六年级教案是教师根据教材内容和学生需求制定的一份教学指导书。在这里,小编为大家推荐几份优秀的六年级教案,供大家参考和借鉴。
包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。
【学情分析】。
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。
2、学生已有的生活经验。
学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。
【教法学法】。
让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。
【教学目标】。
知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。
过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。
2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。
教学重点难点。
重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。
难点是:理解最节省包装纸的包装策略。
【教具准备】:多媒体课件,师生共同准备若干个长方体纸盒。
【教学过程】。
一、课前交流。
师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。
师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。
师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!
二、激发兴趣,导入课题。
上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。
物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。
再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。
师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。
师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。
【设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。
下了知识基础和情感基础。】。
三、动手操作,初步感知。
1、小组活动,自主探究。
师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。
师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。
问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。
师:重合的面在包装时需要用包装纸包装吗?(不需要)。
师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。
请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。
问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。
2、展开猜想,交流讨论。
师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。
师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。
师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。
问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。
3、验证猜想,得出结论。
师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。
问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。
先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。
师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。
师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。
四、组合三个,再次体验。
p27倒数的认识,练习六全部习题。
这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
(一)用汉字作比喻引入。
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)。
师生共同确定本节课的目标——研究倒数的意义、方法和用处。
(二)新知探索:
1、研究倒数的意义。
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)。
(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)。
(c、以“带分数”为例;带分数的倒数是真分数。)。
(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。
(e、以“整数”为例;整数相当于分母是1的假分数)。
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论“0”、“1”的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)。
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)。
(三)反馈巩固:
1、完成“练一练”。
学生独立完成后,集体订正。重点问:“8”的倒数是几?
2、练习六5。
3、补充判断:
a、a是自然数,a的倒数是1/a。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:概括倒数的意义与求法。
教学难点:理解“互为”、“倒数”的含义。
教学方法:创设情境、激趣质疑、自主探究、合作学习。
教学过程:
一、比赛引入。
8/11×11/81/10×10。
7/9×9/77×1/7。
(师巡视学生的情况,并对分数的格式加以指导)。
学生思考后,汇报结果:
生1:两个乘数的分子、分母位置颠倒。
生2:每个算式乘积是1。
师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?生:
2可以写成2/1,分子分母颠倒后,2/1×1/2=1。
二、理解倒数的意义。
师:观察的真仔细,我们能不能给这样的数取个名字呀?
生:倒数。
师:对,这就是我们今天要研究的课题:倒数(板书)。
师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数。
师:看这几个算式,倒数是对几个数来说的?
生:两个数(师板书)。
师:这两个数的乘积有什么特点?
生:乘积是1(师板书)。
师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)。
师:怎么理解“互为”呢?
生:相互的意思。
生:就是对两个数而言的`。
师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。
生:。。。。。。
师:大家表现真好,老师也来说一个,3/5是倒数,对吗?
生:不对。
师:你帮老师改正吧。
生1:应该说3/5是5/3的倒数。
生2:。。。。。。
三、观察比较,抽象概念。
1、以小组为单位,学生主动探究这四组数的特点。
生:分子分母倒过来了。
师:那么我们就给这样的数取个名字吧!(板书课题―。
―倒数)师:继续观察这几组数,看看还有什么特点?
生:每组中两个数的乘积都为1。
(如学生不能找出这个特点,则可以引导学生做计算比赛。)。
2、请学生再举一些这样的例子进行观察。
3、概括“倒数”的意义,板书。(强调“两个数”――“互为”;“乘积为1”――“倒数”。)。
四、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)。
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
(师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。)。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。
五、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)。
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?(先把带分数化成假分数,再求它的倒数。)。
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
六、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
2、判断。
(1)2/9是倒数。()。
(2)一个数的倒数一定比原来小。()。
(3)所有的数都有倒数。()。
(4)a是整数,所以a的倒数是1/a。()。
(5)因为0.2×5=1,所以0.2和5互为倒数。()。
七、全课小结。
教学目标:
2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学方法:
创设情境——新知讲授——巩固总结——练习提高。
教学用具:
多媒体课件、三角形学具。
教学过程:
一、创设情境。
师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?
