以这样理解?

生:45÷5=425。

师:怎么算的?能把你的想法再说具体点吗?

生:45÷5=45×15=425。

师:好的,如果把这张纸的45平均分成6份,每份又是这张纸的几分之几呢?

生:45÷6=45×16=215。

师:通过上面的折纸实验和算式,你能发现关于分数除法的什么规律吗?

生:45除以一个数,就是45乘它的倒数。

师:还有谁想说?

生:除数除以被除数,就是除数乘被除数的倒数。

师:除数除以被除数?应该怎么说?

生:(齐)被除数除以除数。

师:而且我们今天的被除数都是?

生:(齐)分数。

师:除数呢?

生:(齐)整数。

师:那分数除以整数,我们一般可以怎么算?

生:用分数的分子除以整数。

生:用分数乘整数的倒数。

师:那这两种方法哪种方法更具普遍性呢?

生:用分数乘整数的倒数。

师:对,把一个分数平均分成几份,每份就是它的几分之一,一道除法问题就被转化为我们学过的乘法问题,而且这里乘的是除数的倒数,这种转化的方法可真好!那就用我们发现的规律计算下面各题吧!

生独立完成做一做后,全班集体订正。

生:(齐)想。

(课件出示数学小知识)。

师:听到这些,想说的什么吗?

生:我国古代的数学家真聪明!

师:你们也是这样想的吗?老师和你们一样,我也为我国古代的数学家感到骄傲,但今天,我更为你们这群聪明能干的同学们感到自豪,所以我为了不起的你们留了一个小问题:分数除以整数,我们用分数乘整数的倒数。而刘徽注释《九章算术》时说:分数除法就是将除数的分子、分母颠倒与被除数相乘。这又是什么意思呢?这个问题留给我们在后面的学习中继续探究。下课。

《分数除法》说课稿

本课是新世纪版《义务教育课程标准实验教科书》五年级下册第25页-26页的内容。这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把4/7平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是4/7÷2,被除数4/7的分子式能被除数整除的,而第(2)题的算式是4/7÷3,被除数4/7的分子是不能被3整除的。无论哪一种方法,目的都是就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

通过分析,我认为这节课应该达到以下的教学目标:

1、在具体情境中,借助操作活动,探索并理解分数除以整数的意义。

2、探索分数除以整数的计算方法,并能正确计算。

3、在分数除法算理探究中,渗透转化思想。

:理解分数除法的意义,掌握分数除以整数的计算方法。

(1)求下列各组数的倒数。

(2)把2张长方形的纸平均分成2份,每份是多少?把1张长方形的纸平均分成2份,每份是多少?学生理解题意列出算式,并说出每个算式表示的意义。

课件出示:把一张长方形纸的4/7平均分成2份,每份是这张纸的几分之几?

1、提问:4/7表示什么意思?(是把单位1平均分成7份,取其中的4份)。

2、把4/7平均分成2份,也就是把图上的哪一个部分平均分成2份?得多少呢?

3、谁来说说你是怎样想的?

学生可能会回答:

1)把这4份平均分成2份,每份是2,占这张纸的`2/7。

2)4/7里有4个1/7,平均分成2份,每份就是2个1/7,是2/7。

4、怎样列式计算呢?(板书:4/7÷2=)到底应该怎样计算分数除法呢?下面请同学们和老师一齐来探索分数除法的计算方法。(板书课题:分数除法(一))。

学生可能会得到“分母不变,被除数的分子除以整数得到商的分子”的结论,举例验证。

师:大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。

2、课件出示:把一张长方形纸的4/7平均分成3份,每份是这张纸的几分之几?

师:可以列出算式吗?

1、提问:4/7÷3这道题与刚才那几道有什么不同?(分数的分子不能被除数整除)。

如果要算4/7÷3刚才的方法还能用吗?

师:看来我们要换一个思维方式探索能普遍运用的方法。

2、提问:把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们用课前准备的图形分一分、涂一涂。涂好后在四人小组内交流一下怎样分。

3、你是怎样分的?

(把4/7平均分成3份,每一份就是这张纸的4/21。)。

4、把4/7平均分成3份,这其中的一份实际上就是4/7的几分之几?求4/7的1/3我们可以用什么方法来计算?(板书)。

5、对照这两道算式,你有什么想法吗?

师:分数除以整数,就等于分数乘以整数的倒数。

6、小结:同学们真能干!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。

小结:这就是分数除以整数的常用的方法,谁来说一说这种算法是怎样的?那么0能不能作除数呢?所以,这里还要补上一个条件(0除外)。

7、在今后的分数除法计算中,我们常用这种方法。因为无论分数的分子能否被整数都可以进行计算,不受什么条件限制,它的应用更普遍。当然,分数的分子如果正好能被整数整除时,我们也可以应用第一种算法计算,具体问题具体分析,做题时要合理灵活地选择计算方法。

1、引导学生完成填一填,想一想。(学生独立完成,全班交流。)。

2、引导学生完成试一试。

:谈一谈这一节课你有哪些收获?

