小学教案中包含了教学目标的确定、教学步骤的设计以及评价和反思等要素。学习以下这些小学教案范文,能够帮助你更好地组织教学活动。
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
一、创设情景,明确目标。
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法。
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)。
师:它们的面积公式分别是怎样得到的?(学生答略)。
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路。
(学生回答,师板书)。
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)。
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)。
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识。
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r。
师:直径是10米行吗?(指名汇报)。
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径。
师出示深化题,学生练习。
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重点:源面积计算公式的退到。
教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。
一、情景导入。
1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?
所有的草坪铺满将是一个什么形状?
那么求这个圆形草坪的占地面积就是求什么了?
引导学生说出求这个圆形草坪的占地面积就是求圆的面积。
这节课我们就来研究圆的面积。
师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?
二、导入新课。
1、师生总结板书?圆的面积与什么有关?
圆的面积有没有计算公式。
板书:圆的面积与半径r有关。
师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。
板书:拼切——转化——化未知为已知。
师:那么你们可以把这种转化的思想运用于求圆的面积上吗?
生:可以(不可以)。
师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。
师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。
首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。
(平行四边形)。
师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。
板书:近似。
三、推导圆的公式。
拼成的近似长方形的长和宽与圆的周长、半径有什么关系?
这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。
练习题。
1、求出下列圆的面积:
2、圆形草坪的直径是20米,它的面积是多少平方米?
3、练习十。
六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
四、总结。
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。
2、初步运用圆面积计算公式进行圆面积的计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。
教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。
多媒体课件一套、圆形纸片。
两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。
一、复习引入。
1、幻灯片出示复习题目。
2、激趣导入。
同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)。
二、合作探究,推导公式。
1、圆面积定义。
2、圆面积公式推导。
那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接。
教师根据学生说的过程,通过课件演示出转化的过程。
想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)。
下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
(小组合作,探究交流。)。
谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)。
小组1:我们平均分成了8份,拼成的图形非常像平行四边形。
小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。
小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。
小组4:我们拼的图形像个梯形。
小组5:我们平均分成了4份,拼成的图形像平行四边形。
学生回答:分的份数越多越接近长方形。
下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:
(1)圆的面积与这个长方形的面积有什么关系?
(2)这个长方形的长与圆的周长有什么关系?
(3)这个长方形的宽与圆的半径有什么关系?
(4)如果圆的半径是r,这个长方形的长和宽各是多少?
(小组合作,探究交流,推导出面积公式)。
小组内说一说圆面积计算公式推导过程,师板演。
小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。
小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)。
三、实践运用,体验生活。
那么圆的面积公式到底有什么用呢?
现在我们会求牛最多吃多少草吗?
四、课堂小结。
这节课你有什么收获,学到了哪些知识?
五、课外思考。(幻灯片出示)。
已知一个圆的周长,你能计算这个圆的面积吗?
在平面图形的学习中圆安排在最后一个,是在学习面积的认识及长方形、正方形、平行四边形、三角形、梯形的基础之上安排的。
本单元安排了圆的认识、圆的周长和圆的面积。《圆的面积》是本单元的一个教学难点,圆是由曲线围成的图形,教材中介绍的把圆通过等分拼成近似的长方形,分的份数越多就越接近长方形,这里体现了极限的思想。另一种思路是在圆内画正内接多边形,使多边形的面积越来越接近圆,这也就是刘徽的割圆术,体现了极限的思想。在这个化圆为方的过程中,加强了转化思想的渗透。与此同时,让学生感受到中国古代的优秀数学成就,增强学生们的民族自豪感。
本课是在学生掌握了面积的含义及长方形等多边形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的。通过课前调查,有20%的同学知道圆的面积公式,但只知道公式却不知道怎么来的,有10%的同学认为知道,但写出的公式不正确。针对以上情况,我把化圆为方定为本课的教学难点,把公式的推导作为重点,学生在自主探究与合作交流发现圆的面积公式。
1、理解圆的面积的意义及公式的推导过程。
2、在自主探究中体验转化思想和极限思想。
3、培养学生独立思考、合作交流的学习方式,学习刘徽、祖冲之勇于探索、严谨治学的科学态度,激发学生对中国传统文化的自豪感。
理解圆的面积公式的推导过程。
化圆为方体会极限思想。
七、
ppt圆片剪刀。
(一)创设情境,引出新知。
课件:小马吃到青草的最大面积是多少?要解决这个问题就是求圆的面积。这节课咱们就来研究圆的面积,揭示课题。
(设计意图:通过本环节帮助学生结合生活实际理解圆的面积的概念,明确本节课的学习任务。)。
(二)回顾复习,总结方法。
1、我们在推导其他图形的面积公式时是怎样研究的呢?复习长方形、平行四边形、三角形、梯形的面积公式推导。
2、前面的学习对研究圆的面积有什么启发吗?
