首页 > 范文大全 > 其他范文

实际问题与方程数学教案设计范文(23篇)

实际问题与方程数学教案设计范文(23篇)



教学工作计划需要灵活调整,根据实际教学情况及时进行修改和修正。这是一些成功教师分享的教学工作计划示例,希望能给大家提供一些新的思路和方法。

《实际问题与方程》数学教案设计

本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。

3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。

(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?

(2)白兔比黑兔多138只,白兔和黑兔各有多少只?

请同学们先独立完成第一问,然后我们进行交流。

第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。

四、课堂小结。

通过本节课的学习:

三年级数学《两步计算的实际问题》教案设计

苏教版《义务教育课程标准实验教科书数学》二年级(下册)第87~88页。

教学目标。

1。使学生能从开放的情境中合理提取数学信息,能够从条件或问题想起确定解题思路,能正确地分步列式解答相关的两步计算实际问题。

2。使学生在解决问题的过程中,培养初步的分析、综合和推理能力。

3。使学生在解决问题的过程中,积极与同伴进行交流,体会成功的快乐。

教学过程。

一、创设问题情境,自主探究解决方法。

1。课件演示小猴摘桃的情境。

毛毛猴说:“我们一共摘了42个桃。”

提问:如果你是小猴,你准备怎样安排自己的食物?

学生可能提出两种方案:(1)每天吃的个数同样多。(2)每天吃的个数不同,如:第一天吃9个,第二天吃12个。

提问:根据这些信息,你能提出哪些数学问题呢?

估计学生会提出:吃了多少个桃?还剩下多少个桃?……。

谈话:我们先来解决其中一个问题:还剩下多少个桃?你能独立解决吗?

[设计意图:变静态展示问题为动态生成问题,培养学生根据已有信息提出问题的能力。]。

2.探究解决方法。

要求学生先独立思考解决,再进行小组交流。

学生可能有下面两种想法:(1)从条件想起。根据每天吃9个桃,吃了3天可以求出长尾猴吃了多少个桃,再用一共摘了42个桃减去吃的桃,得到还剩多少个桃。(2)从问题想起。要求还剩多少个桃,需要知道摘了多少个桃和吃了多少个桃,已知摘了多少个桃,所以要先求出吃了多少个桃。

谈话:你能根据上面的讨论,自己列式解答这个问题吗?

学生尝试列式,教师板书:

(1)吃了多少个桃?9×3=27(个)。

(2)还剩多少个桃?42—27=15(个)。

提问:9×3求得的是什么?42—27为什么会得到剩下的呢?

3.引导反思,形成思路。

提问:为什么要先算已经吃了多少个桃?

4.迁移解题思路。

出示“试一试”。

毛毛猴说:“我一共摘了42个桃。”长尾猴说:“第一天吃(9)个,第二天吃(12)个(用学生课始时提出的数据)。”大卡提出问题:“还剩下多少个?”

提问:要解决这个问题,应先求什么?

学生独立解决问题,并在小组里交流自己的想法与计算方法。

教师巡视,并及时发现下面两种解法,指名板演:

(1)9+12=21(个);42—21=21(个)。

(2)42—9=33(个);33—12=21(个)。

组织交流时,重点引导学生表述第一种方法的思考过程,并提问:这样解答与例题的解答方法有什么相同点?(都是要先求已经吃了多少个)。

交流第二种方法。提问:这种解法先求什么?与第一种解法有什么不同?

二、分层练习,逐步巩固。

1.做“想想做做”第1题。

学生叙述题意后,提问:要先求什么?为什么?

学生独立解题,并组织反馈。

2.做“想想做做”第2题。

学生自主解决,并汇报解决问题的过程。

让不同解法的学生分别说一说自己是怎样想的(着重引导学生理解每一种解法是先求什么,再求什么的)。

3.做“想想做做”第3题。

学生独立列式解答,并与同伴交流(每一种解法的思考过程)。

4.做“想想做做”第4题。

学生独立解答后,组织全班交流。

5.拓展练习。

毛毛猴摘了3天桃,一共摘了31个;长尾猴也摘了3天桃,每天摘9个。

(1)毛毛猴与长尾猴一共摘了多少个桃?

