六年级教案的编写需要结合教材内容,设计适合学生的教学活动。六年级教案的有效实施需要教师和学生的积极配合和共同努力。
教学目标:
知识与技能:
(1)认识圆,知道圆的各部分名称。
(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。
(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。
过程与方法:
(1)经历动手操作的活动过程,培养学生作图能力。
(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。
(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。
情感、态度与价值观:通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。
教学目标:
1、通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。
2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。
3、在活动中,感受圆与其它图形的'区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
教学重点:探索圆的各部分名称、特征和关系。
教学难点:通过实际的动手操作体会圆的特征。
教学过程:
1、出示幻灯:生活中的圆。
摄影作品,在这些美丽的图片中你们发现了什么图形?生活中你在哪见过圆?
2、揭示课题:圆无处不在,这节课我们就来认识它。
板书:圆的认识。
3、同学们喜欢玩套圈的游戏吗?现在就来试试?
我这有一个玩具,要求你只能站在距离它三米远的地方扔圈,你可以站在哪里?
我们用三厘米代表三米,你能在本上标出你所在的位置吗?
2、实投学生成果(由画几个点到多点,直到圆)。
问:站在这几点都可以吗,为什么?只能站在这几点上吗?
出现圆后问,还有地方站吗?
3、课件演示。
师:那么到底可以站在哪?(圆上任意一点)。
圆上这样的点有多少个?
1、屏幕上有一个圆,同学们能利用现有的工具制造一个圆吗?
2、学生画圆,师巡视。
3、汇报不同画圆的方法(先找用圆形工具画的汇报)。
拿线绳画的黑板演示。
圆规画的实投展示。
4、总结圆规画圆方法。
5、学生练习圆规画几个圆。
既然我们可以借助圆形工具来画圆,人们为什么还会发明圆规呢?
6、观察自己所画的圆,除了一条封闭的曲线还有什么?(点儿)。
给它取个名字——圆心(如果学生能说就让学生说)用字母o表示。
7、拿出手中的圆纸片,你们有办法确定这个圆的圆心吗?
学生动手折。
问:除了圆心你们还发现了什么?(折痕)。
你发现的折痕是什么样子的。
师:谁愿意到前面介绍自己的发现?揭示直径半径定义。
你能在圆上画出直径和半径吗?
在自己所画的圆上标出圆心、画出半径和直径。
圆心和半径到底有什么作用呢?画一画就知道了。
1、用圆规在本上画出几个不同的圆,看谁画得漂亮。
2、投影展示。
问:你们画得圆有的在上、有的在下、有的偏左有的偏右,什么决定的?
学生汇报,圆怎么这么听话呢。
师小结:圆心决定圆的位置,怪不得人家叫圆心呢。
这些圆大小各异,怎么画就能让他有大有小?
小结:圆的半径决定圆的大小(圆规两脚间距离)。
那就结合老师的提示利用手中的工具小组共同研究吧。
4、研究提示。
同一个圆内,半径与直径有什么关系?
同一个圆内,半径有多少条?
同一个圆内,半径的长度都相等吗?
汇报。
同圆直径是半径的2倍板书d=2r。
问:你怎么知道的?
同圆的半径有无数条,为什么?(圆上有无数的点、折痕中发现)。
同圆的半径有无数条,那么直径有多少呢?
板书:同圆内半径有无数条。
同圆的半径都相等,为什么?(通过测量,通过推理)。
同圆的半径都相等,那么直径都相等吗?
板书:同圆内半径都相等。
所以古人说:圆,一中同长也。
这个一中指什么?同长指什么?
边看幻灯边读这句话。
一中同长的圆在生活中应用很广泛。
4、车轮的外形为什么做成圆的,你能解释吗?
为什么不把车轮做成这些形状的?(出示正多边形图片)。
1、由正三角形到正十二边形,有什么变化?
2、想象,正100边形会是什么样子?(接近圆,但不是圆)。
正3072边形呢?(更接近圆,但还不是圆)。
到底多少边的时候就是圆了呢?
4、阴阳太极图。
5、下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?
问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)。
问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)。
问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)。
课下每个同学选择一个自己最感兴趣的课题来研究。
学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!
1、理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学目标:
1.使学生初步掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能正确解答此类应用题.
2.进一步提高分析、比较、解答应用题的能力,培养认真审题的好习惯.
教学重点:
掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.
教学难点:
掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.
教学过程:
一、复习准备。
(一)求一个数是另一个数的百分之几用什么方法?解答这类应用题的关键是什么?
(二)口答,只列式不计算.
1.5是4的百分之几?4是5的百分之几?
2.甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的是乙数的百分之几?
3.甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的是甲数的百分之几?