分数除法说课稿

1、在计算、比较、观察,发现倒数的特征并理解倒数的意义。

2、掌握求一个数的倒数的方法。

会求一个数的倒数。

理解“倒数”是不能孤立存在的。

1课时。

一、教学过程。

师:事实上,一个数也可以倒过来变成另一个数,比方3/4倒过来变成了4/3,1/7倒过来变成7/1。

师:你能根据它的特性给它起个名字吗?(倒数)今天我们就一起来研究倒数。(板书课题:倒数)。

师:请同学们打开教材第24页,在书上完成“算一算”,并认真观察考虑,看你有什么发现。

组织同学交流自身的发现,引导同学总结几组算式的一起特点(乘积都是1),以和算式左边的两个乘数的关系(分子和分母互相颠倒),从而引出倒数的概念。

师:你怎样描述上面算式中两个乘数的关系呢?(根据同学的`回答,教师板书)。

乘积是1乘积是1。

2/3*3/2=12*1/2=1。

8/11*11/8=11/10*10=1`。

7/9*9/7=17*1/7=1。

6/5*5/6=11/5*5=1。

分子和分母颠倒分子和分母颠倒。

师:乘积是1的两个数互为倒数。你能说出黑板上谁和谁互为倒数吗?还能举出其他例子来吗?(同学举例,教师板书:2/3和3/2互为倒数)。

师:你们是怎么理解“互为”这两个字的?能否举出生活中的例子?(同学举例,如互为朋友是指互相是朋友)。

二、试一试。

主要是让同学理解整数可以看作是分母为1的分数,1的倒数还是1。

三、想一想。

教师借助分数中分母不能为0,说明0没有倒数。

四、练一练。

同学独立完成p24。

《分数除法》说课稿

数学教学,要让学生在一种积极思维状态下,亲身经历数学知识形成过程,也就是经历一个丰富、生动思维过程,使学生通过尝试活动,掌握基本数学知识和技能,激发学生对数学学习兴趣。因此,在教学中我始终以学生发展为立足点,以自我尝试、讨论探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学过程中,使学生观察、操作、口头表达等能力得以培养,使学生创新意识得以开发与增强。

《分数与除法》是人教版义务教育课程标准实验教科书五年级下册第四单元第二课时内容。本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商,这样可以加深和扩展学生对分数意义理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。

根据对教材分析和学生实际,依据数学课程标准理念结合教材自身特点和学生认知规律,我确定教学目标如下:

(1)知识目标:

(2)能力目标:

(3)情感与态度目标:

结合学生认知规律,激发学生求知欲望,在具体探究过程中培养学生数学素养以及培养学生自我探索意识和创新精神。

3、教学重点。

经历探究过程,理解和掌握分数与除法关系。

4、教学难点。

理解用分数可以表示两个数相除商。

学生认识事物是由易到难,由浅入深循序渐进,由“感性认识上升到理性认识”认知规律,学生虽然知道了分数意义,但要使学生真正理解分数与除法关系,必须遵循他们认知规律。因此,本节课采取教学方法是尝试教学法,利用学具让学生在具体情境中大胆尝试,通过动手操作,观察发现,引导归纳出分数与除法关系。学生学法与教师教法是一个有机整体所以尝试探究、动手操作、发现问题、整理归纳贯穿于整节课。

总之,力途为学生营造一个宽松、民主学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们在积极数学思维状态下,真正感受到“我能行”。

针对以上思想,我说一下教学流程中每一步设计意图:

(一)、复习导入点明课题。

因为本节课是在分数意义基础上进行,所以让学生加深对分数意义理解,明确本节课要干什么。开门见山出示课题。

(二)、探究新知。

1、唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法意义顺势引导1张饼平均分成2份、3份、4份怎样列式,然后多媒体给学生以直观形象演示,让学生理解分数可以写成除法。给学生以表象认识。

2、尝试探究,

首先提出问题:3张饼平均分给4个人,每人分几张?然后让学生利用学具动手操作分一分,讨论交流,并让学生展示分过程,把课堂还给学生。同时根据学生汇报多媒体展示分过程。使学生明确三张四分之一就是一张四分之三,所以每人分四分之三张。

这时,当学生对知识理解由感性上升到理性,所以马上进行补充事实,举一反三。

2张饼平均分给4个人,每人分几张?3张饼平均分给5个人,每人分几张?这样学生就比较容易迁移知识,得出2/4与3/5.