(2)毛毛猴比长尾猴多摘了多少个桃?

学生独立解答后,提问:这两道题有什么相同的地方?

三、整理反思,形成思路。

提问:这节课你有什么收获?解答两步计算的实际问题,我们可以怎样思考呢?举例说一说。

三年级数学《两步计算的实际问题》教案设计

《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,朱老师在本节课中注重了让学生动手操作、小组讨论、全班交流。学生在操作中明白算理;小组讨论中,有机会表达自己的想法,也学会去聆听别人的意见并作出适当的评价和补充。学生在交流中相互启发,在不同观点、创造性思维火花的相互碰撞中,发现问题、探究问题、解决问题。

通过教学这节课的设计意图达到了预期的效果,大多数学生已经学会了画“与倍有关的两步计算的实际问题”的线段图,并且知道了画线段图来帮助解题有以下几点好处:

1、有利于学生数学问题意识的培养。

线段图第一次在教学中出现,在认知上是由直观具体的“图”向较为抽象的“线段”的'过渡,而这又是帮助理解数量关系,解决问题的一种有效手段。因此,在设计教学时,我将重点放在了画线段图的方法指导上:让学生根据以往的知识基础,理清数量关系,讨论得出线段图的画法,明确一条线段表示一个数量,两条线段之间是有联系的,而这个联系可以从信息里得到;在对“问号该标在哪儿”的讨论中,明确了问题不同,问号所在的位置就会不同,解决的方法就会不同。

2、有利于学生分析数量关系,掌握解题技巧。

在这节课的学习中,学生在问题的引领下和在对线段图画法的讨论中,得不断的联系已知信息,去体会、分析信息中数量之间的关系,因此,对于数量之间关系的理解是自然而然的获得的,所以解决问题使学生感觉很轻松,讲起解法头头是道。我相信,在以后的学习中,在解决问题时他们会用这种方法去分析数量之间的关系、探究解决问题的方法的。

3、有利于学生运用多种方法解决问题。

这个优点是不言而喻的,在此就不多叙了。

三年级数学《两步计算的实际问题》教案设计

1、课件演示小猴摘桃的情境。

毛毛猴说:“我们一共摘了42个桃。”

提问:如果你是小猴,你准备怎样安排自己的食物?

学生可能提出两种方案:(1)每天吃的个数同样多。(2)每天吃的个数不同,如:第一天吃9个,第二天吃12个。

提问:根据这些信息,你能提出哪些数学问题呢?

估计学生会提出:吃了多少个桃?还剩下多少个桃?……。

谈话:我们先来解决其中一个问题:还剩下多少个桃?你能独立解决吗?

[设计意图:变静态展示问题为动态生成问题,培养学生根据已有信息提出问题的能力。]。

2.探究解决方法。

要求学生先独立思考解决,再进行小组交流。

学生可能有下面两种想法:(1)从条件想起。根据每天吃9个桃,吃了3天可以求出长尾猴吃了多少个桃,再用一共摘了42个桃减去吃的桃,得到还剩多少个桃。(2)从问题想起。要求还剩多少个桃,需要知道摘了多少个桃和吃了多少个桃,已知摘了多少个桃,所以要先求出吃了多少个桃。

谈话:你能根据上面的讨论,自己列式解答这个问题吗?

学生尝试列式,教师板书:

(1)吃了多少个桃?9×3=27(个)。

(2)还剩多少个桃?42—27=15(个)。

提问:9×3求得的是什么?42—27为什么会得到剩下的呢?

3.引导反思,形成思路。

提问:为什么要先算已经吃了多少个桃?

4.迁移解题思路。

出示“试一试”。

毛毛猴说:“我一共摘了42个桃。”长尾猴说:“第一天吃(9)个,第二天吃(12)个(用学生课始时提出的数据)。”大卡提出问题:“还剩下多少个?”

提问:要解决这个问题,应先求什么?

