教学工作计划应该具备可操作性和灵活性,能够根据实际情况进行调整和修改。以下是小编为大家收集的优秀教学工作计划范文,供大家参考和借鉴。
1、能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2、探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数解决简单的实际问题。
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
运用分数除以整数解决简单的实际问题。教具准备:
多媒体课件。
1、观察课本第29页的图,从中你能获得哪些数学信息呢?
2、根据这些数学信息你能提出哪些问题?
3、分析例题,写出等量关系,并试用方程解答。
4、想想还有别的算法吗?
1、同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2、课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9、
(2)踢毽子的人数是踢足球的.1/3、
(3)跳绳的人数是参加活动总人数的2/9、……。
1、根据这些数学信息你能提出哪些问题?操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9、跳绳的有多少人?列出这题的等量关系,并解答。全班交流。
2、还能提出哪些数学问题,引出例题。
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?
x×2/9÷2/9=6÷2/9。
x×=27。
3、想一想,还有别的算法吗?怎么算?为什么?6÷2/9=27(人)。
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1、操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2、某月双休日9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)。
3、根据以下方程,编出相应的应用题。x×1/5=30x×2/3=40。
1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
重点难点。
重点:掌握分数四则混合运算的顺序。
难点:正确计算分数四则混合运算。
教具学具。
投影仪。
教学过程。
一、导入。
1.笔算下面各题。
提问:整数四则混合运算的顺序是什么?
2.计算下面各题。
二、教学实施。
(5)分析运算顺序。
提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?
指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。
2.巩固练习。
完成教材第33页“做一做”。
学生说明运算顺序。
3.变式练习。
学生可以先讨论怎样计算,再明确顺序进行计算。
老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。
三、课堂作业新设计。
1.填空。
四、思维训练参考答案。
思维训练。
1.d2.略。
教材习题。
教材第33页做一做。
板书设计。
运算顺序。
(1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只。
含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二。
级运算,再算第一级运算。
(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既。
有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
备课参考教材与学情分析。
例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。
课堂设计说明。
1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。
2.通过解决问题,理解分数混合运算的顺序。
教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。
3.注重直观操作,渗透数学的思想和学习方法。
直观操作――主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。
1,第一单元的内容。
学生先小组交流,然后师生共同讨论知识的过程。
分数乘法的意义,分数乘法的计算方法,解决简单的分数乘法应用题。
2,第二单元的内容。
长方体,正方体的特点,长方体,正方体的展开图,长方体,正方体的表面积的计算方法。
3,第三单元的内容。
除法的意义,除法的计算方法,倒数的.含义,用方程解决问题,算术方法解决除法问题。
1.第1题,学生独立完成,教师集体对答案,表扬做全对的同学。
2.第2题,学生独立完成,让学生说说是怎样想的?
3.第3题,学生先独立完成,要向学生讲清怎样才知道10包纸巾的长、宽、高。师生共同讨论。
4.第4题,引导学生从不同的角度思考解决问题的方法,也可引导学生通过画图来理解题意。
5.第5题,首先鼓励学生看懂图意,然后分析图中的数量关系,列出方程解决问题:2/9ⅹ=140。
6.第6题。鼓励学生理解题意,然后分析题目中的数量关系,在此基础上独立解决问题。
7,第7题。学生独立完成,教师集体讲评。
8.第8题。小组交流,然后师生共同完成。
9.第9题。以统计表的形式出现复习分数乘法,但是很容易解决。先让学生独立解决,然后说一说题意的策略。
