首页 > 范文大全 > 口号大全

七年级数学全册教学设计大全(17篇)

七年级数学全册教学设计大全(17篇)



通过教学计划,教师可以更好地安排自己的时间,提高教学效率。下面是一些值得推荐的教学计划示范,希望能给大家提供一些思路和参考。

七年级数学教学设计

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。

3,体验分类是数学上的常用处理问题的方法。

正确理解有理数的概念。

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)。

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的`概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。

练一练。

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

小结与作业。

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业。

1,必做题:教科书第18页习题1.2第1题。

2,教师自行准备。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级数学教学设计

理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。

培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。

重点

完全平方公式的比较和运用

难点

完全平方公式的结构特点和灵活运用。

一、复习导入

1. 说出完全平方公式的内容及作用。

2. 计算 ,除了直接用两数差的完全平方公式外,还有别的方法吗?

学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“ ”看成加数,按照两数和的完全平方公式计算,结果是一样的。

教师归纳:当我们对差与和加以区分时,两个公式是有区别的,区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。

我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。

二、新课讲解

温故知新

与 , 与 相等吗?为什么?

学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:

1.对原式进行运算,利用运算的结果来判断;

2.不对原式进行运算,只做适当变形后利用整体的方法来判断。

思考:与 , 与 相等吗?为什么?

利用整体的方法判断,把 看成一个数,则 是它的相反数,相反数的奇次方是相反的,所以它们不相等。

总结归纳得到: ;

三、典例剖析

例1运用完全平方公式计算:

(1) ; (2)

鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。

例2计算:

(1) ; (2) .

例3 计算:

(1) ; (2)

训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。

四、课堂练习

1.运用完全平方公式计算:

(1) ; (2) ;

(3) ; (4)

2.计算:

(1) ;(2) .

3. 计算:

(1) ; (2)

学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。

五、小结

师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

p50第2(3)、(4),3题

七年级数学下教学设计

会进行单项式与单项式相乘的运算。

理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的数学思想。

在探索单项式与单项式相乘的过程中,利用乘法交换律和结合律将未知的问题转化为已知的问题,培养学生转化的数学思想。

使学生获得成就感,培养学习数学的兴趣。

重点

单项式与单项式相乘的运算法则及其运用

难点

灵活地进行单项式与单项式相乘的运算。

1.请用式子表示幂的三个运算法则,乘法的交换律和结合律。

2.光走一年的路程是:,请计算结果并说说用到了哪些学过的知识。

3.边长为的正方形的面积是多少?长为,宽为的长方形的面积是多少?

学生先尝试独立解决,然后互相交流,之后教师指出式子是单项式乘以单项式,下面我们来研究单项式乘以单项式的运算方法。

探究新知

1.怎样计算?你能说说每步计算的依据吗?

教师根据学生的回答板书:

(乘法交换律、结合律)

(同底数幂的乘法)

2.你能根据上面的运算,用文字叙述一下单项式乘单项式的方法吗?

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与单项式相乘,把它们的系数、同底数幂分别相乘.

通过乘法交换律、结合律,把要解决的单项式相乘问题转化成已经解决了的幂的运算问题,体现了转化的数学思想。

例1.计算:

(1);

(2);

(3)(n是正整数).

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误,然后做点评:

(1)单项式的乘法应遵循“符号优先”,要特别重视符号的运算;

(2)有乘方时要先算乘方,再算乘法;

(3)单项式乘单项式,其结果仍是单项式;

(4)不要漏写只在一个单项式里含有的因式。

1.计算:

(1);

(2);

2.下面的计算对不对?如果不对,怎样改正?

3.计算(其中n是正整数):

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要注意运算步骤和符号运算。

师生共同回顾单项式乘法的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

p40第4、6题

七年级数学下教学设计

能利用完全平方公式进行简单的运算。

在探索完全平方公式的过程中,发展学生的符号感和推理能力,体会数学语言的严谨与简洁。

培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。

重点难点

重点

完全平方公式的推导和运用

难点

完全平方公式的结构特点和灵活运用。

教学过程

1.说出平方差公式的内容及作用。

2.我们知道,当相乘的两个多项式有一项相同,另一项相反时,可以用平方差公式直接得到结果,大大简化了运算过程,那么当相乘的两个多项式两项都相同时,是不是也有一个公式来简化运算过程呢?这节课我们就来探索一个新的乘法公式:完全平方公式。

探究新知

计算下列各式,你能发现它们的结果有什么规律吗?

