首页 > 范文大全 > 口号大全

数学七年级教案设计大全(20篇)

数学七年级教案设计大全(20篇)



教学工作计划是教师在备课和授课过程中对教学内容、教学步骤和教学方法等进行细致而全面的规划,它能够提高教学的系统性和科学性,我们应该尽快完成教学计划。教学工作计划的编写对教师的教学能力和教学思维要求较高,下面是一些经典的范文,供大家学习参考。

七年级数学《从算式到方程》教案设计

1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。

3、在课堂的第二个环节中,通过实际问题的'引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。

二、从教学方法反思。

本节课本着“尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。

三、从学生反馈反思。

这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。

七年级数学有理数的乘法教案及教学设计【】

二、难点:正确进行有理数的乘除运算。

预习导学。

一、创设情景,谈话导入。

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律。

二、精讲点拨质疑问难。

根据预习内容,同学们回答以下问题:

(3)0与任何自然数相乘,得____。

(1)乘法交换律:ab=_________。

(2)乘法结合律:(ab)c=_______。

(3)乘法分配律:(a+b)c=________。

3、有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________。

比较有理数的乘法,除法法则,发现_________可能转化为__________。

七年级数学《有理数的乘方》教案设计【精选】

3?渗透分类讨论思想?

重点:有理数乘方的运算?

难点:有理数乘方运算的符号法则?

1?求n个相同因数的积的运算叫做乘方?

2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

例1计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察。

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

(2)纵向观察。

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);

当a。

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)。

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);

a2n0(a是有理数,n是正整数)?

例2计算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

让三个学生在黑板上计算?

课堂练习。

计算:

(1),,,-,;

(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

让学生回忆,做出小结:

1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?

1?计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2?填表:

3?a=-3,b=-5,c=4时,求下列各代数式的值:

4?当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6*?若(a+1)2+|b-2|=0,求a20xxb3的值?

七年级数学有理数的乘法教案及教学设计

3.进一步感悟“转化”的思想。

把有理数的加减法混合运算统一为加法运算。

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。

根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。

1、完成下列计算:

(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。

归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;

省略负数前面的加号和()后的形式是______________________;

展示交流。

1、把下列运算统一成加法运算:

2、将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

3、将下列运算先统一成加法,再省略加号:

=___[]______________________。

4、仿照本p37例6,完成下列计算:

盘点收获。

个案补充。

1.计算:

本p39习题2。5第6题(1)、(3)、(5),第7题。

七年级数学《从算式到方程》教案设计

1.教学目标、重点、难点.

教学目标:

(1)了解方程的解的概念.

(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.

(3)渗透对应思想.

重点:方程解的意义,会检验一个数是不是一个一元方程的解.

难点:方程解的意义,会检验一个数是不是一个一元方程的解.

2.例、习题的意图。

本节课重点是了解方程的解的意义.通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.

例1是通过实际问题列出方程,根据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫.对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.

例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.

3.认知难点与突破方法。

难点是方程解的意义和检验一个数是不是一个一元方程的解.例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.

二、新课引入。

复习:

1.什么是一元一次方程?

2.练习:当,,时,求式子的值.

答案:,,.

通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.

三、例题讲解。

例1教材p69中例1。

分析:三个题目中的相等关系分别是:

(1)计算机已使用的时间+继续使用的时间=规定的检修时间.

(2)2(长+宽)=周长.

(3)女生人数—男生人数=.

分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程.由于表示月份,是正整数,不妨让,,……分别代入方程算一算.

由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为方便起见,可以列一个表格:

1234567…185021502300245026002750…从表中发现:当时,的值是,也就是,当时,方程中等号的左边:.等号的右边:2450.由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5.所以,方程的解就是.

教材p71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.

从表中你还能发现哪个方程的解?(引导学生得出)如方程的解是;方程的解是等等,使学生进一步体会方程解的概念.

方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.

由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.

怎样检验一个数是否是方程的解呢?