生:三角形的。
师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。
板书:三角形的面积。
二、新知探究。
1、课件出示一个平行四边形。
师:平行四边形的面积怎么计算?
生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)。
师:平行四边形的面积公式是怎样得到的?
生说推导过程。
生1:我想把它转化成已学过的图形。
生2:我想看看三角形能不能转化成长方形或平行和四边形。
2、动手实验。
师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。
生小组合作,教师巡视指导。
3、展示成果,推导公式。
教科书第50、51页的内容,做一做,练习十一第4-6题。
1、掌握比的基本性质,能根据比的基本性质化简比。
2、联系商不变的性质和分数的基本性质迁移到比的基本性质。
理解比的基本性质。
能应用比的基本性质化简比。
一、激趣定标
1、20÷5=(20×10)÷(×)=()
想一想:什么叫商不变的规律?什么叫分数的基本性质?
3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。
二、自学互动,适时点拨
1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。
2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。
3、结合欣赏和设计美丽的图案,感受图形世界的神奇。
1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。
2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。
一、情境导入利用课件显示美丽的图案,配音乐,让学生欣赏。
二、学习新课。
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这些美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。(你看到的这些生活中的美丽图案,你想说什么?)。
三、观察、分析图案:
1、课件展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?(教材中呈现的花瓣是曲线图形,学生在画这个图时会感到困难,可以让学生看着图进行分析,也可以剪好一个基本图形,让学生在操作中体会图案设计的基本过程。)。
2、小组内进行交流。
3、小组代表汇报研究结果。(汇报花瓣图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)。
4、你还有其他方法吗?
5、教师小结:
其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。
四、设计图案。
1、鼓励学生观察分析图形的变换,进一步认识平移,旋转和轴对称。让学生说说自己的方法,把自己的思考过程表达出来。
2、小组合作设计图案。(组长汇报交流的结果。)。
3、作品展示:
(1)作品展示:把学生设计的图案分小组张贴在教室的前面,学生参观作品。
(2)学生评价:每个小组学生上台对自己小组的作品进行评价,比一比看谁评价得好。
4、全班交流,学生欣赏并评价。(学生点评)。
教学目标:
1、使学生理解和掌握乘法交换律和结合律。
2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。
3、培养学生运用新知识解决实际问题的能力。
教学重难点:
1、使学生理解并运用乘法交换律和结合律。
2、乘法交换律和结合率的运用。
教具准备:
口算卡片。
教学过程:
一、导入。
1、出示口算卡片。
50__70=125__8=40__5=11+7=4+25=。
70__50=8__125=5__40=7+11=25+4=。
2、复习乘法算式的各部分名称:
板书:5__4=20。
因数因数积。
二、教学实施。
1、领会主题图。
(1)、观察图意。
(2)、说说你从图中你了解到了那些信息。
(3)、根据图中带给我们的信息,可解决那些问题?
2、出示例1:负责挖坑、种树的一共有多少人?
(1)、分析数量关系。
(2)、列式计算:4__25=100(人)或25__4=100(人)。
(3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4__25=25__4)。
(4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)。
(5)、举例。
(6)、归纳总结:
交换两个因数的位置,积不变,叫乘法交换律。
(7)、用字母表示乘法交换律。
a__b=b__a。
说一说a、b可以是那些数?(a、b可以是任何两个不同的数)。
(8)、找一找,主题图中哪个问题可以用乘法交换律来解决。
师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。
2、出示例2:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?
(1)、读题,分析数量关系。
(2)、请同学用不同的方法解答。板书解题思路。
方法一:(25__5)__2方法二:25__(5__2)。
=125__2=25__10。
=250(桶)=250(桶)。
(3)、小组讨论两种解法的相同点和不同点。
(4)、这两个算式之间可以用什么符号连接?
板书:(25__5)__2=25__(5__2)。
(5)、观察下面三组算式,说说你发现了什么?