小结:你能把前面学习的方法用到圆面积的研究中,这说明你很会学习。
(设计意图:通过复习找到学生的原有认知,运用正迁移寻找到研究圆面积的方法。)。
(三)尝试转化,推导公式。
1、圆能转化成我们学过的什么图形呢?请你大胆猜测一下。
2、请你先想一想圆能转化成什么图形,然后再动手剪。
活动要求:
(1)圆能转化成我们学过的什么图形?
(2)圆和转化后的图形有什么联系?
(3)通过转化后的图型你能推导出圆的面积公式啊?
提示:先独立思考,然后再和同桌讨论一下。
预设一:圆内正多边形。
1、圆内只剩正方形。
(1)指名说想法。
(2)对于他的想法你有什么想法吗?
2、圆内画正方形。
(1)出示:把圆转化成正方形和4个小部分。
你看前面同学把这4个小部分去掉了,你为什么粘在这了呢?
(2)方法同上,但是在拼成的椭圆形上画正方形。
请第二个同学说一说。
(3)圆内正六边形。
指名说想法。
比较这正四边形和正六边形两种方法,你发现了什么?
想象一下,如果继续分下去,正十二边形、正二十四边形会怎样呢?
(4)介绍刘徽的割圆术和祖冲之。
预设二、沿半经剪。
1、拼成长方形或平行四边形。
(1)展示学生作品。
指名说想法。(分的份数少的)。
比较沿半径分的几种方法:观察一下这几种方法,你有什么想法呢?
(2)渗透极限思想。
如果继续顺着大家的思路往下分的话,想象一下:16份,32份呢?。
出示课件:电脑演示由8等分到32等分。
小结:我们这几位同学沿着半径把圆剪开,因为圆的半径有无数条且相等,所以圆分的份数就有若干份,分的越多拼的图形就越接近长方形。
(3)圆和转化后的图形有什么联系呢,你能独立推导出圆的面积公式。
预设三、展示其他图形。
指名说想法。
1、转化成梯形、三角形。
2、推到面积公式。
小结:你们的想法独具匠心,思维与众不同。刚才我们努力的把圆转化成其他图形,虽然方法不同,但是殊途同归。咱们同学可真了不起,自己推导出了圆的面积公式。
(设计意图:本环节为学生提供独立探究的空间,调动多种感官使学生在动手剪、开口说的过程,体会转化的思想。通过比较、课件演示,渗透极限的思想。)。
(四)应用公式,解决问题。
1、当这个圆的半径是1米时,小马吃草的面积是多少?
2、当这个圆的直径是2米时,小马吃草的面积是多少?
3、当这个圆的周长是6.28米时,小马吃草的面积是多少?
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
圆面积计算公式的推导。
等分圆教具。
分成十六等分的圆形纸片。
一.谈话导入新课。
同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。
二.游戏激趣,理解圆的面积的概念。
生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。
师:现在大家知道男生为什么涂得慢呢?
三.探究合作,推导圆的面积公式。
生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。
3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。
四.巩固新知,实践运用。
1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。
2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?
五.总结。
1、这节课你们有什么收获?
2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。
一、目标定位正确:
1、课内充分培养学生动手操作、观察、分析、概括推理等能力。
2、理解圆面积计算公式的推导过程。掌握圆面积的计算公式。
3、让学生能利用圆面积公式进行计算,解决实际问题。
二、引入自然。
1、复习巩固了圆的周长计算公式,同一圆内半径与直径关系。
2、复习巩固了什么叫面积,让学回忆,平行四边形、三角形、梯形、面积计算的推导过程。从而自然引入圆面积计算的推导过程。
三、注重学生的动手操作。
在教学过程中,充分体现让学生自己动手画圆,把圆平均分成若干份,再让学生拼成近似的长方形或平行四边形。让他们仔细观察,研究长方形的长(或平行四边形的底)是什么,长方形的宽(或平行四边形的高)是什么,从而推导圆面积的计算公式。与此同时,更重要的是培养了学生的空间想象能力。
探讨的地方。
在学生动手操作的`过程中,为了照顾中差学生,教师应充分了;利用教具或课件展示,让学生有充分的观察和思考,真正感悟圆面积公式推导的整个过程。其次是在计算公式中对半径的平方还需要指导和练习,以便学生在解决问题的实际过程中很好的运用。
1.确定“转化”的策略。
预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
1.求下面各圆的面积,只列式不计算。(cai课件出示)。
2.测量一个圆形实物的直径,计算它的周长及面积。
3.课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)。
能直接在方格图上,数出相关图形的面积。
能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
在解决问题的过程中,体会策略、方法的多样性。
一、出示图形,让学生观察讨论:
1.地毯上的图形面积是多少?
