一份完善的教学工作计划能够提高教师的教学能力和教学效果。以下是一些教学工作计划的经验分享和教学案例,可以供教师们参考和学习。
1、构建本章的部分知识框图。
过程与方法。
1、通过对本章方程解法的复习,进一步提高学生的运算能力。
情感、态度与价值观。
2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;
解法的灵活选择;例4和例5的解法。
导入新课。
问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)。
共同探究。
1、复习概念。
例1。
例2。
2、四种解法。
(1)。
解法及其关系。
(2)。
根的形式。
x1=3。
x2=4。
(3)熟悉解法。
例3用四种解法分别解此方程。
(4)方法优选。
3、方法补充。
例4。
4、解法纠错。
例5。
解关于x的方程。
错误解法。
正确解法。
提炼思想。
我们有哪些收获?解方程的思想方法是什么?
巩固提高。
(一)明确目标
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
(二)整体感知
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。
教学重点、难点。
教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.
2。难点:通过实际问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程:
(一)创设情景,导入新课。
分析:设长方形绿地的宽为x米,则列方程,
整理可得。
分析:设长方形绿地的宽为x米,则列方程,
整理可得。
【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。
课标要求熟练掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推导是建立在直接开平方法的基础上,又是推导求根公式和一元二次方程根与系数的关系的基础,更是为今后学生能学好二次函数打基础,二次函数的顶点坐标的确定和二次函数与一元二次方程的关系息息相关。再者列一元二次方程解应用题和压轴题----二次函数的综合题是中考试题中常见的题型。一元二次方程是中学数学的主要内容之一,在初中数学占有重要的地位。
2、过程与方法。
(1)理解并掌握配方法。
(2)通过探索配方法的过程,体会转化,降次的数学思想方法,培养观察、比较、分析、概括、归纳的能力。
3、情感态度与价值观。
通过分析实际问题中的数量关系,建立一元二次方程模型解决问题,进一步认识方程模型的重要性,增强学生的数学应用意识与能力。
难点:配方的过程。
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】。
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】。
通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。
【教学重点】。
【教学难点】。
(一)引入新课。
配方,得。
(四)小结作业。
作业:课后练习题,试着用多种方法解答。
四、板书设计。
略
(2)掌握一元二次方程的.一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(一)创设情景,引入新课。
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。
3:讲解例子。
5:讲解例子。
6:一般步骤。
(三)小结。
(四)布置作业。
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
(一)导入新课。
生:老师,这是雷锋叔叔。
生:是的老师。
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学。
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)。
(三)小结作业。
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计。
五、教学反思。
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
【教学过程】。
(一)创设情景,引入新课。
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。
3:讲解例子。
5:讲解例子。
6:一般步骤。
(三)小结。
(四)布置作业。
4、态度、情感、价值观。
4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情、
一、复习引入。
学生活动:列方程、
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
整理、化简,得:__________、
问题(2)如图,如果,那么点c叫做线段ab的黄金分割点、
整理,得:________、
二、探索新知。
学生活动:请口答下面问题、
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的'多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
解:去括号,得:
移项,得:4x2-26x+22=0。
其中二次项系数为4,一次项系数为-26,常数项为22、
解:去括号,得:
x2+2x+1+x2-4=1。
移项,合并得:2x2+2x-4=0。
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4、
三、巩固练习。
教材p32练习1、2。
四、应用拓展。
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可、
证明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、归纳小结(学生总结,老师点评)。
本节课要掌握:
六、布置作业。
解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。直接开平方法很简单,在这里不做过多的介绍。为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。在解一元二次方程的几种方法中,均需要用到转化的思想方法。如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
探索发现,讲练结合。
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.。
3.解决一些概念性的题目.。
4.态度、情感、价值观。
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.。
一、复习引入。
学生活动:列方程.。
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
整理、化简,得:__________.。
问题(2)如图,如果,那么点c叫做线段ab的黄金分割点.。
整理,得:________.。
二、探索新知。
学生活动:请口答下面问题.。
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
解:去括号,得:
移项,得:4x2-26x+22=0。
其中二次项系数为4,一次项系数为-26,常数项为22.。
解:去括号,得:
x2+2x+1+x2-4=1。
移项,合并得:2x2+2x-4=0。
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.。
三、巩固练习。
教材p32练习1、2。
四、应用拓展。
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.。
证明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、归纳小结(学生总结,老师点评)。
本节课要掌握:
六、布置作业。