3、归纳概括。

通过以上动手尝试探究,学生经历了知识形成过程,所以放手让学生观察发现分数与除法有什么关系,得出结论。同时使学生初步知道两个整数相除,只要除数不为0,不论能否除尽,都可以用分数来表示商。

(三)尝试练习。

接着,就是学生进入当堂练习中,设计有层次、题型多样练习,及时巩固新知,达到当堂学,当堂清效果。使学生更进一步理解本节课所学内容。

本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。

从总体来看,本节课学生能在具体情境中动手操作,大胆尝试,兴趣比较浓厚,而且学生动手分情况也比较好,也能大胆展示,基本上掌握了分数与除法关系。使我感受到数学动手操作是课堂教学一个重要途经。但还存在许多细节问题:

1.在课堂结构安排上有点前松后紧。

2.学生展示分过程时没有点到位,有点乱,不太突出。

3.总结归纳时没有充分放手学生,而且比较急匆匆而过。

4.学生语言表达能力比较欠缺。

在以后教学过程中要尽量克服这些困难,提高自己课堂教学质量。

分数除法说课稿

本课是新世纪版《义务教育课程标准实验教科书》五年级下册第25页-26页的内容。这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把4/7平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是4/7÷2,被除数4/7的分子式能被除数整除的,而第(2)题的算式是4/7÷3,被除数4/7的分子是不能被3整除的。无论哪一种方法,目的都是就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

通过分析,我认为这节课应该达到以下的`教学目标:

1、在具体情境中,借助操作活动,探索并理解分数除以整数的意义。

2、探索分数除以整数的计算方法,并能正确计算。

3、在分数除法算理探究中,渗透转化思想。

理解分数除法的意义,掌握分数除以整数的计算方法。

一、旧知复习,蕴伏铺垫。

(1)求下列各组数的倒数。

(2)把2张长方形的纸平均分成2份,每份是多少?把1张长方形的纸平均分成2份,每份是多少?学生理解题意列出算式,并说出每个算式表示的意义。

课件出示:把一张长方形纸的4/7平均分成2份,每份是这张纸的几分之几?

1、提问:4/7表示什么意思?(是把单位1平均分成7份,取其中的4份)。

2、把4/7平均分成2份,也就是把图上的哪一个部分平均分成2份?得多少呢?

3、谁来说说你是怎样想的?

学生可能会回答:

1)把这4份平均分成2份,每份是2,占这张纸的2/7。

2)4/7里有4个1/7,平均分成2份,每份就是2个1/7,是2/7。

4、怎样列式计算呢?(板书:4/7÷2=)到底应该怎样计算分数除法呢?下面请同学们和老师一齐来探索分数除法的计算方法。(板书课题:分数除法(一))。

三、大胆猜想,举例验证k12教育空间。

1、提问:想一想,如果不看图,你算4/7÷2=2/7吗?你能提出你的大胆猜想吗?

学生可能会得到“分母不变,被除数的分子除以整数得到商的分子”的结论,举例验证。

师:大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。

2、课件出示:把一张长方形纸的4/7平均分成3份,每份是这张纸的几分之几?

师:可以列出算式吗?

四、激发矛盾,再次探究。

1、提问:4/7÷3这道题与刚才那几道有什么不同?(分数的分子不能被除数整除)。

如果要算4/7÷3刚才的方法还能用吗?

师:看来我们要换一个思维方式探索能普遍运用的方法。

2、提问:把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们用课前准备的图形分一分、涂一涂。涂好后在四人小组内交流一下怎样分。

3、你是怎样分的?

(把4/7平均分成3份,每一份就是这张纸的4/21。)。

4、把4/7平均分成3份,这其中的一份实际上就是4/7的几分之几?求4/7的1/3我们可以用什么方法来计算?(板书)。

5、对照这两道算式,你有什么想法吗?

师:分数除以整数,就等于分数乘以整数的倒数。

6、小结:同学们真能干!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。

小结:这就是分数除以整数的常用的方法,谁来说一说这种算法是怎样的?那么0能不能作除数呢?所以,这里还要补上一个条件(0除外)。

7、在今后的分数除法计算中,我们常用这种方法。因为无论分数的分子能否被整数都可以进行计算,不受什么条件限制,它的应用更普遍。当然,分数的分子如果正好能被整数整除时,我们也可以应用第一种算法计算,具体问题具体分析,做题时要合理灵活地选择计算方法。

五、巩固提升。

1、引导学生完成填一填,想一想。(学生独立完成,全班交流。)。

2、引导学生完成试一试。

六、课堂总结:谈一谈这一节课你有哪些收获?