(15__6)__10()15__(6__10)。
(125__80)__3()125__(80__3)。
(12__25)__4()12__(25__4)。
(6)、归纳总结:
三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。
(7)、用字母表示乘法结合律:(a__b)__c=a__(b__c)。
这里a、b、c表示的是大于或等于0的整数。
3、比较、概括、归纳。
比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。
4、巩固提高。
(1)、填一填:
75__26=()__()8__2=2()。
a__b=()__()a__()=15__()。
125__7__8=()__()__7(40__15)__[]=40__([]__6)。
25__(4__[])__([]__4)__132__4__6__5=(4__6)__([]__[])。
(2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?
6、课堂小结:
通过本节课的学习,你都有哪些收获?
文档为doc格式。
。
教学目标:
1、知道连加、连减算式的含义和运算顺序。
2、能比较熟练地口算连加、连减式题。
3、初步感知连加、连减式题与日常生活的联系,学会表达和交流,培养学生观察和解决简单的实际问题的能力。
教学重点:通过联系实际情境,体会连加连减的意义和理解运算顺序。
教学难点:
1、学生在学习的过程中学会如何用语言表达数学问题,同时学会倾听、交往与合作。
2、理解连减的含义。
教学过程:
一、情境引入。
1、课件演示情境图(聪明屋)。
师:今天,我们要去数学聪明屋里去玩玩。在聪明屋里有很多聪明题,看看我们班上谁最聪明。看,四位小动物先出来欢迎我们了。看看他们给我们带来了什么题目。(课件)。
长颈鹿小狗小乌龟小猫。
师:你想和谁交朋友,就算算它带给你的题目吧!(请四位学生口答)。
2、小结。
师:今天我们用学到的数学知识为小动物解答了难题,你们可真了不起,希望你们在聪明屋里学到更多的数学知识。
二、探究新知。
(一)探究连加。
1、说图意。课件演示小鸡图(动态)。请学生仔细观察。
(1)师:小鸡也想和我们交朋友,在图上你看到了什么?
(原来有5只小鸡在吃米,先跑来了两只,又跑来了一只。)。
(2)师:根据你看到的,你可以提什么数学问题?(一共有多少只小鸡?)。
学生复述图意,指名说,同桌说,齐说。
2、尝试列式。
师:要知道一共有几只,我们可以用什么方法做?(加法)为什么?
(1)名学生口头列式。5+2+1=。
(2)读算式。(师:刚才的小朋友读得真不错,你也跟着他读一读吧)。
(3)比较不同。(请小朋友观察一下,这个算式和我们以前学的有什么不一样?——有三个数,两个加号)。
(4)小结:像这样把三个数或更多的数加在一起,就叫连加。(板:连加)。
3、说算理。
师:这个算式你会算吗?(指名说:先算5+2等于7,再算7+1等于8)。
请学生跟说,齐说,同桌说。
(二)探究连减。
1、说图意。
师:你们帮小鸡解决了难题,他们可高兴了,过了一会儿,又发生了什么事呢?
(原来有8只小鸡,先跑掉了3只,又跑掉了2只,还剩下几只?)。
指名说图意(同连加)。
2、写算式。
(1)师:这道题该用什么方法来解决呢?——减法,为什么?