【晒课说明】这是笔者在我校省级骨干教师献课活动中的一节示范课,这节课受到了听课老师们的高度评价和赞美,本课以本班学生的人数为原料,把学生们的最爱“串串烧”引入课堂教学,设计非常巧妙、新颖、别致。又根据口味的不同,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程(编一步、两步、三步计算的应用题),一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,我们听课的老师们也吃香了,印象深刻,不易忘记。就连学校请来录课的摄影师说,我录过的数学课很多,还没有听过这么好的有趣的数学课,如果我小时候能遇到这么好的老师讲课,我的数学也能学好。笔者想:既然有这么高的评价,我何不整理出来,让更多的老师们来分享。(此教学设计在20xx年全省中小学教育优秀论文、教学设计评选活动中荣获一等奖。)
【教学内容】
人教版六年级数学上册分数乘除法应用题。
【教材及学情分析】
本节课主要将学生学过的分数乘除法应用题集中编排,通过学生编题、解题,让学生经历三个层次的练习,进一步理解分数乘除法的意义,让学生进一步掌握分数乘除法应用题的结构特点和数量关系,提高解决问题的能力。
【教学重点、难点】
学生通过自己编题,解题,进一步理解并掌握分数乘除法应用题的结构特点和数量关系。
【教学目标】
1、通过学生编题、解题,进一步理解分数乘除法的意义。
2、使学生进一步理解并掌握分数乘除法应用题的结构特点和数量关系,提高解决实际问题的能力。
3、让学生感受数学和实际生活的紧密联系,培养学生学习数学的兴趣。
【教具准备】
电子白板、ppt
【复习程序】
一、导入新课
师:同学们你们知道今天这么多的老师来听我们班的什么课(数学课)既然是来听我们的数学课,我们就要拿数来说事了。请同学们给在座的老师们介绍一下我们班的人数情况,共有多少人?女生多数人?男生多少人?(根据学生的介绍出示课件:我们班共有75人女生30人,男生45人)(设计意图:本班人数是学生们最熟悉的啦,所以同学们争先恐后的向听课的老师们介绍本班人数,一下子和听课的老师们拉近了距离,消除了同学们的陌生感,课堂气氛马上活跃了。)
二、建构关系
学生介绍如下:
女生占全班的2/5
男生占全班的3/5
女生占男生的2/3
男生占女生的3/2
女生比男生少1/3
男生比女生多1/2
女生比全班少3/5
男生比全班少2/5
……
(设计意图:引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。)
三、自主探究提高能力
(一)(微辣串串烧)编一步计算的分数乘除法应用题,并分析解答。
学生编题如下:
全班共有75人,女生占全班的2/5,,女生有多少人?
全班共有75人,男生占全班的3/5,男生有多少人?
女生有30人,女生占全班的2/5,全班有多少人?
男生有45人,男生占全班的3/5,全班有多少人?
女生有30人,男生占女生的3/2,男生有多少人?
男生有45人,女生占男生的2/3,女生有多少人?
男生有45人,男生占女生的3/2,女生有多少人?
……
(设计意图:教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,同学们想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,既一步计算的分数应用题,一下子吊起了学生的胃口,同学们积极性会异常高涨。)
师:同学们编的真多,分析解答的也真好,你们解答这类应用题的妙招是什么?
生:第一步先找准单位“1”,第二步看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。
(设计意图:编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。及时总结解题方法。)
师:同学们我来评价一下你们的这串“微辣串串烧”行吗?香味有余,但辣味不足。我们能不能再给它加点辣椒粉,来串“中辣串串烧”过过瘾。(行)请听制作要求,继续以这两组数据为材料。
(二)(中辣串串烧)编两步计算的分数乘除法应用题,并分析解答。
学生编题如下:
全班共有75人,男生占全班的3/5,女生有多少人?
女生有30人,女生占男生的2/3,全班有多少人?
女生有30人,男生占女生的3/2,全班有多少人?
男生有45人,女生占男生的2/3,全班有多少人?
男生有45人,男生占女生的3/2,全班有多少人?
女生有30人,女生比男生少1/3,男生有多少人?
女生有30人,男生比女生多1/2,男生有多少人?
全班共有75人,女生占全班的2/5,男生有多少人?
男生有45人,女生比男生少1/3,女生有多少人?
男生有45人,男生比女生多1/2,女生有多少人?
……
师:同学们你们解答这类应用题的绝招又是什么?
生:第一步仍找准单位“1”,第二步看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或方程解答。
师:有一部分同学口味重,吃着这串“中辣串串烧”觉得还是不过瘾,还想挑战一下,来串“特辣串串烧”过过瘾好吗?请听制作要求,仍一这两组数据为材料。
(设计意图:逐层递进,通过制作“中辣串串烧”,既编两步计算的分数乘除法应用题,这样我们学过的两步计算的各种类型的分数乘除法应用题跃然纸上,供同学们解答,为学生的创新思维提供了丰富的习题情境。)
(三)(特辣串串烧)编三步计算的分数乘除法应用题并分析解答。
学生编题如下:
全班共有75人,女生比全班少3/5,男生有多少人?
全班共有75人,男生比全班少2/5,女生有多少人?
女生有30人,女生比男生少1/3,全班有多少人?
女生有30人,男生比女生多1/2,全班有多少人?
男生有45人,女生比男生少1/3,全班有多少人?
男生有45人,男生比女生多1/2,全班有多少人?
女生有30人,女生比全班少3/5,男生有多少人?
男生有45人,男生比全班少2/5,女生有多少人?