(三)应用题。
盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
冰的体积是原来水的体积的百分之几?
(四)引入新课。
如果把、问题改为:冰的体积比原来水的体积增加了百分之几?该怎样解答呢?今天我们继续学习百分数应用题.
二、新授教学。
(一)教学例题。
例.盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
冰的体积比原来水的体积增加了百分之几?
1.读题,理解题意.
2.比较:例题与复习题有什么异同?
3.讨论:“冰的体积比原来水的体积增加了百分之几?”什么意思?(画图理解)。
教师板书:多出来的部分占原计划的百分之几.
4.列式计算。
5.思考:这道题还有其他解法吗?
50÷45-1≈111、1-1=11、1%。
提问:为什么要减去1?
(二)反馈。
1.把例题中的问题改成“水比冰体积少百分之几?”该怎样解答?
思考:这道题与例题有什么相同的地方?有什么不同的地方?
三、巩固练习。
(一)分析下面每个题的含义,然后列出文字表达式.
1.今年的产量比去年的产量增加了百分之几?
2.实际用电比计划节约了百分之几?
3.十月份的利润比九月份的利润超过了百分之几?
4.1999年的电视机价格比1998年降低了百分之几?
5.现在生产一个零件的时间比原来缩短了百分之几?
6.十一月份比十二月份超额完成了百分之几?
(二)只列式不计算.
1.某校有男生500人,女生450人,男生比女生多百分之几?
2.某校有男生500人,女生450人,女生比男生少百分之几?
3.一种机器零件,成本从2.4元降低到0.8元,成本降低了百分之几?
4.一种机器零件,成本从2.4元降低了0.8元,成本降低了百分之几?
5.某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
(三)思考。
男生比女生多20%,女生就比男生少().
四、课堂小结。
通过今天的学习,你有哪些收获?
五、课后作业。
1.我国第一大岛台湾岛面积约35760平方千米,第二大岛海南岛面积约是32200平方千米.台湾岛的面积比海南岛大百分之几?(百分号前面的数保留一位小数)。
复习分数乘法的意义和计算方法。
教材第17页的内容及练习四的第1~3题。
教学目标。
1、复习分数乘法的意义和计算法则,掌握乘法运算定律在分数乘法中的推广和分数乘法的`简便计算。
2、进一步提高学生计算分数乘法的熟练程度和灵活计算的能力。
3、进一步培养学生认真书写及良好的审题习惯。
重点难点。
巩固分数乘法的意义,提高灵活计算的能力。
教具学具。
口算卡,投影片。
教学过程。
一复习分数乘法的意义。
1、口算。(老师出示口算卡,指名学生回答)。
学生分别说出以上几道题的意义。
二复习分数乘法的计算方法。
让学生看教材第17页的第3题,指名读题目要求。
提问:为了计算简便,在分数乘法中应该先做什么?(指名回答)(先约分,再做乘法)。
提问:这道题中,有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)。
请全班同学在练习本上完成各题。
三复习乘法运算定律和剑简便计算。
提问:我们学过哪些乘法运算定律?它们在分数乘法中适用吗?
全班同学完成教材第17页的第2题,老师检查巡视。
课上练习,完成教材第18页练习四的第1~3题。
先让学生独立审题,在练习本上解答,然后请几名学生说一说自己是怎样做的,着重说一说在进行简便运算时运用了什么定律。
四课堂作业新设计。
直接写出得数。
五思维训练。
教材习题整理和复习。
1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。
2、收集统计在生活中应用的例子,整理收集数据的方法。
3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。
1、我们学习了哪几种统计图?
2、这几种统计图各有什么特点?
3、概率的知识有哪些?
(一)提出问题。
1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)。
2、师:先独立列出几个你想调查的问题。(写在练习本上)。
3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)。
4、接着全班汇报交流(师罗列在黑板上)。
师:大家想调查这么多的'问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)。
(二)收集数据和整理数据。
1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。
2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?
(三)开展调查。
1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。
2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)。
3、全班汇总、整理、归纳各小组数据。(板书)。
4、师:分析上面的数据,你能得到哪些信息?
5、师:根据整理的数据,想一想绘制什么统计图比较好呢?
6、师:根据这些信息,你还能提出什么数学问题?
(四)回顾统计活动。
1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?
师板书:提出问题——收集数据——整理数据——分析数据——作出决策。
2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)。
指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?
3、结合生活中的例子说说收集数据有哪些方法?
(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来。
的实例)来说说自己的方法。
(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。
师生一边回忆补充,一边归纳完善如下知识结构表。
(2)师:我们要根据需要选择合适的统计图。
(3)师:怎么样整理六(1)班家庭成员人数的调查结果?