学生独立解决问题,并在小组里交流自己的想法与计算方法。

《实际问题与方程》数学教案设计

预设5:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

地球表面积-海洋面积=陆地面积。

预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法。

1、设(找出未知数,用字母x表示)。

2、找(找出题目中的等量关系)。

3、列(根据等量关系列出方程)。

4、解(运用等式的性质解方程)。

5、验(将解出的结果代入方程检验)。

6、答(完整地写好答话)。

三、巩固练习。

1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。

a、解:设梨树为x棵,则苹果树为5x棵。

b、解:设苹果树为x棵,则梨树为5x棵。

通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。

2、找出下列各题中的等量关系。

小学数学《列方程解决简单的实际问题》教案

教学内容:

教科书p13例9、p14练一练、p16练习三第1~3题。

教学目标:

1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。

教学重点:

掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。

教学难点:

能正确找出应用题中数量间的相等关系。

教学过程:

一、谈话导入。

今天研究一个与颐和园有关的数学问题。

二、学习新知。

1.p13例9。

(1)指名读题,分析数量关系。

用线段图表示出题目中数量之间的关系吗?

学生尝试画图,集体交流。

根据线段图得到:水面面积+陆地面积=颐和园的占地面积。

启发:这大题目中有两个未知数,我们设谁为x呢?

(2)列方程并解方程。

指名学生列出方程,鼓励学生独立求解。

如果用x表示陆地面积,那么可以怎样表示水面面积呢?

追问:这道题可以怎样检验?

检验:a、72.5+72.53=290(公顷)b、217.572.5=3。

(3)观察我们今天学习的'方程,与前面的有什么不同?

小结:像这样含有两个未知数的问题我们也可以列方程来解答。

(4)学生独立完成p14练一练第1题。

三、巩固练习。

1.p14练一练第2题。

教师引导学生找出数量关系式。

陆地面积2.4-陆地面积=2.1。

2.解方程。

2x+3x=60。

3.6x-2.8x=12。

100x-x=198。

3.根据线段图列出方程。

4.解决实际问题:(列方程解)。

(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

在做这道题时你认为应注意什么呢?

四、全课小结。

在解答这一类应用题时应注意什么?

五、课堂作业。

p16练习三第2-3题。

三年级数学《两步计算的实际问题》教案设计

本节课教者以教材为依托,利用教材提供的素材,结合生活实际,为学生创设探究数学问题的情境,鼓励学生根据已有信息提出想要解决的问题,激起学生发现问题、提出问题的兴趣和欲望,进而促使学生根据已有信息和提出的数学问题去探究解决问题的方法,从而使学生能以一种数学的眼光去看待生活,学会用数学去解决生活中的实际问题。特别是教者帮助学生根据已知信息画出线段,用线段图去分析问题、了解数量之间的关系,进而感知方法、解决问题,为今后自主学习打下基础。具体表现在:

1、培养了学生的问题意识。

俗话说“不学不成,不问不知”,问题意识是创新素质的基础,在教学中,教者着力于培养学生“学会问,善于问”的能力,切实改变教学中只教“学答”,不教“学问”的现象。

2、教会了学生画线段图。

本节课中的线段图是第一次在教学中出现,在认知上是由直观具体的“图”向较为抽象的“线段”的过渡,而这又是帮助理解数量关系,解决问题的一种有效手段。教者让学生根据以往的知识基础,理清数量关系,讨论得出线段图的画法,明确一条线段表示一个数量,两条线段之间是有联系的,而这个联系可以从信息里得到;在对“问号该标在哪儿”的`讨论中,明确了问题不同,问号所在的位置就会不同,解决的方法就会不同。

3、教会了学生用多种方法解决问题。

学生在解决了一套衣服的价钱后,教者一句“还有什么方法吗?”又激起了学生的解决问题的欲望,通过自主探索,教者适时点拨,根据线段图的直观性,很快地就用有关倍数和的知识解决了。

4、重视了学生的说理训练。

在解决问题的过程中,不仅让学生列式解答,还让学生说出解题的依据,使学生在解题时不仅知其然,而且知其所以然。

三年级数学《两步计算的实际问题》教案设计

教学目标:

1、经过探索与交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。

2、感受数学与日常生活的密切联系,进一步增强对数学兴趣和信心,初步形成独立思考和探索问题的意识、习惯。

教学重点:学习画线段图分析数量关系,感受解决问题的一些策略,学会解决与倍有关的两步计算实际问题。

教学难点:画线图表示和分析数量问题,解决与倍有关的两步计算实际问题的变式题。

教学步骤。

教师活动过程。

学生活动过程。

一、谈话。

导入。

同学们:你们知道班上谁平时最讲究卫生,衣着最整洁吗?(不提漂亮,避免学生盲目攀比),确实,衣着是我们生活中的一件重要事情。那么,××同学你知道吗,你的衣服是谁给你买的呢?你知道它们的价格吗?今天这节课我们就来研究一个有关衣服的问题。(板书:实际问题)。

从学生的日常生活中引出数学问题,既自然又能吸引学生的注意力,为新课的教学奠定了良好的基础。

教学内容。

教师活动过程。

学生活动过程。

二、探究新知。

1、教学例题。

(1)课件出示妈妈带芳芳买衣服的情景。

衣服标价28元,营业员阿姨说:“上衣的价钱是裤子的.3倍。

请一名学生板演,其余在书上画。要求一套衣服要多少钱,也就是求裤子和上衣的价钱一共是多少元,那么该怎样表示这个问题呢?可以这样表示(师生边说边板演)。

(3)现在线段图画完了,你能指着线段图说说每一部分的意思吗?

(1)学生根据教学情境,说说了解到的有关信息,加深对题意的理解。

(2)学生根据题意,同桌进行讨论,弄清上衣和一套衣服的价钱该怎么表示,并将线段图补充完整。

(3)结合线段图说说每一部分表示的意思。

教学内容。

教师活动过程。

学生活动过程。

2、教学试一试。

3、比较。

(4)这个问题需要几步计算解决?你会解答吗?写在自己的随堂本上。(若有困难,可以与同桌讨论后再做。)。

(5)谁来说说你是怎样解答的?先算什么,再算什么?

(6)有不同的算法吗?若有,则让学生结合线段图说说”1+3“和”28×4“表示的意思,若没有则不教学第二种解法。

(2)先看线段图,问题改了,线段图要不要改?怎样改呢?你能说出要改的是哪部分吗,师画线段图。

(3)在随堂本上独立解答。

(4)交流:你是怎么做的呢?怎么想的?(注意引导学生有序地表达自己的思考过程)。

(5)有不同的解法吗?(没有别的解法则不讲另外的解法)。

上面这两道题在解答方法上有什么相同的和不同的地方?师补充出完整课题。

(4)学生独立解答或讨论后解答,全班交流。

(5)学生交流自己的解答过程,并说说先算什么,再算什么。

(6)学生交流不同的解法。

(1)思考怎样解答芳芳的问题。

(2)用线段图表示题意。

(3)独立解答。

(4)有序地说说自己的想法和解答的过程。

(5)交流不同的解法。

学生根据自己的理解说出相同点和不同点。

教学内容。

教师活动过程。

学生活动过程。

三、应用拓展。

四、小结全课布置作业。

1、想想做做第1题。

出示图,说说要求的问题,独立解答后再交流。

根据已知的信息,你能求出什么问题?

2、想想做做第2题。

说图意后,独立解答。

交流时,说说怎么想的(注意表达的有序性)。

3、想想做做第3题。

出示图,从中你得到哪些信息?要求我们做什么?你打算怎么办?独自填表,全班集体订正。

4、补合适的条件。

湖中黑天鹅有24只,,

白天鹅和黑天鹅共有多少只?

5、根据情境图,编一道今天学习的两步计算的实际问题(素材:雅典奥运会上,罗马尼亚获得金牌8枚,中国获得金牌32枚)。

(1)通过今天这节课,你有哪些收获?