《分数除法》说课稿

2.能列式解决求一个数是另一个数的几分之几的实际问题。

3.使学生在探索分数与除法的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

体体会每一个商的由来和表示的含义。

整个教学过程共安排4个环节完成。

:分成以下6个层次完成。

第1层,分析问题,列出算式。我首先把刚才的情境图变为:把3块饼平均分4个小朋友,每个人分得多少块?学生很容易将复习题的解题方法迁移过来,列出算式34,老师适时板书出来。

第2层,动手操作,探究结果。引导学生观察算式,发现每人分到的饼不满1块时,可以用分数表示。这个分数是多少呢?接着让学生根据课前准备的圆形卡片,在小组内动手做一做。

第3层,组织交流分法,得出答案。可能会出现两种分法。一种是一块一块地分,每人每次分到1/4块,3个1/4块是3/4块。第2种分法,3块一起分,每人分得3块的1/4,即3/4块。老师根据学生的回答将两种分法用电脑动画逐个演示。并相机完成板书:34=3/4.

第4层,自主探究。在此基础上,我提出“把3块饼平均分给5个小朋友,每人分得多少块?"让学生自主探索。并让学生将探索的结果在小组内交流。并在组织交流时适时板书:35=3/5.

第5层,归纳总结。这时,我指着板书内容提出问题:观察黑板上的两个等式,你发现分数与除法有什么关系?同时板书课题:分数与除法的关系。在学生充分交流后老师小结:被除数相当于分子,除数相当于分母。然后板书:被除数除数=被除数/除数。最后,让学生理解并掌握分数与除法关系的字母表达式,并让同学们讨论为什么分母不能为0,让其明白其中的道理,板书:ab=a/b.

第6层,尝试练习。先试做“试一试”的题目。反馈时让学生说说是怎么想的?

接着让学生独立做练一练的两组题。第一题要让学生比较一下每组的上下两题有什么不同,进一步理解分数与除法的关系,第二组继续让学生说说是怎么想的。

1、做练习八的第一题。先让学生在小组里说说,再指名口答。

2、做练习八的第二题。独立填写,集体订正。

3、做练习八的第三题。让部分学生说说是怎么向的。

4、做练习八的第四题。要让学生说出题中的问题有什么不同。

5、做练习八的第五题。让学生联系分数的意义填空,再引导学生根据分数与除法的关系列出算式。

这节课我们学习了哪些知识,你有什么收获和感想?先让学生说一说,老师在适时补充:这节课我们学习了分数与除法的关系,其实数学上很多知识之间都是有联系的,同学们不但要会做题,更要思考这些知识间的内在联系,这样你就会越来越聪明。

《分数除法》说课稿

这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法解决问题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的解决问题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的解决问题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的解决问题。这类解决问题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法解决问题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类解决问题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数解决问题的能力,也有助于发展学生思维的广度。

(一)教学目标。

1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法解决问题,并掌握检验的方法。

2、能力目标:培养学生的观察尝试、创新的能力。

3、情感目标:让学生通过两种方法解答解决问题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。

(二)教学重点。

用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法解决问题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的解决问题。掌握这类解决问题的结构特征,能用方程和算术方法解决,是难点所在。

为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。

(一)引出新知。

第一个环节:复习旧知,促进迁移。

该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:

1、解方程。

第二个环节:创设情境,探究新知。

对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:

第一层次:独立探索。

出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数x帮助自己解这道题。

第二层次:合作探索。

在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。

第三层次:尝试练习。

让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。

第三个环节:变式练习,巩固深化。

练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:

1、定位练习。

仿照例3出示类似的两道解决问题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。

2、提高题:同来互相编题,互相解答。

通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。

第四个环节课堂作业反馈信息。

完成课本练习二十三第4-7题。

(三)说“诱思探究”在本节课的具体体现。

1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。

2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。

《分数除法》说课稿

各位评委、各位专家:

大家下午好!

今天,我说课的题目是《分数除法一》。下面我将从教材、教法与学法、教学过程、板书设计、课堂评价五个方面来进行授课说明。

这一环节包括:教学内容、教材分析、教学目标、教学重难点。

本课节选自北师大版《义务教育课程标准实验教科书》第十册第三单元第二课时的《分数除法一》――即分数除以整数。

本课属于数与代数领域,是在学生学习了分数乘法、认识了倒数的基础上教学的,教材中呈现了两个层次的问题。第一层次是把一张纸的7分之4平均分成2份,每份是这张纸的几分之几?,第二层次是把一张纸的7分之4平均分成3份,每份是这张纸的几分之几?目的是让学生在涂一涂、算一算的过程中通过数形结合,理解一个数除以整数的意义。