(4)师:用折线统计图表示月平均气温变化有什么好处?
(5)师:假如小芳买课外书用了20元钱,那么小芳的零花钱共有多少元?
(6)师:你能举例说明这几种统计图的特点吗?
5、结合实例,说说自己对平均数的理解,平均数有什么特点,并收集生活中应用平均数的例子。
师:什么叫中位数、众数?
1、出示统计图,问:这是个什么统计图民要呈现的是什么内容?你图中你看懂了什么?
2、让学生独立思考书中4个问题,再全班反馈、交流。
(1)从统计图中可以看出,随着年龄的增长,平均体重有什么变化?
(2)从统计图中可以看出,女生在哪个年龄段平均体重增加最快?
(3)平城市均体重的增加与年龄增长成正比例吗?试举例说明理由。
(4)从上图中,你还能得到哪些信息?
3、出示某日部分城市空气质量日报统计图,
(1)先引导学生读图,从图中你获得哪些信息?
(2)通过看图你能提出什么问题?得出哪些结论?并对学生进行环境保护的教育。
4、学校气象小组测得上周星期一至星期五的室外空气气温,并求出平均值。
主要是对平均数进行练习,先让学生独立审题,再解答,然后全班反馈交流,说说自己的算法。
5、出示李明家五月份支出及储蓄情况统计图;
(1)先让学生通过读图获取信息,独立解决问题。
(2)师:你是怎么样算出李明家的支出及储蓄决共的钱数。
(3)独立填写表格,全班交流订正。
6、在一次实验活动中,小青记录了一壶水的加热过程水温变化的情况,数据如下:
(1)让学生独立绘制折线统计图,4个小组交流、检查、订正。
(2)根据图表,独立回答下面问题,然后全班汇报、交流。
7、某小组8名同学的体重如下表。
读懂表格,分别求出这些数据的平均数,中位数,众数。
在实际教学中一方面要尽量创设情境,采用案例教学的基本方式展开教学,通过大量的具体案例来帮助学生理解;另一方面要设计一些活动,让学生经历统计的全过程,在学生合作学过程中,学生既要独立思考,自主探索,又要在解决实际问题中与别人合作、交流。例如:在教学《确定事件与不确定事件》中,让学生通过一系列的案例理解概念。太阳从东边升起,抛起的篮球会下降等等一定会发生的事件就是可能事件,太阳从西边升起,公鸡下蛋等一定不会发生的事件就是不可能事件。让学生在具体案例中体验概念。理解概念。
运用数学的思维方式去观察分析现实社会,去解决日常生活中和其他学科学习中的问题是我们新课改的一个目标。我们在教学中注意观察学生是否有学好数学的自信心,能够不回避遇到的困难去解决问题的思想意识。在“统计与概率”教学中注意学生小组合作,是否能用建构的方式建立“统计与概率”和运用比、分数、百分数和小数的联系,建构有意义的认知结构,从而使学生更深入、更灵活的学习。
读书破万卷下笔如有神,以上就是为大家整理的7篇《六年级数学上册第一单元教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
1、掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法计算,提高学生的计算能力。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
一、填空。(每空1分,共22分)。
1.直线是()长的,直线上两点间的一段叫()。
2.从一点引出两条射线所组成的图形叫做(),这个点叫做它的(),这两条射线叫做它的()。
3.角的两条边成一条直线,这时所成的角叫做(),是()度。
4.107°的角是()角,57°的角是()角。
5.直角三角形中的一个锐角是35°,另一个锐角应是()度。
6.1周角=()平角=()直角。
7.直线、线段和射线中,可以量出长度的.是(),没有端点的是(),只有一个端点的是()。
8.钟面上有12个大格,时针走1大格是()度,1时整时针和分针所夹的较小角是()度,4时整时针和分针所夹的较大角是()度。
9.锐角()90°,钝角()90°而小于(),直角()90°。
二、选择。(把正确答案的序号填在括号里)(12分)。
1.同一平面内,a,b,c三点不在同一条直线上,通过这三点可以画()条线段。
a.2b.3c.无数。
2.过一点可以画()条直线。
a.1b.2c.无数。
3.度量角的大小要用()。
a.三角尺b.直尺c.量角器。
1、出示复习题。(投影片)。
(1)整数乘法的意义是什么?