(2)作业想想做做第4题。

1、先说出要求的问题,再独立解答、交流。

2、说图意后,独立解答交流。

3、交流题中的信息,填表后,集体订正。

4、同桌一人补合适的条件,另一人再说出算式。

学生交流感受,

完成课堂作业。

教学设计说明。

1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习用线段图对信息进行再加工,帮助分析、理解数量关系,寻找解题方法。

2、强调与他人合作交流,重视思维与表达的有序性。

3、鼓励解题方法多样化,但不强求一题多解。

4、感受数学与日常生活的密切联系,初步形成独立思考和探究问题的意识、习惯,增强应用数学的意识。

数学《实际问题与方程》教学设计

本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。

学情分析。

1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。

2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。

3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的`探究方式。

教学目标。

知识与技能:

1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

2、能根据具体问题的实际意义,检验结果是否合理。

过程与方法:

1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

教学重点和难点。

重点:利用增长率问题中的数量关系,列出方程解决问题。

难点:理清增长率问题中的数量关系。

《实际问题与方程》数学教案设计

学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”

解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的.数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“的东北虎只数比的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。

三年级数学《两步计算的实际问题》教案设计

教学内容:

义务教育课程标准实验教科书(苏教版)数学第五册第43页例题和“试一试”,第43-44页“想想做做”第1-4题。

教学目标:

1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。

2、感受数学与日常生活的密切联系,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学准备:准备上衣、裤子的图片(裤子图片上标有28元的标签)。

教学过程:

一、创设生活情境,导入新课。

谈话:星期天,郭老师去商场为孩子买衣服,了解到了以下信息,(依次贴出图片):

裤子:28元。

上衣:价钱是裤子的3倍。

根据这些信息,你能提出哪些数学问题?(或问:你能解决哪些问题?或是你想知道什么?)(学生独立思考,同桌交流)。

根据学生汇报,教师板书:

1、一件上衣多少钱?

2、买一套衣服多少钱?

3、一件上衣比一条裤子贵多少钱?(或:一条裤子比一件上衣便宜多少钱?)。

……。

二、探索新知,感知方法。

师生讨论“画数学”的方法:

一条裤子28元可以用一条线段来表示:

实际问题与二元一次方程人教版数学七年级教案

(第1课时)。

【学习目标】。

1.知道用方程组解决实际问题的一般步骤.

2.会找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.

【重点难点】。

重点:会用列方程组的方法解决实际问题.

难点:会找出简单的实际问题中的数量关系.

(第2课时)。

【学习目标】。

1.体会一题多解,学习从多种角度考虑问题.

2.读懂并找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.

【重点难点】。

重点:会从多种角度考虑用列方程组的方法解决实际问题.

难点:会找出简单的实际问题中的数量关系.

【学前准备】。

1.小麦、玉米两种作物的单位面积产量的比是1:1.5,你能说明它的含义吗?(可以举例说明)。

2.“甲、乙两种作物的总产量的比是3:4”是什么意思?

3.总产量与哪些量有关?

(第3课时)。

【学习目标】。

1.体会方程组是解决含有多个未知数问题的重要工具.

2.读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.

【重点难点】。

重点:用列方程组的方法解决实际问题.

难点:会找出简单的实际问题中的数量关系.

华师大版初中七年级数学《从实际问题到方程》教案

(一)基础知识目标:

1.理解方程的概念,掌握如何判断方程。

2.理解用字母表示数的好处。

(二)能力目标。

体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

(三)情感目标。

增强用数学的意识,激发学习数学的热情。

二、教学重点。

知道什么是方程、一元一次方程,找相等关系列方程。

三、教学难点。

如何找相等关系列方程。

四、教学过程。

(一)创设情景,引入新课。

由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

为了回答上述这几个问题,我们来看下面这个例题.。

(二)提出问题。

你会用算术方法解决这个实际问题么?不妨试一下。

如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

根据题意画出示意图。

由图可以用含x的式子表示关于路程的数量,

王家庄距青山千米,王家庄距秀水千米,

由时间表可以得出关于路程的'数量,

从王家庄到青山行车小时,王家庄到秀水小时,

汽车匀速行驶,各路段车速相等,于是列出方程:

各表示的意义是什么?

以后我们将学习如何解出x,从而得到结果。

例1某数的3倍减2等于某数与4的和,求某数.。

例2环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

五、课堂小结。

用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

六、作业布置。

习题3.1第1,2两题。

数学《一元二次方程》教案设计

1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

(一)导入新课。

生:老师,这是雷锋叔叔。

生:是的老师。

生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

(二)新课教学。

师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)。

(三)小结作业。

师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

xx。

xx。

一元一次方程的解法数学教案设计【】

3.使学生初步养成正确思考问题的良好习惯。

和难点。

课堂设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉。

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)。

三、课堂练习。

2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

四、师生共同小结。

首先,让学生回答如下问题:

1.本节课了哪些内容?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆。

五、作业。

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

曲线和方程的数学教案设计

教材的地位和作用。

“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!