七年级数学教学教案设计

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;。

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类。

知识重点正确理解有理数的概念。

教学过程(师生活动)设计理念。

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

小结与作业。

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业1,必做题:教科书第18页习题1.2第1题。

2,教师自行准备。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级数学《从算式到方程》教案设计

这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:

一:对选择引例的反思。

在小学学生已接触过方程,但没有过多的研究。而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。

二:对选题的反思。

我在备课中【活动3】最初选用的题是:

修改后的题是:

判断下列各式是方程的有:

(1)(2)(3)(4)(5)。

考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。

三:对课堂实践的反思。

本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的概念,最后由学生自己归纳小结。

当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y-1=3y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的`问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就ok了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”

四:教后整体反思。

成功之处:

1.引例、练习题的选择都很恰当。

2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。

3.数学文化的渗透比较自然。

4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。

5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。

6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。

不足之处:

1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。

2.在后面两组题环节之间的过渡语言不是很自然。

3.授课语言仍需加强锤炼。

这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!

七年级数学有理数的乘法教案及教学设计

2.内容解析。

有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.

基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.

二、目标及其解析。

1.目标。

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.

(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.

2.目标解析。

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.

达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.

三、教学问题诊断分析。

有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.

四、教学过程设计。

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.

问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3.

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.

教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.

追问2:根据这个规律,下面的两个积应该是什么?

3×(-2)=,

3×(-3)=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

设计意图:让学生自主构造算式,加深对运算规律的理解.

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓励学生模仿正数乘负数的过程,自己独立得出规律.

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(-1)×3=,

(-2)×3=,

(-3)×3=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.

问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)×3=,

(-3)×2=,

(-3)×1=,

(-3)×0=.

追问1:按照上述规律填空,并说说其中有什么规律?

(-3)×(-1)=,

(-3)×(-2)=,

(-3)×(-3)=.

设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.

学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.

例1计算:

(1)。

;(2)。

;(3)。

学生独立完成后,全班交流.

教师说明:在(3)中,我们得到了。

=1.与以前学习过的倒数概念一样,我们说。

与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.

追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.

小结、布置作业。

请同学们带着下列问题回顾本节课的内容:

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结.

作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.

五、目标检测设计。

1.判断下列运算结果的符号:

(1)5×(-3);。

(2)(-3)×3;。

(3)(-2)×(-7);。

(4)(+0.5)×(+0.7).

2计算:

(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。

(4)。

;(5)0×(-6);(6)8×。

设计意图:检测学生对有理数乘法法则的理解情况.

七年级数学有理数的乘法教案及教学设计【】

(二)能力训练目标:

1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:

1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

乘法运算律的运用。

乘法运算律的运用。

探究交流相结合。

创设问题情境,引入新课。

[活动1]。

问题2:计算下列各题:

(1)(-7)×8;。

(2)8×(-7);

(5)[3×(-4)]×(-5);

(6)3×[(-4)×(-5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。

[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?

(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:

1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:

[活动4]。

练习(教科书第42页)。

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

用简便方法计算:

(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。

(2)[(4×8)×25一8]×125。

七年级数学《有理数的乘方》教案设计【】

3、渗透分类讨论思想?

重点:有理数乘方的运算?

难点:有理数乘方运算的符号法则?

1、求n个相同因数的积的运算叫做乘方?

2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

例1计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察。

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

(2)纵向观察。

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);

当a。

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)。

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);

a2n0(a是有理数,n是正整数)?

例2计算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

让三个学生在黑板上计算?

课堂练习。

计算:

(1),,,-,;

(2)(-1)2001,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

让学生回忆,做出小结:

1、乘方的有关概念?

2、乘方的符号法则?3?括号的作用?

1、计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2、填表:

3、a=-3,b=-5,c=4时,求下列各代数式的值:

4、当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6、若(a+1)2+|b-2|=0,求a2000b3的值?