知识技能目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

数学思考目标:通过自主探究、合作交流,培养学生手脑协调能力以及发现问题、提出问题、分析问题、解决问题的能力。

解决问题目标:了解分析问题和解决问题的一些基本方法,知道同一个问题可以从不同的角度去处理。

情感态度目标:经历自主探究、合作交流、得出结论的过程,体验其中的成就感。

重点:理解分数除法的意义,掌握分数除以整数的计算方法。

难点:理解分数除以整数计算法则的推导过程。

1.我选择的基本教法是:启发式谈话法。

主要教法是:操作练习法。

辅助教法是:情境激趣法。

这样的教法只是对学生学习的一个引导。真正的体验还来自学生的学法,我准备采用动手操作法、合作交流法、练习法三种学法。

2.我准备的教具是:我准备采用多媒体设备,因为这样的教具会使课堂教学直观、形象、生动、高效,有利于调动学生的学习热情。

我准备的学具是:两张长方形操作卡,目的是让学生在操作中感受知识的形成过程,掌握重点、理解难点。

为了让学生在发展中学数学,学发展中的数学,我设计了以下教学环节:

(1)铺垫导入我准备投入的时间是(3到5分钟)。

(2)而新知生成我准备用(18分钟)。

(3)巩固拓展预设的时间是(10分钟)。

(4)而总结延伸我准备用(2到3分钟)。

1.关于铺垫导入我是这样构建的:与本节课衔接紧密的知识点有二:一是倒数;二是分数的意义。所以,我设计了以上两个内容(课件)的铺垫练习。而分数的意义又与本节课紧密相连,所以,我以一句“如果把这个分数继续分下去就是我们今天要学的分数除法一”,随后引出课题,转入新知教学。

2.新知生成:依据最佳时间原理,这一环节是在学生思维的最佳期进行教学的,大约需要18分钟。下面依据教材编排的顺序分三层进行授课说明。第一层,情境一:把一张纸的平均分成两份,每份是这张纸的几分之几?引导学生依据整数除法的意义列式,随即板书:除以2。

之后,引导学生独立在操作卡上分,涂,反馈后得出答案,板书。紧接着,进行此题的提炼归纳,及分子能被除数整除的计算方法,并模仿出题。第二层,把一张纸的平均分成4份,每份是这张纸的几分之几?引导列式,板书。在这里,我对教材进行了尝试性变动,原题是“把一张纸的平均分成三份,每份是这张纸的几分之几?”改动后保持其被除数的分子不能被整数整除的本质“把这张纸的平均分成4份”更便于学生分、涂、折的操作。在分、涂、折之后,得出答案。

3.学生学习新知后,必须以形式多样的练习加以巩固提高,所以接下来我要说巩固拓展:这一教学环节,我遵循由浅入深、拾级而上的练习原则设计了以下三个层次的练习。

第一个是基础练习:单一的判断习题和单一的计算习题,目的是为突出分数除以整数的计算法则这一重点。

第二个是实际应用的练习题:这一形式的练习会让学生将知识与日常生活紧密联系,深刻体验数学与生活密不可分。

第三个是拓展拔高的练习题:开放的课堂需要开放的思路,这样的练习是针对学有余力的学生设计开发的智能题,体现了尊重个体学生特点的原则。

通过以上层层练习,不但巩固了新知,而且训练了学生思维的敏捷性、灵活性、深刻性,学法得以贯彻,知识得以传输。

4.总结延伸。

第一项:(课后仔细读课本25到26页)通过这个作业培养学生的读书习惯,重要的是训练学生从书本获取知识的能力。

第二项:(依据今天所学知识自己练习5道分数除以整数的练习题)目的是训练学生思维的发散性,使他们既收获知识又训练能力。

除以一个整数(0除外)等于乘这个整数的倒数,我设计的板书力求体现知识性、简洁性、层次性、既突出了重点,又突破了难点。

《义务教育数学课程标准》指出:“评价要关注学生的学习结果,更要关注学生的学习过程,帮助学生认识自我,建立自信。”因此我引导学生反思,让学生交流,这一节课,你有什么收获?有哪些方面的体会?通过师评、他评、自评,让学生的学习探究过程更加高效、更加快乐。

《分数除法》说课稿

数学教学,要让学生在一种积极的思维状态下,亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过尝试活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我始终以学生发展为立足点,以自我尝试、讨论探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。

《分数与除法》是人教版义务教育课程标准实验教科书五年级下册第四单元第二课时的内容。本节课,是在分数意义的基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商,这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。

根据对教材的分析和学生的实际,依据数学课程标准的理念结合教材自身的特点和学生的认知规律,我确定教学目标如下:

(1)知识目标:

(2)能力目标:

(3)情感与态度目标:

结合学生认知规律,激发学生的求知欲望,在具体的探究过程中培养学生的数学素养以及培养学生自我探索的意识和创新精神。

3、教学重点。

经历探究过程,理解和掌握分数与除法的关系。

4、教学难点。

理解用分数可以表示两个数相除的商。

学生认识事物是由易到难,由浅入深循序渐进的,由“感性认识上升到理性认识”的认知规律,学生虽然知道了分数的意义,但要使学生真正理解分数与除法的关系,必须遵循他们的认知规律。因此,本节课采取的教学方法是尝试教学法,利用学具让学生在具体的情境中大胆尝试,通过动手操作,观察发现,引导归纳出分数与除法的关系。学生的学法与教师的教法是一个有机的整体所以尝试探究、动手操作、发现问题、整理归纳贯穿于整节课。