根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。

二、教学目标。

根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:

知识目标:

1、了解曲线上的点与方程的解之间的一一对应关系;

2、初步领会“曲线的方程”与“方程的曲线”的概念;

3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;

4、强化“形”与“数”一致并相互转化的思想方法。

能力目标:

1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;

3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

情感目标:

1、通过概念的引入,让学生感受从特殊到一般的认知规律;

2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

三、重难点突破。

“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的.方程。通过这些例题让学生再一次体会“二者”缺一不可。

四、学情分析。

此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

苏教版五年级数学《方程的意义》教案设计

教学目标:

1、借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

2、会用方程表示数量关系。

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

4、感受方程与现实生活的密切联系,体验数学活动的探索性。

重点:理解方程是含有未知数的等式;

难点:方程的意义抽象的过程。

课前谈话:渗透平衡和等量(谈体验)。

教学过程:

一、激情导入。

出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。

二、探究新知。

1.对不同的式子进行分类(不要有任何要求)。

让学生先独立思考,然后小组合作交流自己的想法。

2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。

让小组的代表说说自己组是怎样分类的?为什么这样分类?

3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)。

4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)。

5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。

6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。

7.生举例。

8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。

9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?

10、判断两句话:所有的方程都是等式,所有的等式都是方程。

11、画图表示方程与等式之间的关系。

三、应用练习。

1.判断下列式子是不是方程。

2.看图列方程。

3.根据题意列方程。

四、拓展延伸。

1、谈谈自己在知识和情感上的收获。

2、送给同学们一个方程:天才+x=成功。

数学《一元二次方程》教案设计【】

2.通过自学探究掌握裁边分割问题。

(阅读课本p47页,思考下列问题)。

1.阅读探究3并进行填空;

2.完成p48的思考并掌握裁边分割问题的特点;

设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:

由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?

设正中央的长方形长为9acm,宽为7acm,依题意得。

9a·7a=(可让上层学生在自学时,先上来板演)。

效果检测时,由同座的同学给予点评与纠正。

9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)。

注意点:要善于利用图形的平移把问题简单化!

(只要求设元、列方程)。

一元一次方程的解法数学教案设计【】

一、教学目标:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳的概念。

3、积累活动经验。

二、重点和难点。

归纳的概念。

感受方程作为刻画现实世界有效模型的意义。

三、教学过程。

1、课前训练一。

(1)如果||=9,则=;如果2=9,则=。

(2)在数轴上距离原点4个单位长度的数为。

(3)下列关于相反数的说法不正确的是()。

a、两个相反数只有符号不同,并且它们到原点的距离相等。

b、互为相反数的两个数的绝对值相等。

c、0的相反数是0。

d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。

e、有理数的相反数一定比0小。

(4)乘积为1的两个数互为倒数,如:

(5)如果,则()。

a、,互为倒数b、,互为相反数c、,都是0d、,至少有一个为0。

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()。

a、b、c、d、00。

2、由课本p149卡通图画引入新课。

3、分组讨论p149两个练习。

4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。

课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:

6、归纳方程、的概念。

7、随堂练习po151。

8、达标测试。

(1)下列式子中,属于方程的是()。

a、b、c、d、

(2)下列方程中,属于的是()。

a、b、c、d、

解:设甲队胜了场,则平了场,依题意可列得方程:

解得=。

答:甲队胜了场,平了场。

(4)根据条件“一个数比它的一半大2”可列得方程为。

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为。

p151习题5.1。

列方程解稍复杂的百分数实际问题

教学内容:教科书第8页的例4、练一练、练习三的第1~4题。

3.进一步感受数学和人民生产、生活的密切关系,体会到数学的价值。

教学重点:理解现价、原价、折扣三量关系;培养学生综合运用所学知识解决问题。

教学难点:通过实践活动培养学生与日常生活的密切联系,体会到数学的应用价值。

设计理念:数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

教学步骤教师活动学生活动。

一、开门见山,

1.教学例4,认识折扣。

谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。

出示教材例4的场景图,让学生说说从图中获得了哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

在学生回答的基础上指出:把商品减价出售,通常称作“打折”。打“八折”就是按原价的80%出售,打“八三折”就是按原价的83%出售。

强调:原价是单位“1”,原价×折扣=现价,区别降价多少元。

学生观察场景图。

二、探索解法。

1.提出例4中的问题:《趣味数学》原价多少元?