学生列式。(板书:8-3-2=)齐读算式。
(2)师:这道算式和以前的减法有什么不同?你能给它取个名字吗?(板书:连减)。
(3)小结:像这样从一个数里连续去掉几个数,用连减。
3、说算理。
师:你会算吗?(先算8-3等于5,再算5-2等于3)。
学生跟说,齐说,同桌说。
(三)小结。
今天我们学会了连加、连减,在计算时,一般是从左往右的顺序依次计算的。
三、练习巩固。
师:聪明屋里还有很多聪明题,需要我们小朋友来解答,请你们帮帮这些小动物的忙。
1、课件出示燕子图、猪八戒吃西瓜图。(请学生复述图意,再在课本上列式计算,并说算理)。
2、课件出示小棒图和三角形图。(方法同上)。
3、算式(折叠卡片)。——学生说出计算过程。
3+4+16+4+04+3+22+2+4。
8-5-39-5-410-6-28-0-6。
学习目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
长方体、正方体体积计算。
教学难点:
长方体、正方体体积计算。
教具运用:
正方体木块若干。
教学过程:
一、复习导入。
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
二、新课讲授。
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长×宽×高。
讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=a•a•a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。v=abh=7×4×3=84(cm3)。
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业。
完成课本第31页“做一做”第1、2题。
四、课堂小结。
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
五、课后作业。
完成练习册中本课时练习。
板书设计:
长方体和正方体的体积。
长方体的体积=长×宽×高。
v=abh。
正方体体积=棱长×棱长×棱长。
v=a•a•a=a3。
生活中的比》是在学生已经学过除法的意义,分数的意义以及分数与除法的关系的基础上学习的,教材密切联系学生已有的生活经验和学习经验。设计了比“速度”、“图形放大缩小”“水果价格”等情境,引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生体会引入比的必要性及比在生活中的广泛存在。
“比”在数学中是一个重要的概念,体会比的意义和价值是教材内容的核心思想。教材没有采取直接出示“比”的概念的做法,而是以系列情境为学生理解比的意义提供了丰富的直观背景和具体案例,教师要利用好这些情境,真正达到帮助学生理解比的本质的目的。
教学内容:
教材有关折扣的内容。
教学目标:
1、经历了解信息,解决折扣问题的过程。
2、理解打折的含义,以及折扣与分数、百分数之间的关系,会解答有关打折的问题。
3、体验百分数在现实生活中的广泛应用,获得用数学解决问题的成功体验,丰富学生的生活经验。
教学重点:
理解折扣和分数与百分数的`含义。
教学难点:
解决有关折扣的实际问题。
教学活动:
一、导入。
同学们,在刚刚过去的寒假生活中,你注意到了没有,好多商家为了促销商品,举行了促销活动,把你知道的情况说一说。
同学们对折扣看来并不陌生,今天我们就来深入研究折扣的相关问题。
二、探究体验,经历过程。
1、商店有时降价出售商品,叫做打折销售,俗称“打折”。几折就表示十分之几,也就是百分之几十。例如,打九折出售,就是按原价的90%出售。你知道什么叫“八五”折吗?(学生自己给答案)。
2、教材第8页例1(1)题,你知道了什么?
(已知自行车的原价是180元,现在商店打八五折出售)。
买这辆自行车用了多少钱?该怎么解答呢?说说你的想法。
(学生交流——我们已知八五折是按原价的85%出售,所以这辆自行车需要的钱数就是原价的85%,“求一个数的百分之几是多少,用乘法计算”。)。
学生自己列式计算解决问题,教师巡视了解情况。
3、教材第8页例1(2)题。
学生尝试独立解答,老师巡视了解情况,指导个别有困难的学生。
交流:谁来说一说,你是怎样想的?应该怎样列式?
对于解答正确的学生要及时给予肯定和表扬,提倡算法多样化,不强求统一。
三、课堂练习。
教材第8页“做一做”
四、课末总结。
(折扣=现价/原价现价=原价*折扣现价=原价/折扣)。
五、课后作业。
根据本班实际情况自行设计。
板书设计:
折扣。
打几折,就是按原价的百分之几出售。
折扣=现价/原价。
现价=原价*折扣。
现价=原价/折扣。
将本文的word文档下载到电脑,方便收藏和打印。
日常生活和生产劳动经常应用百分数,如用百分数表示一个数量比另一个数量多或少的关系,又如利息与纳税的计算、折扣的设计与计算等。应用百分数解决问题可以列式计算,也可以列方程解答。这些都是本单元的教学内容。
全单元的教学内容比较多,编排6道例题、四个练习以及全单元的整理与练习,大致分成五段教学。
师:倒数不是什么东西,而应该是什么知识?(同学们轻轻地笑了)。
生2:数怎样倒法?
生3:是不是只有分数有倒数?
师:也就是说,同学们想知道倒数的意义和有关方法。
教师板书:意义、方法。
师:倒数的意义和有关方法课本上都有,我们一看就知道了。重要的是我们在学习中要有自己的发现。我相信你们。
教师板书:发现(用另一种颜色的粉笔写)。
(1)自学课本。
师:请大家在课本上找到倒数的意义,读一读。
学生打开课本,寻找倒数的意义,用笔划词句。
(2)复述意义。
师:请同学们合上书,谁能说说什么是倒数?