2.图形有什么特点?
3.求地毯上蓝色部分的面积有哪些方法?
小组讨论求积的方法:
(1)数格
(2)大面积减小面积
(3)分割数格
二、练一练
1.求下列图形的面积:你是用什么方法知道每个图形的面积?(讨论)
2.下列点图上的面积是多少?
请学生说如何分割?
为什么这样分割?
3.总结:求这类图形的面积有哪些方法?应注意什么?
三、作业
课堂作业
19页第3题第二部分。
课外作业
在方格纸上设计一个自己喜欢的图形,并求出它的面积。
1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
1、教学重点
会利用圆和其他已学的相关知识解决实际问题。
2、教学难点
圆与其他图形计算公式的混合使用。
ppt卡片
1、复习巩固上节知识,导入新课
2、新知探究
2、1圆环面积
一、问题引入
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用
做一做第2题:
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2、2圆与正方形
一、问题引入
师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用
70页做一做:
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px
5、3随堂练习
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)
6 小结
1、今天我们共同研究了什么?
今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
7板书
例2解答步骤
(1)把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于( ),长方形的宽就是圆的( )。因为长方形的面积是( ),所以圆的面积是( )。
(2)圆的直径是6厘米,它的周长是( ),面积是( )。
(3)圆的周长是25.12分米,它的面积是( )。
(4)甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的( ),甲圆面积是乙圆面积的.( )。
(5)一个圆的半径是8厘米,这个圆面积的3/4 是( )平方厘米。
(6)周长相等的长方形、正方形、圆,( )面积最大。
(7)圆的半径由6厘米增加到9厘米,圆的面积增加了( )平方厘米。
(8)要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。
(9)要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝( )厘米。
(10)用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。
(11)有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是( ),小圆与大圆面积的比是( )。
(12)一个半圆半径是r,它的周长是( )。
(2)一种手榴弹爆炸后,有效杀伤范围的半径是8米,有效杀伤面积是多少平方米?
(5)一个圆形喷水池的周长是62.8米,绕着这个水池修一条宽2米的水泥路。求路面的面积。
1、借助方格纸,能直接判断图形面积的大小。
2、通过交流,知道比较图形面积大小的基本方法。
3、体验图形形状的变化与面积大小变化的关系。
重点:面积大小比较的方法。
难点:图形的等积变换。
(一)新课教学
1、小组讨论:比较平面图形面积的大小。
2、小组内观察书中p16页的13幅图形面积。
3、你是怎么知道的,用哪种方法判断的?