进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

教师根据学生的回答板书:

原价×80%=实际售价。

提出要求:你会根据这个相等关系列出方程吗?

请学生到黑板上板演。

2.引导检验,沟通联系:算出的结果是不是正确?

启以学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用15元乘以80%,看结果是不是12元。

学生讨论。

学生先说出自己的想法。

学生在小组里相互说一说,再在全班交流。

学生尝试列出方程。

学生独立验算,再交流检验的方法。

三、巩固练习”先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。

学生解答后再解读方程:你是怎样列方程的?列方程时依据了怎样的数量关系?你又是怎样检验的?学生小组内交流。

学生列方程解答。

四、拓展提高1.做练习三的第1题。

学生读题后,先要求学生说出每种商品打折的含义,再让学生各自解答。

学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

2.做练习三的第2题。

先学生独立解答,再对学生解答的情况加以点评。

3.做练习三的第3题。

先在小组里相互说一说,再指名学生回答。

4.做练习三的第4题。

先让学生独立解答,再指名说说思考过程。

学生先相互说一说,再列式解答。

学生独立解答,集体订正。

学生小组交流。

学生独立解答。

五、全课小结本节课你有什么收获?商品的原价、现价、折扣之间有什么关系?

六、布置作业课后抽时间到附近的商场或超市去看一看,收集一些有关商品打折的信息,并自己计算商品的现价或原价。

将本文的word文档下载到电脑,方便收藏和打印。

实际问题与一元二次方程人教版数学九年级教案

一、课前预习:

1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。

二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。

2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:

二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。

3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。

4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。

华师大版初中七年级数学《从实际问题到方程》教案

1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

二、过程与方法。

通过实际问题,感受数学与生活的联系。

三、情感态度与价值观。

培养学生热爱数学热爱生活的乐观人生态度。

【教学方法】。

探索式教学法。

教师准备教学用课件。

【教学过程】。

一、新课引入。

教师提出教科书第79页的问题,同时出现下图:

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

问题3:能否用方程的知识来解决这个问题呢?

可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)。

当学生列出不同算式时,应让他们说明每个式子的含义)。

教师可以在学生回答的基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;。

2、从知的信息中可以求出汽车的速度;。

3、从路程的角度可以列出不同的算式:

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设未知数,并用含未知数的字母表示有关的数量。

教师引导学生寻找相等关系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

含有未知数的等式叫方程.

归纳列方程解决实际问题的两个步骤:

七年级数学《从算式到方程》教案设计

本节课的重难点都是从实际于问题中寻找相等关系,从而列方程解决实际问题,为了更好地突出重点、突破点,在教学过程中着力体现以下几方面的特点:

1、突出问题的应用意识。首先用一个学生感兴趣的突出问题引入课题,然后运用算术方法给出答案,在各环节的安排上都设计成一个个问题,引导学生能围绕问题开展思考、讨论,进行学习。

2、体现学生的主体意识。始终把学生放在主体地位,让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从感受到从算术方法到代数方法是数学的进步。通过学生之间的合作与交流,得了出问题的不同解答方法,让学生对这节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。首先引导学生尝试用算术方法解决问题,然后逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系,设未知数及练习和作业的布置等环节中,都注意了学生思维的层次性。

4、渗透建模的思想。把实际问题中的数量关系用方程的形式表示出来,就是建立一种数学模型,有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出数学模型的能力。

从当堂练习和作业情况来看,收到了很好的教学效果,绝大部分学生都能根据实际问题准确地建立数学模型,但也有少数几个学生存在一定的问题,不能很好地列出方程。

【拓展阅读】。

相关内容

热门阅读
随机推荐