首页 > 范文大全 > 口号大全

初中数学多边形的内角和教案(实用12篇)

初中数学多边形的内角和教案(实用12篇)



在编写初中教案时,需要考虑学生的学习特点和教材的重点难点。教学工作中,教案对于教师的指导和支持至关重要,以下是小编为大家整理的一些初中教案范例,供大家参考。

多边形的内角和教案

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

教学重点:多边形的内角和公式

教学难点:多边形内角和公式

讲解法、练习法、分小组讨论法

结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、

生成新知、深化新知、巩固新知、小结作业。

1. 导入新知

首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知

接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知

再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4. 巩固提高

我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5. 小结作业

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

多边形的内角和教案

设计理念:。

一教材分析:。

从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌,正多边形和圆等都是非常重要的。知识的联系性比较强。因此,本节课具在承上启下的作用,符合学生的认知规律。再从本节的教学理念看,编者从简单的几何图形入手,蕴含了把复杂问题转化为简单问题,化未知为已知的思想。充分体现了人人学有价值的数学,这一新课程标准精神。

二、学情分析:。

三、教学目标的确定:。

3、通过探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何。

四、重难点的确立:。

既然是多边形内角和具有承上启下的作用。因此确定本节课的重点是探究多边形的内角和的公式。由于七年级学生初学几何,所以学生在几何的逻辑推理上感到有难度。所以我确定本节课的难点是探究多边形内角和公式推导的基本思想,而解决问题的关键是教师恰当的引导。

《多边形的内角和》教案

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点。

《多边形的内角和》教案

二、教学目标。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。

(二)引申思考,培养创新。

师:通过前面的讨论,你能知道多边形内角和吗?

思考:(1)多边形内角和与三角形内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

文档为doc格式。

数学教案-多边形的内角和

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的`数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;。

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;。

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点:

四边形的概念。

教学过程:

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

(2)。

练习:

1.课本124页3题.

小结:

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

数学教案-多边形的内角和

《探索多边形的内角和》一课终于上完了,然而对这一课的思考才刚刚开始,正如周梦莉校长所说,我们的目标不是这一课本身,而是对于这一课的研究给我们数学教学的一点启发。

有幸与实验小学赵丽老师同时选中《多边形的内角和》这一课,但我们从不同角度不同方式对它进行了解读。20世纪90年代,因为农村小学学生人数的急剧减少,我们学校在课堂上尝试性的进行了分层异步教学,在同一节课中,根据学生认知水平差异,把学生分成a,b两组,在组内又依托知识水平相近原则,把3,4名学生分为一个小组,通常采用合——分——合的模式进行教学,即,当a组同学教学时,b组自学,反之亦然,经过与普通班的对比研究,发现复式班学生在学习效果上有着明显的成效。基于这一基础,我采用分层的模式来进行多边形的内角和的教学,这一尝试,让我对自己的.数学教学有了如下反思:

1,以经验为基础,让学生得到不同的发展。

基于学生的认知经验及活动经验,对学生进行分组,以期达到不同的学生在数学上得到不同程度的发展的目标,学习能力较强的同学要能吃饱,学习能力较弱的同学要在原有基础上有所进步。在实际教学中,对于a组和b组的学生,除了在教学形式上有所区别外,a组教学为主,b组自学为主,我在教学时间的分配上对ab组并没有显着区分,在以后的尝试探索中,我应对a组加以更细致的教学指导,对b组更大胆的放手,让学生上台说,做,教,减少b组的教学时间。

2,勇于放手,培养学生自学的能力。

在一开始设计b组的学习单时,即使b组同学学习能力较强,但出于对学生的担忧,担心学生想不到用分一分的方法,在学习单上,我引导学生,多边形能够分成几个三角形,内角和怎么算。而周校长建议我,是否能给学生更多的空间,把“小问题”变为“大问题”,直接提问学生,多边形的内角和是多少,让学生去尝试探索各种方法,而不仅局限于转化为三角形内角和的方法。在后来的实际教学中,采用了“大问题”的提问方式,我惊喜的发现,学生的探究自学能力比我预想的出色许多。

3,细节入手,培养学生良好习惯。

小学数学良好习惯的培养不仅对学生自身的数学学习有所裨益,对课堂教效果的影响更是尤为明显。在分层教学的模式中,为避免ab组互相间的干扰,必须在课堂上对每组学生提出明确的要求,课前乃至平时都要对学生的学习习惯进行培养,这样才能让我们的数学老师对课堂全局的把握更加深刻,才能够让数学课堂井然有序,数学教学效果得到最大程度的保证。

“授人以鱼,不如授人以渔。”我们的数学分层教学不光是为了学生掌握某一定的知识,而是让学生在不同的学习方式中不断感悟体会,寻找适合自己的学习方法,最终以得到不同程度的发展。

文档为doc格式。

八年级数学《多边形的内角和》教学设计

学情分析:

学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:

1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:

《多边形的内角和》教案

教学目标。

知识与技能。

掌握多边形内角和公式及外角和定理,并能应用.

过程与方法。

2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.

情感态度价值观。

通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.