总之,力途为学生营造一个宽松、民主的学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们在积极的数学思维状态下,真正感受到“我能行”。

针对以上思想,我说一下教学流程中的每一步设计意图:

(一)、复习导入点明课题。

因为本节课是在分数意义的基础上进行的,所以让学生加深对分数的意义理解,明确本节课要干什么。开门见山出示课题。

(二)、探究新知。

1、唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法的意义顺势引导1张饼平均分成2份、3份、4份怎样列式,然后多媒体给学生以直观形象的演示,让学生理解分数可以写成除法。给学生以表象的认识。

2、尝试探究,

首先提出问题:3张饼平均分给4个人,每人分几张?然后让学生利用学具动手操作分一分,讨论交流,并让学生展示分的过程,把课堂还给学生。同时根据学生的汇报多媒体展示分的过程。使学生明确三张的四分之一就是一张的四分之三,所以每人分四分之三张。

这时,当学生对知识的理解由感性上升到理性,所以马上进行补充事实,举一反三。

2张饼平均分给4个人,每人分几张?3张饼平均分给5个人,每人分几张?这样学生就比较容易的迁移知识,得出2/4与3/5。

3、归纳概括。

通过以上的动手尝试探究,学生经历了知识的形成过程,所以放手让学生观察发现分数与除法有什么关系,得出结论。同时使学生初步知道两个整数相除,只要除数不为0,不论能否除尽,都可以用分数来表示商。

(三)尝试练习。

接着,就是学生进入当堂练习中,设计有层次的、题型多样的练习,及时的巩固新知,达到当堂学,当堂清的效果。使学生更进一步理解本节课所学内容。

本节课,是在分数意义的基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。

从总体来看,本节课学生能在具体的情境中动手操作,大胆尝试,兴趣比较浓厚,而且学生动手分的情况也比较好,也能大胆的展示,基本上掌握了分数与除法的关系。使我感受到数学的动手操作是课堂教学的一个重要途经。但还存在许多细节问题:

1、在课堂结构安排上有点前松后紧。

2、学生展示分的过程时没有点到位,有点乱,不太突出。

3、总结归纳时没有充分放手学生,而且比较急匆匆而过。

4、学生语言表达能力比较欠缺。

在以后的教学过程中要尽量克服这些困难,提高自己的课堂教学质量。

《分数除法》说课稿

这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生们通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生们思维的广度。

根据教材特点和学生实际我确定本节课的教学目标是:

(1)会分析较复杂的分数除法应用题数量关系。

(2)能列方程正确解答稍复杂的分数除法应用题。

(3)培养学生初步的逻辑思维能力。

教学重点是:能用方程正确解答稍复杂分数除法应用题。

教学难点是:确定单位“1”、分析数量关系。

1.自主探究、寻求方法。

让学生充分自主探究、寻求分数除法的解题方法。

2.设计教法体现主体。

课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。

1.复习铺垫(分两个内容)。

让学生来说说等量关系,找一找单位“1”

合唱队有女生30人,男生比女生多1/3,女生有多少人?

意图:解决问题中关键是找出题目中关键句的等量关系,因此安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。

2.教学新知。

改例题为男生比女生多1/3,女生有多少人?

(补充)男生比女生少1/3,女生有多少人?

比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,因此我们仍然可以顺着刚才的思路,把未知的量设为x,应该说学生是不会有困难的。

例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。

《分数除法》说课稿

各位老师,下午好。

今天我说课的题目是分数除法(二)。

分数除法(二)北师大版数学五年级下册第三单元的第三课时。它是分数除以整数的后继性学习,为分数除以分数及后面的分数混合运算提供认知和学习基础。

教材对本课时的教学方法是让学生通过多次观察,从中归纳出一个数除以分数的计算法则,我称这为倒数计算法。然而根据我多年的教学经验来看,学困生并不能正确运用倒数计算法,为了让大多数学生都能掌握并能正确计算一个数除以分数,教学中我引进了通分计算法。

为此,我把本课时的教学目标定为以下三条:

1、掌握一个数除以分数的方法,并能正确计算。

2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

3、利用数形结合的方式,体会“转化”的数学思维方法。

本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

1、复习铺垫,提供猜测基础。

数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把 1/2 张饼平均分给4个小朋友,每个小朋友能分到几张饼?” 学生根据前一课时所学方法分别用倒数法:1/2 ÷4 = 1/2 ×1/4 =1/8 (张)或者用通分法:1/2 ÷4 = 1×4/2×4 ÷4= 1/8 (张)通过列式计算。然后让学生说一说计算法则。