七年级数学《从算式到方程》教案设计

本节课的重难点都是从实际于问题中寻找相等关系,从而列方程解决实际问题,为了更好地突出重点、突破点,在教学过程中着力体现以下几方面的特点:

1、突出问题的应用意识。首先用一个学生感兴趣的突出问题引入课题,然后运用算术方法给出答案,在各环节的安排上都设计成一个个问题,引导学生能围绕问题开展思考、讨论,进行学习。

2、体现学生的主体意识。始终把学生放在主体地位,让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从感受到从算术方法到代数方法是数学的进步。通过学生之间的合作与交流,得了出问题的不同解答方法,让学生对这节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。首先引导学生尝试用算术方法解决问题,然后逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系,设未知数及练习和作业的布置等环节中,都注意了学生思维的层次性。

4、渗透建模的思想。把实际问题中的数量关系用方程的形式表示出来,就是建立一种数学模型,有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出数学模型的能力。

从当堂练习和作业情况来看,收到了很好的教学效果,绝大部分学生都能根据实际问题准确地建立数学模型,但也有少数几个学生存在一定的问题,不能很好地列出方程。

【拓展阅读】。

七年级数学教案

本课(节)课题3.1认识直棱柱第1课时/共课时。

教学目标(含重点、难点)及。

1、了解多面体、直棱柱的有关概念.

2、会认直棱柱的侧棱、侧面、底面.。

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。

教学重点与难点。

教学重点:直棱柱的有关概念.

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

内容与环节预设、简明设计意图二度备课(即时反思与纠正)。

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

1.多面体、棱、顶点概念:

2.合作交流。

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。

述其特征。)。

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)。

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固。

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的'相邻两条侧棱互相平行且相等。

4.学以至用。

出示例题。(先请学生单独考虑,再作讲解)。

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。

最后完成例题中的“想一想”

5.巩固练习(学生练习)。

完成“课内练习”

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计。

作业布置或设计作业本及课时特训。

七年级数学教案

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学下教学设计

会进行单项式与单项式相乘的运算。

理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的数学思想。

在探索单项式与单项式相乘的过程中,利用乘法交换律和结合律将未知的问题转化为已知的问题,培养学生转化的数学思想。

使学生获得成就感,培养学习数学的兴趣。

重点

单项式与单项式相乘的运算法则及其运用

难点

灵活地进行单项式与单项式相乘的运算。

1.请用式子表示幂的三个运算法则,乘法的交换律和结合律。

2.光走一年的路程是:,请计算结果并说说用到了哪些学过的知识。

3.边长为的正方形的面积是多少?长为,宽为的长方形的面积是多少?

学生先尝试独立解决,然后互相交流,之后教师指出式子是单项式乘以单项式,下面我们来研究单项式乘以单项式的运算方法。

探究新知

1.怎样计算?你能说说每步计算的依据吗?

教师根据学生的回答板书:

(乘法交换律、结合律)

(同底数幂的乘法)

2.你能根据上面的运算,用文字叙述一下单项式乘单项式的方法吗?

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与单项式相乘,把它们的系数、同底数幂分别相乘.

通过乘法交换律、结合律,把要解决的单项式相乘问题转化成已经解决了的幂的运算问题,体现了转化的数学思想。

例1.计算:

(1);

(2);

(3)(n是正整数).

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误,然后做点评:

(1)单项式的乘法应遵循“符号优先”,要特别重视符号的运算;

(2)有乘方时要先算乘方,再算乘法;

(3)单项式乘单项式,其结果仍是单项式;

(4)不要漏写只在一个单项式里含有的因式。

1.计算:

(1);

(2);

2.下面的计算对不对?如果不对,怎样改正?

3.计算(其中n是正整数):

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要注意运算步骤和符号运算。

师生共同回顾单项式乘法的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

p40第4、6题

七年级数学教学设计

2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)。

3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

深化对正负数概念的理解。

正确理解和表示向指定方向变化的量。

学生思考并讨论。

(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)。

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和—5℃,这里+7℃和—5℃就分别称为正数和负数。

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。

“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。

说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。

类似的例子很多,如:

水位上升—3m,实际表示什么意思呢?