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.。
3.解决一些概念性的题目.。
4.态度、情感、价值观。
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.。
学生活动:列方程。
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
整理、化简,得:__________。
问题(2)如图,如果,那么点c叫做线段ab的黄金分割点。
整理,得:________。
学生活动:请口答下面问题。
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:
(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3)都有等号,是方程.。
解:去括号,得:
移项,得:4x2-26x+22=0。
其中二次项系数为4,一次项系数为-26,常数项为22.。
解:去括号,得:
x2+2x+1+x2-4=1。
移项,合并得:2x2+2x-4=0。
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.。
教材p32练习1、2。
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.。
证明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
本节课要掌握:
一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。
学情分析。
1、经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。
2、一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。
教学目标。
一、知识目标。
1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识.
3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二、能力目标。
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.
四、情感目标。
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。
教学重点和难点。
难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”
是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
教学目的。
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:。
重点:。
九年级的学生,在讲本节课之前,已经系统的学习了一元一次方程及相关概念,学习了整式、分式和二次根式,从知识结构上看他们已经具备了继续探究一元二次方程的基础。这个阶段的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。由于他们有强烈的求知欲,当遇到新的问题时,会自然的产生进一步探究的欲望。而我所教(11)班是年级中一个普通班,学生数学底子薄,基础差,学生由于学习困难,基础差,没有自信,也就对数学的学习兴趣越来越弱,有人甚至要放弃对数学的学习,作为他们的老师,首先培养他们自信心,启发他们对数学的喜爱,慢慢培养他们的自信心,使数学基本概念、基本运算方法悄然走进学生的生活、走进他们对知识的运用中去。
教学目标。
一、知识与技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;。
3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。
二、过程与方法。
三、情感态度与价值观。
2.通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。
教学重点和难点。
难点:1.由实际问题向数学问题的转化过程。2.正确识别一般式中的“项”及“系数”。
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点。
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
三、教学过程。
(一)导入新课。
生:老师,这是雷锋叔叔。
生:是的老师。
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学。
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)。
(三)小结作业。
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计。
五、教学反思。
将本文的word文档下载到电脑,方便收藏和打印。
第二步:将左端的二次三项式分解为两个一次因式的积;。
第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般来说,一元二次方程往往可以用这样2种方法解答,特别是对配方来说,它可能更实用,普遍。
比如x^2+x-1=0。
我们可能分解不出它的因式来,不过我们可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根号5-1)/2或x=(-根号5-1)/2。
小练习。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24.6.方程x2+2ax-b2+a2=0的解为__________.
文档为doc格式。
。
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。
二、教学重点、难点。
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。
2.教学难点:找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。
三、教学步骤。
(一)明确目标。
(二)整体感知。
(三)重点、难点的学习和目标完成过程。
1.复习提问。
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴当x=13时,15-2x=-11(不合题意,舍去。)。
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。
练习1.章节前引例。
学生笔答、板书、评价。
练习2.教材p.42中4.
学生笔答、板书、评价。
注意:全面积=各部分面积之和。
剩余面积=原面积-截取面积。
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。
解:长……方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮。
教师引导,学生板书,笔答,评价。
(四)总结、扩展。
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。
四、布置作业。
教材p.42中a3、6、7.
教材p.41中3.4。
五、板书设计。
例1.略。
例2.略。
解:设………解:…………。
……………………。
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
(一)导入新课。
生:老师,这是雷锋叔叔。
生:是的老师。
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学。
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)。
(三)小结作业。
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
xx。
xx。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/qitafanwen/284989.html