接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

在解答这两题的基础上,我提出问题:猜一猜4 ÷ 1/2 等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4 ×1/2= 1/8 ,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

2、验证猜想,理解计算过程。

学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2 ,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2 =4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2 =4×2=8(个)并不能理解4 ÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4 ÷1/2 就是求4里面含有几个1/2。而4就是8/2 ,根据学生以前知识结构,学生易于知道 里有8个 ,最后根据学生的回答板书计算方法, 4÷ 1/2 = 8 ÷ 1/2 = 8; 追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

3、大量练习,使用计算方法。

数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃 1/3 张、1/4 张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。

4、观察比较,选择计算方法。

让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

5、归纳总结,完善计算法则。

通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

《分数除法》评课稿

陆路老师的《分数除法》解决问题这是一节实实在在的数学课,体现了高段数学课平实的特点,在安安静静的课堂氛围中,充分给予了学生思维的空间,感受纯数学的魅力,从中感受到陆路老师扎实的基本功和驾驭课堂的能力。

陆路老师语言流畅,干脆利落,问题的指向性强设置悬念,启迪他们积极思考,激发学生的求知欲,激起他们探索、追求的浓厚兴趣。设疑导思,让学生满怀热情地投入学习。

两位老师都能充分运用多媒体课件,以图文并茂,声像俱佳的表现形式,大大增强学生对抽象事物与过程的理解与感受,将课堂教学引入全新的境界。在应用现代化教学工具的.同时,并能很好的与传统的数学教学手段相结合,做到严谨和生动相结合,既提高了教学效率,又达到了解决数学问题的目的。

总之,听完课后,深深感受到了更强的危机感和紧迫感。我们要在今后的工作中,不断学习新课程理念,努力提高自身的业务水平,认真反思我的工作,虚心向各位老师学习,特别是在如何关注学生的学习困难,如何通过现有的教学设施高效课堂教学,不断改进教学方法,努力提高教学质量等方面多作探索。

《分数除法》评课稿

本节课通过自主合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳、交流的能力。让我感受最深的是,整堂课的.节奏非常平稳,课堂很朴素,给人的感觉很真实。

整节课教学有以下特点:第一,教学重点把握准确,教学过程做到了突出重点,同时在这个教学环节突出了学生的主体地位:学生自己通过合作探究得出分数与除法的关系,然后教师抓住这个重点,加以巩固。第二,教学线索清晰,使课堂内容紧凑而井然有序。第三,讲授新知的过程注重学生的自我探究。比如在研究分数与除法关系时,让学生小组交流后说出它们之间的关系。第四,在探索假分数与带分数的互化时,教师放手让学生自己观察比较课本上的方法,然后让学生归纳出假分数与带分数的互化算理,在这个环节上培养了学生分析问题的能力。

本节课我个人认为有如下值得商榷之处:

第一,根据实际教学情况,本节课的内容是不是有点过多?感觉每个环节过渡得较快,成绩较差的学生有点跟不上来。

第二,学生在探索假分数与带分数的互化方法时,教师是否可以把假分数化成整数的方法引导出来。

《分数除法》说课稿

我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1与例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。

例1先是对整数除法意义的回顾,再由100克=1/10千克,从而引出分数乘除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积与其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证,引导学生将‘图’与‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。

根据刚才对教材的理解,本节课教学的目标是:

1、通过实例,使学生理解分数除法的意义与整数除法的意义是相同的。

2、动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。

本课的.重点是理解分数除法的意义和分数除以整数的计算方法;

本课的难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。

为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,提出有价值的问题,让学生的思维活动得到有效的提升,动手实践,在体验中、在交流中发现规律。

学习方法上强调以探究学习法和动手操作法为主。认知结构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。

开课,就对前一单元所学的分数乘法的计算和一个数乘分数的意义进行复习,目的在于为教学分数除以整数的计算方法打下基础,因为分数除以整数就等于这个分数的几分之一,根据一个数乘分数的意义,就用分数乘几分之一就可以得到结果,而对于分数除法的意义,就直接利用例1的素材导出整数除法的意义再迁移到分数除法的意义。

在教学例1时,我没有直接把教材中的三个问题端出来,而是让学生通过教师给出的信息来提出数学问题,学生编出乘法问题并列式解答后,问学生:你能根据这个乘法问题编出两个除法问题吗?然后再一一列式解答,再通过对这三个算式的观察比较,得到整数除法的意义。这样安排教材,我的理解是:如果直接将素材一一呈现出来,感觉很单调泛味生硬,不能留住学生的注意力和激起学生学习的兴趣,对思维活动就是一种压抑,反过来我这样安排,感觉是把静态的教材动态的出现在学生面前,利用素材自问自答,对学生来说是一次有价值有效的思维活动,对学生的思维能力应该是有一个提升的,同时问题也可以激发学生学习数学的兴趣,吸引学生的注意力。