鼓励学生发表各自的看法,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,以此调动学生参与的热情。

综合学生的观察,得到:两数和的平方,等于它们的平方和,加上它们的积的两倍。

2.这个结论可以推广到任意两个数的计算上去吗?

我们可以利用多项式乘法法则来推导一下:(师生共同完成)

3.两数差的平方等于什么呢?请同学们计算。

学生一般会这样计算:

及时引导学生用语言叙述这个结果:

两数差的平方,等于它们的平方和,减去它们的积的两倍。

以上两个公式都叫做完全平方公式,它们之间有联系吗?启发学生把“-b”整个的看成一个数,用两数和的平方公式来计算,结果怎么样?结果发现两数差的平方可以用两数和的平方公式推导出来,也就是两数差的平方公式可以归属于两数和的平方公式。但为了使用方便,通常我们还是以两个公式来呈现。

完全平方公式:;

用语言叙述为:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍。

完全平方公式的理解

1.比较两数和、两数差的平方公式的异同。

学生讨论,发表各自的看法。

2.比较完全平方公式与平方差公式的不同之处。

学生发表看法后,教师特别指出完全平方公式计算的结果有三项,不要误以为是两项,比方;,是错误的。我们用图形的面积来加深一下对这个结果的理解:如图,显然整个正方形的面积由四部分组成。

例1运用完全平方公式计算:

(3);(4);

师生共同解答,教师板书。初学运用时要写清楚运用公式的步骤,熟记公式。

例2运用完全平方公式计算:

学生解答,进一步体会两个完全平方公式的异同。

1.下面各式的计算对不对?如果不对,应怎样改正?

2.运用完全平方公式计算:

(1);(2);(3);

3.运用完全平方公式计算:

教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

p50第2(1)、(2),4题

七年级数学教学设计

初中阶段是学生情感意识建立的关键时期,而学生对于教师的良好感情则是课堂互动的基础。教师在教课过程中应该避免“填鸭式”的教学方式,因为这种教学方式很容易使学生增加对教师的依赖感,降低了他们的自主学习意识。在课堂上,教师应当加强与学生互动,适当地增加问题的提问。另外,教师在教学时应当结合实际,问题的设置要尽量贴近中学生的兴趣爱好,打破原来枯燥的说教方式。只有学生和教师之间建立起了良好的情感交流平台,学生才能对课堂感兴趣,才能在自主的学习过程中使自己的思维能力得到有效的锻炼。

(一)加强审题能力

审题是解题的第一个步骤,而细看当今中学生的答题试卷便可发现,因为审题出错的题目比比皆是,所以提高审题能力是解题的关键步骤。教师在日常的教学中应当注重培养学生认真审题的意识,如可以让学生在读题时用笔标出关键条件,也可以让学生小声朗读题目。这都有助于学生对于题目的理解。

(二)设置思维型问题,给学生留下想象空间

无论是课堂例题的设置还是课后练习题的设置,都需要教师动脑筋,教师要用贴近学生生活的题目去吸引学生,并使之从中得到练习,加强对知识的巩固。思维发散的题目对于学生各项思维能力的培养都是很有益的。且这类题目一般形式新颖,学生对于它们的印象比较深刻,从而有利于学生对此类知识的吸收。例如,现有含盐15%的盐水200克,含盐40%的盐水150克,另有足够的盐和水,要配置成含盐20%的盐水300克。

1.如果要求是使用现有的盐水,但尽可能地少使用盐和水,应该怎样设计配置方案?

2.你还有其他的配置方案吗?这一类的题目就是一种思维发散的题目,第一问更多地给予了学生独立思考的空间,能使他们利用自己的逻辑思维能力展开想象,并综合运用所学知识最终求得合理的配置方案。而第二问则在第一题的基础上进行了拓展,学生可以相互展开讨论,培养自己的求异意识。这样,在整个解题的过程中,学生的思维能力都得到了有效的锻炼。

(三)培养对错题的反思意识

对于错题的整理与反思是纠正错误、加深印象和提高成绩最有效的办法。而中学生的自主学习能力较弱,对于这方面的内容做得还不够好。因此,教师应当注重学生对错题反思能力的培养,对于学生的学习习惯做硬性的要求,使学生在不断地总结与反思的过程中去发散思维,得到新的启示。