生1:乘积是1。
师:看来只读一遍就要记住有一定的难度,谁再来说说?
生2:乘积是1的两个数互为倒数。
教师板书:乘积是1的两个数。
师:后面是什么,张老师忘了,谁来帮忙?
生3:互为倒数。
教师接着板书:互为倒数。
(3)初步剖析意义。
师:我们读的时候可以把这句话分成两部分,你认为该怎么读?
生1:乘积是1的两个数/互为倒数。
生2:乘积是1的/两个数互为倒数。
师:这两种读法究竟哪一种读法好?同桌同学讨论一下,并说说你的想法。
生3:乘积是1的两个数/互为倒数。
师:为什么这样读?
生3:这样读很顺。
师:你是怎样读的?
生4:乘积是1的/两个数互为倒数。
师:同意这样读的同学请举手。看来,女同学都支持第一种,男同学都支持第二种。我也支持第二种的读法。
教师边说边板书:条件(在乘积是1的下面划上红线)、结论(在两个数互为倒数的下面划上红线)。
师:因为有了乘积是1的条件,才有两个数互为倒数的结论。
(1)示范举例。
师:现在老师写一个算式,大家看看是不是符合这句话的意义?
教师板书:4/55/4=1。(生:符合)。
师:那你有什么结论?
生:4/5和5/4互为倒数。
教师板书:4/5和5/4互为倒数。
师:在条件前加两个字。
教师板书:因为板书在4/55/4=1的前面。
师:有了因为,就有。
学生齐声回答所以,教师板书:所以板书在4/5和5/4互为倒数的前面。
师:谁来把条件、结论完整地说一说?
生:因为4/55/4=1,所以4/5和5/4互为倒数。
3、即时练习。
完成课后的说一说。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比。
汇报计算结果,订正。
学生发言、交流。
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息。
根据教师引导说出发现。
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法。
进行计算,订正。
复习内容:
教材练习四的内容。
复习目标:
1.进一步掌握三种常见的统计图,了解它们各自的特点,能根据实际情况选择合适的统计图。
2.能根据统计图中的数据信息提出并解答简单的问题。
3.能对统计图中与现实生活相关的数据作出合理的解释,能选择合适的统计图描述并解决现实生活中的简单问题。
教学重点:
能根据统计图中的数据信息提出并解答简单的问题。
教学难点:
能选择合适的统计图描述并解决现实生活中的简单问题。
教学准备:
教学课件。
教学过程:
学生活动。
(二次备课)。
一、知识梳理。
(一)谈话导入。
师:同学们,第五单元《数据处理》的知识我们都已经学完。关于这部分内容,你学会了什么,还有什么疑问?这节课我们一起来回顾并解决问题。
(二)梳理反馈,建构网络。
组织学生回顾本单元知识,在小组内交流汇总后进行汇报。
1.扇形统计图:用整个圆表示总数,用圆内大小不同的扇形表示各部分所占总数的百分比。它可以清楚地表示出各部分数量和总数量之间的关系。
2.统计图的选择:根据它们各自的特点结合实际需求。
扇形统计图:可以清楚表示各部分数量所占总数的百分比。
条形统计图:可以清楚描述各部分的数量的多少。
折线统计图:可以清楚反映事物的变化情况。
3.数据的整理:可以分段整理数据,填写统计表。
4.复式折线统计图:对两组数据进行比较时,可以把两组数据进行分段整理,然后绘制出复式折线统计图,能清楚地看出数据分布状况及集中趋势。
二、针对练习。
1.完成教材练习四第1题。
(1)组织学生读题,理解题意。
(2)思考:根据题目要求想一想选择什么样的统计图较为合适?
生:因为要表示去年凉鞋销售量的变化情况,所以应选择折线统计图更合适。
(3)学生独立完成折线统计图。
(4)展示学生完成的统计图。
2.完成教材练习四第2题。
(1)让学生读题后说一说找到的数学信息。
生1:这是扇形统计图,在这道题中整个圆表示奇思家12月生活总支出;
生2:奇思家12月生活支出有服装、文化、食品、水电气、赡养老人和其他。
(2)让学生思考:扇形统计图主要表现什么?统计图中的每个百分数的意义是什么?