重点。

五年级数学多边形的面积教案

1、使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用。

3、培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

1、用厚纸做完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

教师:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算。

板书:三角形面积的计算。

1、用数方格的`方法计算三角形的面积。

教师:前面我们在学习长方形面积和平行四边形面积时,都曾经用过数方格的方法,下面我们再用数方格的方法来求三角形的面积。

2、通过操作总结三角形面积的计算公式。

让学生拿出两个完全一样的锐角三角形,提问:

用两个完全一样的锐角三角形能不能拼成一个平行四边形?让每个学生都动手拼一拼,或者同桌的两个学生一同拼摆。

教师边说边演示拼的过程。先将两个锐角三角形重合放置,再按住三角形的右边顶点,使三角形时针运动相反的方向转动180,到两个三角形的底边成一条直线为止,再把右边三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止,并把拼成的平行四边形图画在黑板上。然后再带着学生规范地照上面的步骤做一遍,做时仍需边做边强调:先要把两个锐角三角形重合,再旋转,旋转时哪个点不动?旋转了多少度?平移时是沿着哪条直线移动的?学生学会把两个完全一样的锐角三角形拼成一个平行四边形后,教师再说明:平移是图上各点沿直线移动,旋转是一个点不动,其它的点都围绕着不动点转。提问:

每个锐角三角形的面积和拼出的平行四边形的面积有什么关系?

学生回答后,教师强调:每个锐角三角形是拼成的平行四边形面积的一半。

教师结合黑板上分别由两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两个完全一样的三角形,不论是直角三角形,锐角三角形,还是钝角三角形,都可以拼成一个平行四边形。提问:

这个平行四边形的底和三角形的底有什么关系?

这个平行四边形的高和三角形的高有什么关系?

这个平行四边形的面积和其中一个三角形的面积有什么关系?

八年级数学《多边形的内角和》教学设计

我在学校出了一节公开课,下面是我的教学反思。

教学回顾:

一:引入新课。提问三角形内角和,正方形和长方形的内角和是多少?那任意一四边形内角和都是360度吗?小组讨论交流证明任意四边形内角和都是360度的方法。学生分析有度量法、剪拼法、切割法,做辅助线。其中把四边形切割成两个三角形的方法最为简单。类似的探究其他多边形内角和。

二:完成学案第一部分,用数学归纳法完成填空,总结得出多边形内角和公式。

三:练习。

四:课堂小结。

五:作业。

反思:

这节课本节的教学活动充分发挥学生的主体作用,激发了学生的学习兴趣,使课堂充满生机。在进行四边形内角和定理的教学时,设计完成三个步骤:

(1)通过动手操作,让学生自己通过实验的方法发现四边形内角和定理;

(2)让学生把发现概括成命题;

(3)通过学生讨论命题证明的不同方法。

整节课充满着“自主、合作、探究、交流”的教学理念,营造了思维驰聘的空间,使学生在主动思考探究的过程中自然的获得了新的知识。但由于本节课的.内容多,学习时间较紧张,所以在给学生进行课堂讨论四边形内角和的不同的证明方法这一环节时把握地不够好。由于讨论的问题有难度,讨论时间不够充分。而且我为了能完成这节课的内容没有对四边形内角和的证明方法做以补充(习题课时才加以补充)。

《多边形的内角和》教案

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180?,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360?。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360?。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180?的和是540?。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180?的和减去一个周角360?。结果得540?。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180?的和减去一个平角180?,结果得540?。

方法4:把五边形分成一个三角形和一个四边形,然后用180?加上360?,结果得540?。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720?,十边形内角和是1440?。

(二)引申思考,培养创新。

师:通过前面的讨论,你能知道多边形内角和吗?

思考:(1)多边形内角和与三角形内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180?的和,五边形内角和是3个180?的'和,六边形内角和是4个180?的和,十边形内角和是8个180?的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440?,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

八、教学反思:

1、教的转变。

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变。

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变。

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学《相似多边形及其性质》教学教案

学生的知识技能基础:学生在学习了基本作图之后,懂得了作图的方法。又在学习本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质,会比和比例尺的计算,坚实了基础。

学生的活动经验基础:学生的作图学习,强化了学生动手的能力;比的计算、比例尺的计算,感受了数学在现实生活中的作用,增强了学生学习数学的信心。通过变换的鱼来推导成比例线段、比例性质推导、变换发展了的逻辑推理能力。本章第一节例题的讲解,培养了学生灵活运用的能力。

二、教学任务分析。

学习《黄金分割》不仅实现线段比例的要求,更是体现数学的文化价值,0.618的意义,体现数学与建筑、艺术等学科必然联系的纽带。教学中,通过国旗上的图案五角星引入黄金分割,使学生真正体会到其中的文化价值,同时,在建筑、艺术上实例欣赏,应用中进一步强化线段的比、成比例线段、黄金分割等相关内容。为此,本节课的教学目标是:

2、通过找一条线段的黄金分割点,培养学生理解与动手能力。

3、理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系对人类历史发展的作用。

教学重点:了解黄金分割的意义并能运用。

教学难点:找出黄金分割点和黄金矩形。

三、教学过程分析。

本节课设计了七个环节:第一个环节:情境引入;第二个环节:图片欣赏;第三个环节:操作感知;第四个环节:联系实际,丰富想象;第五个环节:巩固练习;第六个环节:课堂小结;第七个环节:布置作业。

相关内容

热门阅读
随机推荐