5、判断方法:直接比较法、平移法、数方格法、拼凑法、割补法。
(二)练习:练一练p17
1、下面哪些图形的面积与图1一样大?(用分割和平移法来判断)
2、 3题(用拼凑法来判断)
3、 4题(用割补法来判断)
(三)总结
比较图形的面积
直接比较法
平移法
数方格法
拼凑法
割补法
本节课我是按照学生自学的形式开展的。学生通过观察、比较总结出图形间的关系,能判断出图形面积的大小。但用的方法最多的是数方格、平移和割补,学生掌握的情况一般。
尊敬的各位考官,大家好,我是今天的x号考生,今天我说课的题目是《圆的面积》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
本节课选自人教版六年级上册第五单元第三节,主要内容是讲圆的面积。它是在学生掌握了长方形的面积以及圆的的概念和周长之后的继续学习,并且圆是曲线图形,从研究直线图形到曲线图形,对学生来说也是质的飞跃,同时圆的面积这节课也很好的渗透了转化化归的思想。
合理把握学情是上好一堂课的基础,所以我先谈谈学生的实际情况。这一阶段学生的观察和概括能力都已经得到了一定的发展,同时这一阶段的学生还具备活泼好动、注意力不集中的特点,所以我充分利用这一特点,采用灵活多样的教学方法来进行教学。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
(二)过程与方法。
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
(三)情感、态度与价值观。
感受数学与生活的联系,激发学习兴趣。
根据学生现有的知识和三维目标的把握,我确定了本节课的教学重难点,重点是:圆的面积计算公式。教学难点是:圆的面积计算公式的推导过程。
为了突出重点、突破难点、顺利达成教学目标,本节课我将采用讲授法、问答法、小组讨论等方法来进行教学,让学生带着问题学,在合作交流的过程中得到结论。
下面我将重点谈谈我对教学过程的设计。
(一)导入新课。
在导入环节,我会从生活实例入手,呈现一个圆形的草坪,提出问题:如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
这样设计的好处:从生活实例入手,一方面能吸引学生的兴趣,另一方面也可以很好的体现数学来源于生活,并服务于生活。
(二)讲解新知。
接下来是探索新知环节,也是本节课的中心环节,为了突出重点、突破难点,我会充分发挥学生的主体作用。先让学生回忆之前所学图形的面积公式的推导过程,如平行四边形,三角形等。学生能够回答出:是转化成已知面积的图形来证明推导的。这时我会发放圆形纸片、剪刀、带有不同颜色的笔等教具,引导学生思考:能否也利用转化思路来求解圆的面积。前后四人为一小组,利用手中的剪刀,四人合作交流,动手剪拼,看能否转化。在此过程中,我会提醒学生注意安全,并下场巡视,然后请各组代表发言表达想法。
在交流过程中,学生可能得到:将圆平均分成4份,但是没有拼成之前学过图形;将圆平均分成8份,拼剪之后得到一个类似平行四边形;将圆平均分成16份,拼剪之后得到一个近似的长方形。但是由于这个拼接过程不像之前的直线图形,所以在学生讨论结束之后,我会采用动画展示将圆平均分成32份、64份、甚至更多份之后所拼成的图形。通过这样直观展示,给学生一个更为明显的印象,学生能更好的理解圆能够转化成长方形这一问题。
这时我会提出以下几个问题来引导学生得出结论,第一:长方形的长和圆的什么是相等的?第二:长方形的宽和圆的什么相等?第三:这两个图形的面积大小有什么关系?通过以上三个问题,学生就能得出圆的面积应该是圆周长的一半乘以半径,进而得出结论。
教学内容:
《面积和面积单位》是课程标准人教版实验教科书三年级数学下册第70至74页的内容。
教学目标:
1.在实际情境中,通过看一看、比一比、摸一摸的方式,让学生理解面积的意义。
2.在解决问题的过程中,使学生体会统一面积单位的必要性,认识常用的面积单位,并在活动中获得关于它们的空间观念,形成正确的表象。初步形成面积单位实际大小的表象。
3.通过观察、比较、动手操作,发展学生的空间观念,培养学生的观察、操作、概括能力、自学能力和估测能力。在小组合作的过程中,培养学生的合作意识和能力。使学生体验数学来源于生活并服务于生活。
教学重点:
理解面积的意义,认识面积单位并建立正确的表象。
教学难点:
1.建立1平方厘米、1平方分米、1平方米的正确表象。
2.在操作中体会引进统一面积单位的必要性。
教具、学具准备:
教具:
教学课件和1平方米的正方形纸,1平方分米的正方形,1平方厘米的正方形,长25厘米、宽15厘米的长方形,另一个长35厘米,宽10厘米的长方形。
学具:
每四人一组,长25厘米、宽15厘米的长方形;长35厘米、宽10厘米的长方形各一个,每组一袋学具,内有大小不同的正方形、长方形、圆形学具若干;每个学生面积为1平方厘米、1平方分米的学具各一个)。
教学过程:
一、创设情境、充分感知面积的意义。
1、感受物体的表面。
同学们,今天钟老师很高兴能和大家一起来学习。大家有信心来上好这节课吗?有信心的话咱们同桌之间击个掌,(孩子们击掌)我也来(老师加入学生的击掌中,从第一排开始从左向右依次与学生击掌,停留在与一个学生击掌的过程中)。老师的手掌面大还是他的大?(学生进行比较)同学们,请把你的手掌轻轻地放在数学书的封面上,比比看,数学书的封面大还是手掌面大。(学生进行比较)摸一摸桌面,比一比,桌面大还是数学书的封面大。比比看,桌面大还是黑板面大(师比黑板),比一比,教室地面大还是黑板面大。
师:刚才我们说手掌、数学书、黑板、教室地面都是物体,他们有的大,有的小,像这样物体的表面的大小,这是他们的面积(板书:物体的表面的大小就是他们的面积)。今天我们来研究面积(板书课题:面积)。
师:谁能举例说说什么叫面积?(师拿出数学书摸数学书的封面)如数学书封面的大小就是它的面积。
2、感受封闭图形的面积。
物体的表面有大小,平面图形有大小吗?