(3)学生独立计算,完成后集体订正。
3.完成教材练习四第4题。
学生独立完成。老师提示:在分段统计时可以用画“正”字的方法统计,数据不重复不漏掉。
三、巩固练习。
1.完成教材练习四第3题。
指名让学生回答根据下面情况分别用哪种统计图表示比较合适,并说明理由。
2.完成教材练习四第5题。
(1)教师给出本班和邻班10名男生的60。
m跑成绩。
(2)让学生说说如何比较。
(3)学生自己计算、画图完成后汇报。
四、课堂总结。
通过这节课的整理和复习,你有什么收获?
五、作业布置。
教材练习四第6题。
板书设计。
练习四。
1.条形统计图、折线统计图、扇形统计图的特点和适用范围。
2.整理数据:分段。
3.绘制统计图时需要注意的事项。
教学反思。
成功之处:本节课设计要求学生独立思考,鼓励学生联系生活实际创造性地解决问题,让学生把思考过程、结果说出来,有利于培养学生的思维能力,拓宽学生的思维空间。
不足之处:可能有些学生从统计图获取的信息中所提出的问题难度大,将简单知识复杂化了,不适于学困生。
教学建议:在教学中提问要有针对性,让学生自由支配的时间要多一些,大胆让学生根据信息提出数学问题。
【教学目标】。
1、理解按一定比例来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
【教具准备】。
cai课件。
【教学设计】。
教学过程。
教学过程说明。
一、创设情境:
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班。
3个2个。
6个4个。
30个20个。
…………。
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班。
30个20个。
30个20个。
…………。
方法二:画图。
140个。
方法三:列式。
3+2=5。
140×=84(个)。
140×=56(个)。
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)。
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试。
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)。
五、总结:1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
六、【板书】。
比的应用。
3+2=5。
140×=84(个)。
140×=56(个)。
答:大班分84个,小班分56个,比较合理提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
1.进一步认识“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2.能解决“比一个数增加百分之几的数”或“比一个。
数减少百分之几的数”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。教学重点理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点。
1.结合丰富的事例,认识正比例。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点。
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具。
课件。
教学过程。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一。
1.观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
说说从数据中发现了什么?
3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的.周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二。
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.请把下表填写完整。
3.从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三。
1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2.把表填写完整。
3.从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4.说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5.正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6.观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想。
1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2.小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011。
爸爸的年龄/岁3233。
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
在老师的小结中感受并总结正比例关系的特征。
活动二:练一练。
1.判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2.根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)。
3.买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由。
应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。
4.找一找生活中成正比例的例子。
5.先自己独立完成,然后集体订正,说理由。
“比的意义”是小学六年级第十一册教材中教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。
2、教学目标:
“从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。
(1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。
(2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。
(3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。
3、教学重点难点:
理解掌握比的意义,比与分数、除法之间的联系。
1、用创设情境法,激发学生对比的知识的研究兴趣。
2、从日常生活中,培养学生能够发现数学问题。
3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。
4、当堂巩固,当堂反馈练习,练习形式多样,使学生从多种学习方式的活动中理解比的意义。
5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。
(一)创设情境,导入新课。
利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。
(二)自主探究,合作交流。
1、“比的'意义”教学。
第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。
2、比的读法与写法、各部分的名称、求比值的方法的教学。
教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。
3、比与除法、分数之间的关系,比的后项为什么不能为零?
通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。
(三)、总结、归纳引导学生谈学习感受。
通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。
(四)、多层次练习,巩固新知识。
练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫。
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究。
(一)教学例1。
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间。
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
教师板书:零件总数。
每小时加工数×加工时间=零件总数。
3.小结。
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2。
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数。
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结。
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
教师板书:xy=k(一定)。
三、课堂小结。
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习。
完成教材43页做一做。
五、课后作业。
练习七6、7、8、9题。
六、板书设计。
成反比例的量xy=k(一定)。
每小时加工数×加工时间=零件总数(一定)。
每本页数×装订本数=纸的总页数(一定)。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/kouhaodaquan/93593.html