然后指出问题中是以克为单位,如果以千克为单位,100克应该怎么改写?改写后,算式应该怎么列?后面两题中的单位也改写了,又怎么列式计算?用一系列的问题,迁引出分数乘除法的算式,再通过对分数乘除法算式的仔细观察,观察时引导学生对照整数乘除法的算式,找到之间的共同点,从而得到分数除法的的意义与整数除法的意义相同,我这样教学的想法是:第一因为问题更有挑战性而能更有效激发学生的兴趣;第二锻炼提高学生的观察比较事物的能力;第三通过比较自然得出分数除法的的意义与整数除法的意义相同,让学生有种水到渠成的感觉,体味到在数学中知识是存在相互联系的。

在完成做一做中,学生快速回答了2/3×4=8/38/3÷4=()8/3÷2/3=()的结果后,问:你怎么这么快就得到结果了呢?这个问题能更好让学生利用除法的意义来解决问题,从而加深对除法意义的理解。

《分数除法》说课稿

“分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

分数与除法的关系这一小节的目标有以下几点:

1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

本课材的内容是由以下几部分组成的:

第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

第四部分:是教学有关单位名称之间的转化。

本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。

在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。

《分数除法》说课稿

本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与分数乘法中求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。

在学习了分数乘法的基础上,孩子们对分数的运算有了一定的掌握,计算能力的日益提高,也使得孩子们有更深一步探求的欲望,因此,利用孩子们学习的积极性,开展本节课,培养学生发现问题、提出问题、分析问题和解决问题的能力,从而培养学生的基本技能。

根据上述对教材内容和学生实际情况的分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

基础知识目标:使学生学会掌握简单分数除法应用题的解法,能熟练地列方程解答这类应用题。

基本技能目标:进一步培养学生解决问题的能力,增强学生的应用意识。

基本思想目标:在充分利用教材情境引导学生学习分数除法的同时,渗透数形结合、建模、迁移等数学思想。

基本活动经验目标:激发学生学习数学的兴趣,让学生树立能够学好数学的信心。

根据教材内容和本班学生的实际情况我把弄清单位“1”的量,会分析题中的数量关系确定为本节的教学重点;把掌握分数除法应用题的解题方法确定为本节的教学难点。

通过以下的方法让学生亲身体验合作的成功和愉悦。

1.观察发现法,通过观察电脑课件中国王的故事的演示,突出单位“1”这一重要知识点。

2.尝试发现法,让学生通过小组讨论的方式,互相讲解自己的方法和见解,自己去列式,在尝试的过程中发现问题。

3.动手操作法,通过动手画线段图,感受文字与图形的转化统一。

4.最后运用概括总结法让学生概括解决此类问题的方法。

依据本节课教材知识结构及小学生认知发展的规律,实现“尊重学生,注重发展”的教学理念,围绕教学目标,我把本节课的程序安排如下四个环节。

第一环节:引导学生“说”

在这里我设计了一个学生感兴趣的问题:“国王给大臣出了一个有趣的数学问题,你能来解决吗?皇宫里的水池是有多少桶水组成的?”学生交流汇报,说一说自己解决这个问题的方法,通过这个问题实际的解决方法引出根据一个数的几分之几是多少求这个数的问题。从而引出例题。

第二环节:帮助学生“悟”

解决第一个题:小明的体重是多少千克?

分下面四个步骤进行。

1.理解题意,找出题目中所涉及到的量。

2.根据题目中的已知量,寻找其中的等量关系式。

3.尝试绘制线段图。

4.根据等量关系式尝试列试解答。

以上四个步骤都是在学生进行讨论交流的前提下,然后指名汇报,同时我利用课件演示出完整的过程,最后让学生概括出解决问题的思想方。

解决其他问题。

如果说解决第一个问题由教师的扶到学生的悟,那么在解决这一问题时,我完全做到放,让学生通过自己刚才的发现,独立去完成这一问题。

(设计意图:讨论交流、合作探究、自主发现的学习方式越来越引起教师的重视,这样的学习方式出现在课堂上,调动了学生的多种感观,为学生的全面发展,特别是学生个体人格的发展,创造了适宜的环境条件。)。

第三环节:组织学生“用”

本节练习我以“谁是数学小能手”的形式,根据不同学生的不同特点,呈现了我精心设计的,层次不同的,由浅入深的四个问题情境。

(设计意图:学生在以上合作探究的基础上,已初步建立把文字转化成图形的思想方法,这几道题的设计目的是给学生提供难易适宜的思考空间,让每名学生都体验到学习数学成功的喜悦。)。

第四环节:指导学生“想”

通过这节课的分析与讲解,请学生思考我们遇到此类的问题该如何入手,该找出其中哪些有用的信息,该怎样发现其中的问题,该如何进行分析和解决。

相关内容

热门阅读
随机推荐