课件出示:
选一组你喜欢的图形涂上颜色,比较这组图形的大小,说说在比较中你发现了什么?
(学情预设:大部分学生都选择(1)或(3),不选择(2),适时提问,为什么不选择(2),学生会认为(2)的图形无法比较,因为这个图形是不封闭的。这时老师为了加深学生的印象可以让课件上的其余四个封闭图形进行铺展变色。)。
师:可见封闭图形也有大小。(板书:封闭图形)我们说物体的表面和封闭图形的大小就是它们的面积。
二、动手实践,探究新知。
(一)观察法。
师:孩子们,咱们来玩一个比大小的游戏。
直接出示两个非常明显的有大小之分的图形。
哪个面积比较大?你怎么比的?(板书:观察法)。
师:两个面积相差比较大的图形,我们只要观察一下就能直接比较出它们面积的大小。
(二)重叠法。
师:这两个看上去相似的图形,你有什么好办法比较出它们的办法?
预设:重叠法,移多补少法。
师:就听你的,我们用重叠法来比一比。
可以采用重叠的方法比较它们面积的大小。(板书:重叠法、移多补少法)。
(三)测量法。
出示两个面积接近但形状不同的长方形。
思考:用什么方法可以比出哪个长方形的面积小一些?为什么?
学生经过观察、重叠、割补都无法比较,激发认知冲突,怎么办?
(预设:学生可能会说用尺子量,比周长。学生猜测周长相等,面积也就相当)。
一、计算题:(本题共有5道小题,每小题4分,满分20分)。
1、我们规定(x)表示不大于x的最大偶数,并且规定x=x-(x),例如(3.2)=2,3.2=1.2。已知两个数a、b满足:a+(b)=123.4,a+b=12.34,则a是_______。
2、定义等和数列:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{an}是等和数列,且a1=2,公和为5,那么a18的值为________,这个数列的前n项和sn的计算公式为__________。
3、u2合唱团的4名成员柏纳、艾吉、埃达姆、劳瑞赶往演出现场,他们途中要经过一座小桥。当他们赶到桥头,天已经黑了,周围没有灯。一次最多可以两人一起过桥,过桥人手里必须有手电筒,而且手电筒不能用仍的方式传递。4人的步行速度都不同,若两人同行,以速度较慢的人为准。伯纳需要1分钟过桥,艾吉需要2分钟过桥,埃达姆需要5分钟过桥,劳瑞需要10分钟过桥。请问:最短时间为多少=____________。
4、某校高二年级共有六个班级,现从外地转进4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为多少___________。
5、已知数列{an}满足a1=1,an=a1+2a2+3a3++(n-1)an-1(n2),则{an}的通项an=。
二、填空题(本题共有4道小题,每小题5分,满分20分)。
6、一只电子跳蚤每次向前或向后跳动1厘米,它跳了10步,前进了6厘米,问跳动的方法有___________次(用数字作答)。
7、从长度分别为1,2,3,4,5的这五条线段中,任取三条的不同取法共有n种,在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则为____________。
8、一个岛上有两种人:一种人总说真话的骑士,另一种是总是说假话的骗子。一天,岛上的个人举行一次集会,并随机地坐成一圈,他们每人都声明:我左右的两个邻居是骗子。第二天,会议继续进行,但是一名居民因病未到会,参加会议的个人再次随机地坐成一圈,每人都声明:我左右的两个邻居都是与我不同类的人。问有病的居民是_________(骑士还是骗子)。
三、简答题:(本题共有5道小题,每小题8分,满分40分,说明理由并写出过程。)。
9、求所有正整数x、y,满足方程x2-3xy=2002。
10、计算。
11、计算被342除的余数是多少?(整除时写0)。
13、已知p、q为不同的非零自然数,和也是非零自然数,则p+q?
四、解答题:(满分10分)。
15、请你从01、02、03、、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。
(1)请你说明:11这个数必须选出来;。
(2)请你说明:37和73这两个数当中至少要选出一个;。
(3)你能选出55个数满足要求吗?
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/kouhaodaquan/666868.html