(2)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(3)计算:1/6+2/6+3/63/10+3/10+3/10。
计算3/10+3/10+3/10时向学生提问:这道题有什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)。
适用于中等学生。
教材第2—4页。
1、掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、渗透知识来源于实践、学习的目的在于应用的思想。
掌握圆各部分名称以及圆的特征,借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
一课时。
谈话引入:今天非常高兴能和同学们一起来学习、研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?师(检查课前准备):看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(留给学生充分的思考交流的时间)师:同学们观察得真仔细。圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)。
1、教师引导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(留时1分钟)。
2、师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果。结合多媒体课件辅助,完整认识圆的特征师问:谁来告诉老师,你有哪些新发现?你怎样发现的?(大约8分钟)结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。
1、基本练习(4分钟)。
〈1〉投影出示:找出下列圆的半径、直径。
〈2〉半径、直径的相关计算。
〈3〉概念的判断和识别。
2、应用练习。(10分钟)。
〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示〈2〉你能用今天学习的圆的知识去解释一些生活现象吗?a:举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?b:平静的湖面扔一小石子,会有什么变化?为什么?c:月饼为一般都做成圆形的,为什么?小结:看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。
3、游戏(猜谜语):
师:同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语:有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)问题一:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆。)问题二:拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)问题三:钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)问题四:如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)问题五:如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),问题六:这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)。
1、质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)。
2、这节课你都学会了什么?不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)。
3、延伸:
1、用圆作画。
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法。
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观。
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
理解圆锥体积公式的推导过程。
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
一、创设情境,提出问题。
生:我选择底面的;
生:我选择高是的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)。
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
二、设疑激趣,探求新知。
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)。
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)。
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)。
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……。
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:
实验材料,任选沙、米、水中的一种。
实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)。
师:
谁来汇报一下,你们组是怎样做实验的?
通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)。
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略。
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)。
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)。
联系生活,拓展运用:
本练习共有三个层次:
1、基本练习。
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。()。
一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()。
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()。
(2)计算下面圆锥的体积。(单位:厘米)。
s=25、12h=2.5。
r=4,h=6。
2、变形练习。
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点?v锥=1/3sh。
(3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?
3、拓展练习。
整理归纳,回顾体验。
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)。
实践要求:
1、经历有目的、有设计、有步骤、有合作的实践活动。
2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
教学内容:
冀教版小学数学六年级上册69——70页。
教学目标:
1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。
2、数学思考:如何对自己设计的理财方案作出合理的解释。
3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。
4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。
教学重点:
学会理财,会对自己设计的理财方案作出合理的解释。
教学难点:
对自己设计的理财方案作出合理的解释。
教学流程:
一、导入。
老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。
{设计意图:通过和学生谈话,轻松引入本节课的课题}。
二、任务一。
设计方案,解决问题。
聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)。
(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)。
(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)。
(3)议一议:你认为那种存钱方案?为什么?
三、小组汇报、展示。
四、任务二。
聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。
零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。
(1)计算聪聪家每个月的结余。
(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。
(3)按照你的存钱计划,算一下,到期能取回多少钱?
知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。
其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
五、分享收获。
六、课下作业。
为自己的零花钱制定一个零存整取的存钱计划。
板书设计:
收入:2160+4180=6340(元)。
支出:2500+800+200+160+30=3690(元)。
结余:6340—3690=2650(元)。
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
【重点难点】。
负数的意义和数轴的意义及画法。
【课时安排】。
建议共分3课时:
负数的初步认识2课时。
在数轴上表示正数、0和负数1课时。
第1课时负数的初步认识(1)。
【教学内容】。
负数的初步认识。
(1)(教材第2页例1)。
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】。
体会负数的重要性。
【教学准备】。
多媒体课件。
【情景导入】。
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)。
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)。
引出课题并板书:负数的初步认识(1)。
【新课讲授】。
教学教材第2页例1。
(1)教师板书关键数据:0℃。
以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】。
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
【课堂小结】。
通过这节课的学习,你有什么收获?
【课后作业】。
完成练习册中本课时的练习。
教学反思:
包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。
【学情分析】。
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。
2、学生已有的生活经验。
学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。
【教法学法】。
让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。
【教学目标】。
知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。
过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。
2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。
教学重点难点。
重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。
难点是:理解最节省包装纸的包装策略。
【教具准备】:多媒体课件,师生共同准备若干个长方体纸盒。
【教学过程】。
一、课前交流。
师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。
师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。
师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!
二、激发兴趣,导入课题。
上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。
物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。
再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。
师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。
师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。
【设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。
下了知识基础和情感基础。】。
三、动手操作,初步感知。
1、小组活动,自主探究。
师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。
师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。
问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。
师:重合的面在包装时需要用包装纸包装吗?(不需要)。
师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。
请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。
问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。
2、展开猜想,交流讨论。
师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。
师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。
师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。
问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。
3、验证猜想,得出结论。
师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。
问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。
先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。
师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。
师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。
四、组合三个,再次体验。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/kouhaodaquan/97764.html