收人增加—10%,实际表示什么意思呢?等等。

可视教学中的实际情况进行补充。

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少—2kg,但现在不必向学生提出。

巩固练习教科书第6页练习。

阅读思考。

教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流。

课堂小结以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)。

本课作业1,必做题:教科书第7页习题1。1第3,6,7,8题。

2,选做题:教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

2,“数0既不是正数,也不是负数。”(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。

七年级下数学教案

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比的2倍大2的数。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级数学教案

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

1、一元一次不等式和一元一次方程概念的异同点

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.

(3)同方程类似,我们把或叫做一元一次不等式的标准形式.

2、一元一次不等式和一元一次方程解法的异同点

相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.

注意:(1)解方程的移项法则对解不等式同样适用.

三、教法建议

七年级数学教学设计

1、知识与技能:

理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。

2、过程与方法:

能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。

3、情感态度价值观:

培养识图能力,发展空间想象能力,和逻辑推理能力。

1、重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。

2、难点:理解对顶角相等的性质的探索。

1、创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。

3、抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。

5、尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的定义。

6、在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。

7、进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。

引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。

第七页,第二题,第六题,第十题。

七年级数学教学设计

3,体验分类是数学上的常用处理问题的方法。

正确理解分类的标准和按照一定的标准进行分类。

正确理解有理数的概念。

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。

“统称”是指“合起来总的名称”的意思。

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2,教科书第10页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

创新探究。

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

(1)必做题:教科书第18页习题1、2第1题。

(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级历史教案设计

识记和理解:记住元谋人、北京人和山顶洞人生活的时代和地点;知道北京人的体质特征;了解他们使用的工具特征及获取生活资料的方式;理解原始人用火的意义。

能力与方法:通过识图培养观察能力;通过想象原始人生活情景,培养再造想象能力;通过比较北京人、猿类、现代人,帮助学生学习运用比较的方法学习历史。

情感、态度与价值观:了解中华文明悠长的源头,进行爱国主义教育;认识劳动在人进化中的作用,进行劳动观点的教育;了解北京人与山顶洞人和生活环境,认识人与自然的关系。

【教学重、难点】重点:是北京人;难点:元谋人的地位、北京人身体不平衡、山顶洞人人工取火的依据。

【教学过程】。

一、导入新课。

书上的导言,当科学考队员,来考察一下我国境内早期人类的生活情况。要求学生初读课文,观察《我国境内早期人类活动地区图》,设计考察的线路(按一定的时间顺序)。调动学生的参与兴趣。

积极参与设计考察线路,初步知道先后顺序。

二、元谋人。

要求学生看书,找出“为什么叫元谋人?(同时解决‘北京人’、蓝田人等名的来历)”“生活的年代与地域?”

考察:“作为科学工作者,你怎么知道他已经是人了呢?”“元谋人的发现,有何重要意义?”

教师小结。过渡:已经发掘的元谋人的遗存不多。接下来我们重点考察一下北京人。

学生阅读,仔细研究,体验一下考察的感觉。

三、北京人。

要求学生阅读课本,看看从哪些方面去考察北京人?(生活的年代、地域、环境、身体特征、工具的使用、火的使用等)。

问题:你认为有哪些条件(不)适宜人的生存?

比较体质特征(观察真人比较)。

怎么样知道北京人用火?如何得到火的?如何保存火种?使用火有何意义?

教师小结本目内容,说明:北京人遗址是遗存最丰富的远古人类,于1987年被联合国教科文组织命名为“世界遗产名录。”

活动:想象北京人的一天是如何度过的?

学生阅读,先建立一个整体映像。

然后分别进行考察(阅读、观察、分析、结论、发言等活动)。

增加学生的自豪感。

四、山顶洞人。

大约二十万年后,在北京人生活过的地方,又出现了一种进步得多的原始人类――这就是“山顶洞人”。

引导学生考察一下,山顶洞人有哪些方面比北京人进步(注意哪些方面,列表归纳)。

着重考察:怎么知道他们会人工取火?他们是如何钻孔的?

五、收获与疑问。

我们今天的科考结束了,你有什么收获呢?

还有哪些问题?

相关内容

热门阅读
随机推荐