学生可能经常会遇到这样的情况:如在做一道题时,反复思考都得不到答案,但是一经别人的提点或者一看答案解析,就立马想到了做法,实际上这还是因为学生对所学的知识掌握不牢固。因此,学生要培养错题反思、整理的意识,在了解标准答案的同时还要对自己不熟悉的知识进行着重的记忆,在造成解题障碍的环节上多下功夫。另外,学生在整理错题的过程中往往能收获新的解题方式,或者能对题目有更深的理解,这些都是思维锻炼的方式。

在数学的教学过程中,教师一方面应当将知识准确地传达给学生;另一方面,也应当注重学生对于学习方法方式的培养和思维能力的锻炼。数学的学习是一个有趣灵活的过程。在数学课堂中,学生的思维得到锻炼的可能性将更大。因此,教师一定要抓住初中生这一时期的特点,构建思维型和情感型课堂,使学生在学习的同时得到能力的提升,最终达到新课程改革的目标。

七年级数学教学设计

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则。

重点:异号两数相加的法则。

1、同号两数相加的法则。

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)。

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(—5)+(—3)=—8(m)。

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则。

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(—3)=2(m)。

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零。

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

课本p18例1,例2、课本p118练习1、2题。

运算的关键:先分类,再按法则运算;

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

课本p24习题1.3第1、7题。

七年级数学科教学设计

了解数轴的概念,能用数轴上的点准确地表示有理数。

过程与方法。

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

情感、态度与价值观。

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点。

教学重点。

数轴的三要素,用数轴上的点表示有理数。

教学难点。

数形结合的思想方法。

三、教学过程。

(一)引入新课。

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知。

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习。

如图,写出数轴上点a,b,c,d,e表示的数。

(四)小结作业。

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

七年级数学教学设计

2.使学生掌握求一个已知数的;。

3.培养学生的观察、归纳与概括的能力.

教学重点和难点。

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

二、师生共同研究的定义。

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与。

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

3.0的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例变式练习。

例1(1)分别写出9与-7的;。

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的。

1.当a=7时,-a=-7,7的是-7;。

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;。

例2简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的。

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结。

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业。

1.分别写出下列各数的:

2.在数轴上标出2,-4.5,0各数与它们的。

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

课堂教学设计说明。

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动。

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“》”号排列出来.

解:在数轴上画出表示-a、-b的点:

由图看出:-a》-1》b》-b》1》a.》p=“”》。

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

新人教版七年级数学下教学设计

教学重难点分析:

1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

2、教学重、难点。

教学重点:理解乘方定义,会进行有理数的乘方运算;。

教学难点:有理数乘方运算的符号法则的形成与运用。

教法学法分析:

教法:启发式教学,多媒体辅助教学;。

学法:观察、比较、归纳,合作探究。

教学过程设计:

1、创设情境提出问题。

(1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.

(2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.

通过创设问题情境,唤起旧知,为学习新知做好铺垫。

2、自主探索形成新知。

观察下列各式有何特征?

(1)2×2×2×2=。

(2)(-3)×(-3)×(-3)=。

引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

3、应用新知巩固概念。

4、探索研究发现规律。

通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

5、应用新知巩固训练。

进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力。

6、拓展思维知识延伸。

利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

7、课堂小结归纳反思。

锻炼学生及时总结的良好习惯和归纳能力。

教学评价分析:

对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;。

(1)关注学生的智力参与度。

(2)学生的课堂参与度。

2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

七年级数学教学设计

知识与技能:

理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.

过程与方法:

1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.

2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。

情感、态度与价值观:

结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。

教学重点。

确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.

教学难点。

确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

教学过程。

一、情景引入:

二、自主学习:

1.解方程:

3x+20=4x-25。

观察上列一元一次方程,与上题的类型有什么区别?

3.新知学习请运用等式的性质解下列方程:

(1)4x-15=9;(2)2x=5x-21。

你有什么发现?

三、精讲点拨。

问题2你能说说由方程到方程的变形过程中有什么变化吗?

移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。

例1解下列方程:

解:移项,得3x+2x=32-7。

合并同类项,得5x=25。

系数化为1,得x=5。

移项时需要移哪些项?为什么?

针对训练:解下列方程:

(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.

四、合作探究。

列方程解决问题。

思考:如何设未知数?

你能找到等量关系吗?

五、当堂巩固。

1.对方程7x=6+4x进行移项,得___________,合并同类项,得_________,系数化为1,得________.

2.小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁.求小新现在的年龄.

六、课堂小结。

1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。

2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。

3.列方程解实际问题的基本思路。

七、作业布置。

1.必做题:教科书第91页习题3.2第3(3),(4),11题。

2.选做题:

八、板书设计。

数学七年级教学设计范文

认识三角形教学目标:

1、知识与技能。

结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系。

2、过程与方法。

通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力。

3、情感、态度与价值观。

教学重点难点:

1、重点。

让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题。

2、难点。

探究三角形的三边关系应用三边关系解决生活中的实际问题。

第一环节回顾与思考。

1、如何表示线段、射线和直线?

2、如何表示一个角?

第二环节情境引入。

活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片。

第三环节三角形概念的讲解。

(1)你能从中找出四个不同的三角形吗?

(2)与你的同伴交流各自找到的三角形。

(3)这些三角形有什么共同的特点?

第四环节探索三角形三边关系第一部分探索三角形的任意两边之和大于第三边。

第二部分探索三角形的任意两边之差小于第三边。

第五环节练习提高。

活动内容:。

第六环节课堂小结。

活动内容:学生自我谈收获体会,说说学完本节课的困惑,教师做最终总结并指出注意事项。

学生对本节内容归纳为以下两点:

1、了解了三角形的概念及表示方法;。

2、三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。

第七环节探究拓展思考。

2、在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

第八环节作业布置。

七年级地理全册教学设计

第8—9课时

第二节 世界的海陆分布

课 型 新授课

教学目标

1、了解世界的海陆分布比例,掌握世界海陆分布概况

2、区分大陆、岛屿、大洲的概念,掌握七大洲的面积、名称、分布及各州的分界线

教学重点

七大洲在地球上的分布

教学难点

1、查找各州之间的分界线

2、赤道穿过的大洲和大陆

教学安排

2课时

教学过程

第1课时

引入新课

一、海洋与陆地

2、学生阅读图回答:世界海陆分布的具体比例

3、讨论p28活动1、2,得出结论:地球上任何两个大小相等的半球,海洋面积都大于陆地面积。

(过渡)世界的海洋和陆地在全球是如何分布的呢?

二、七大洲

(总述)地球上的`陆地被海洋分割成六个大块和无数小块,以大陆和岛屿的形式散布在海洋中。

看书思考回答:a 什么叫大陆?什么叫岛屿?根据定义,在地球仪上指出大陆、岛屿、大洲。

教师讲述半岛的含义并在地球仪上指出。

(提问)全球可分为哪几个大洲?

学生先熟悉图2-27,

(讨论)怎样快速的记住七大洲的轮廓?能给七大洲的面积排序吗?。

展示单独的大洲轮廓图,学生抢答。

学生在地球仪上找出七大洲,而后上台指出

引导学生在地球仪上画出赤道、西经20度和东经160度。讨论下述问题:

赤道穿过的大洲有哪些?穿过的大陆有哪些?

学生对照地球仪,上台指答

展示“东西半球挂图”,学生识记七大洲的位置,口答p23活动题

提问:我们所在的大洲是哪个/亚洲的西面是哪个洲?西南面又是哪个洲?引入洲界的学习。

学生回答,教师在挂图上指出其具体位置。

学生完成p30活动2

(小结)学生小结,教师点拨

第2课时

(复习提问)世界的海陆比例?七大洲的海陆分布?亚欧、亚非、南北美洲的分界。

三、四大洋

学生带着这些问题预习

根据预习,回答海、海峡、洋之间的区别与联系。教师结合地球仪指出,以加深理解。

全球可分为几大洋?各有什么特征?将全班学生分为四组,分别命名为太平洋、大西洋、印度洋、北冰洋,分组合作进行自述。

指导学生绘制七大洲轮廓几何图形并在图上填注七大洲、四大洋的位置

(课堂小结)

结合绘制的板图小结四大洋的位置、各自的特征。洲界、七大洲的位置

(作业布置)

1、p32活动

2、填表

两侧的大洲沟通的海洋

巴拿马运河

苏伊士运河

板书设计

第二节 世界的海陆分布

一、海洋与陆地

七分海洋,三分陆地

二、七大洲

1、大陆、岛屿、大洲的含义

2、七大洲的名称及分布

3、洲界

亚欧:乌拉尔山、乌啦尔河、大高加索山、土耳其海峡

亚非:苏伊士运河

南北美洲:巴拿马运河

三、四大洋

1、海、洋、海峡的概念

2、四大洋的名称及分布

5

七年级数学教学设计

第1教案。

教学目标。

1.能结合实例,了解一元一次不等式组的相关概念。

2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点。

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法。

探索方法,合作交流。

教学过程。

一、引入课题:

1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2.由许多问题受到多种条件的限制引入本章。

二、探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。

七年级数学教学设计

教学目标:。

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

教学重点:深化对正负数概念的理解.

教学难点:正确理解和表示向指定方向变化的量.

(一)知识回顾和理解。

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考“0”在实际问题中有什么意义?

归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

如:水位不升不降时的水位变化,记作:0m.

(二)深化理解,解决问题。

[问题3]:(课本p3例题)。

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:。

美国减少6.4%,德国增长1.3%,。

法国减少2.4%,英国减少3.5%,。

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

巩固练习。

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:。

中国减少866,印度增长72,。

韩国减少130,新西兰增长434,。

泰国减少3247,孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;。

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考。

(课本p6)用正数和负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

(三)应用迁移,巩固提高。

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:。

星期一二三四。

增减-5+7-3+4。

类比例题,要求学生注意书写格式,体会正负数的应用.

(四)课时小结(师生共同完成)。

新人教版七年级数学下教学设计

3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征。

知识重点相反数的概念。

教学过程(师生活动)设计理念。

设置情境。

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。

4,-2,-5,+2。

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)。

思考结论:教科书第13页的思考。

再换2个类似的数试一试。

培养学生的观察与归纳能力,渗透数形思想。

深化主题提炼定义给出相反数的定义。

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a。

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义。

给出规律。

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5。

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。

小结与作业。

课堂小结1,相反数的定义。

2,互为相反数的数在数轴上表示的点的特征。

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,必做题教科书第18页习题1.2第3题。

2,选做题教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

课题:1.2.4绝对值。

教学目标1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点两个负数大小的比较。

知识重点绝对值的概念。

教学过程(师生活动)设计理念。

设置情境。

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反。

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

验数学知识与生活实际的联系.

将本文的word文档下载到电脑,方便收藏和打印。

七年级数学教学设计

1、知识与技能:

理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。

2、过程与方法:

能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。

3、情感态度价值观:

培养识图能力,发展空间想象能力,和逻辑推理能力。

1、重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。

2、难点:理解对顶角相等的性质的探索。

1、创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。

3、抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。

5、尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的定义。

6、在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。

7、进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。

引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。

第七页,第二题,第六题,第十题。

七年级数学第一单元教学设计

单元。

教学。

设计学期第二学期学科数学年级七主备人单元(章节)。

第五章相交线和平行线文本类别定稿研讨主持人研讨时间研讨人员项目内容研讨过程纪要地位作用本章和第四章的联系:通过对直线、射线、线段、角的认识和度量,学生有了初步的几何认识,有了一定的经验基础。

对于平行,借助于一条直线与另外两条直线相交所成的角,研究了平行线的判定和性质.在此基础上,学习了平移的有关知识.在本章,学生还要学习通过简单推理得出数学结论的方法,培养言之有据的思考习惯.说明本章和第四章的联系。

对应课标(1)理解对顶角、余角、邻补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。

(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。

(3)理解点到直线的距离的意义,能度量点到直线的距离。

(4)掌握基本事实:过一点有且只有一条直线与已知直线垂直。

(5)识别同位角、内错角、同旁内角。

(6)理解平行线概念;

掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

(7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。

(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。

*了解平行线性质定理的证明(参看例60)。

(9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。

平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。

(11)了解平行于同一条直线的两条直线平行。

学情分析(1)相当多的一部分学生喜欢数学,觉得数学是有趣的一门学科,但是学起来觉得有一定的难度。主要原因在于没有掌握科学的学习方法 :如没有形成良好的学习数学的习惯,基本没有做到课前预习,课堂上认真听课,课后复习的学习三步曲。还有相当多的学生不注重课本知识,课后少做习题,甚至不做习题。(2)由于种种原因,部分学生学习数学的积极性不够高,效率不高甚至有厌学情绪,上课听课的质量不高,作业基本不做,家长也不能有效配合,学习成绩两极分化情况严重.1、学生的两极分化情况。

3、进一步熟悉和掌握几何语言,能够把学过的概念和性质,用图形或符号语言表示出来;

2、开展探究性活动,充分体现学生的自主性和合作精神,激发学生乐于探索的热情知识和能力5、掌握同位角、内错角、同旁内角的特征,能够准确辨别。

重点难点重点:1、垂线的概念与性质1、平行线的判定与性质2、平移的性质难点:1、学会写推理过程和对2、直线平行的性质和判定的灵活运用能够在复杂的图形中正确识别同位角、内错角、同旁内角。(也是难点)。

相关内容

热门阅读
随机推荐