……
(设计意图:再一次吊起学生的胃口,通过同学们制作“特辣串串烧”把课堂推向高潮,真正激活学生的思维,这样学生的参与面广,覆盖较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。)
归纳:不管是哪种口味的“串串烧”,制作、分析、解答的妙招和法宝都是先找单位“1”,然后看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。
四、全课总结
1、同学们今天我们以什么样的方法复习了分数应用题?这节课你有什么收获?同时出示课题:复习分数乘除法应用题。
2、一步、两步、三步计算的分数乘除法有共同的解题策略吗?
3、你对今天这节课自己的表现还满意吗?自我评价一下
4、还有什么问题或困惑吗?
(设计意图:培养学生学习新知识后要及时地总结学习方法和解题策略的意识,让学生会对自己的表现进行自我评价,而且培养学生提问题的能力和意识。克服教师作学生代言人,让学生真正成为课堂的主人。)
板书设计:
复习分数乘除法应用题
解题策略
1、找准单位“1”
2、单位“1”是已知的,用乘法计算
3、单位“1”是未知的,用除法计算
【反思】
课始给听课的老师们介绍本班人数引入复习内容,然后又引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。也为学生的创新思维提供了丰富的习题情境。
然后教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,一下子吊起了学生的胃口,同学们还想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,“中辣串串烧”,“特辣串串烧”。抛出了三个思维空间广阔的、层层推进的问题,将学生已有的知识储备激活,对自己所学的分散、零乱、细碎的知识点,结成知识链,形成知识网,对认知结构实行精加工,自然而然地实现编题和解题策略的最优化。提高学生的发散思维能力和创新能力。让学生自主探索,学生始终处于兴奋状态,大家一次次跃跃欲试,学习积极性异常高涨。学生根据分数应用题的特点和题目中的数量关系,灵活选择条件和问题,各种口味的“串串烧”被同学们制作出来了,并顺利分析解答完毕。
每次编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。
这样的复习方法,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程,一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,而且印象深刻,不易忘记。这样一节课下来,真是“你有我有全都有。”人人都有收获,优等生得到了施展,中等生得到了锻炼,后进生得到了提高。实现了互相学习、取长补短、共同提高的目的。
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2.掌握一个数除以分数的计算方法,并能正确进行计算。
学习重点:理解一个数除以分数的意义和基本算理。
学习难点:运用分数除法的计算方法解决实际问题。
一、分一分。
有4张同样的圆形纸片。
(1)每2张一份,可以分成多少份?
画一画:
列示:
(2)每1张一份,可以分成多少份?
画一画:
列示:
(3)每1/2张一份,可以分成多少份?
画一画:
列示:
(4)每1/3张一份,可以分成多少份?
画一画:
列示:
(5)每1/4张一份,可以分成多少份?
画一画:
列示:
二、画一画。
1.有1根2米长的绳子。
(1)截成每段长1/3米,可以截成几段?
画一画:
列示:
(2)截成每段长2/3米,可以截成几段?
画一画:
列示:
2.3/4里面有几个1/8?
画一画:
列示:
三、填一填,想一想。
在〇里填上“”“”或“=”。
4÷1/2〇4×24÷1/3〇4×34÷1/4〇4×4。
2÷1/3〇2×32÷2/3〇2×3/23/4÷1/8〇×8。
你发现了什么?()。
四、试一试。
8÷6/75/12÷3。
()。
文档为doc格式。
。
这部分内容是在学过的分数除法的意义和计算法则、分数乘法应用题、用方程解答已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的,这类应用题是教学中的难点,在与求一个数的几分之几是多少的应用题混合练习中,难以判断用乘法还是用除法解答。教学这类应用题,要紧密联系一个数乘分数的意义,先用列方程的方法来解答,在此基础上再教学用分数除法来解答,这样不但加强了与求一个数的几分之几是多少的乘法应用题的联系,同时也加强对应用题的数量关系的分析,特别是判断哪个数量是单位“1”的量,分析它是已知还是未知来确定怎样用方程解。另外,还加强了方程解法与用除法解法之间的联系,使学生在掌握方程解法的基础上,切实学会用除法来解,这样既培养了学生灵活解答分数应用题的能力,又有助于发展学生思维的灵活性。
教学目标:1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的几分之几是多少,求这个数”的应用题;2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。
教学重点:找准单位“1”,找出数量关系。
教学难点:能正确地分析数量关系并列方程解答应用题。
为实现教学目标,有效地突出重点、突破难点,依据现代认知科学理论,运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定解题方法,在师生共同分析、教师主导基础上,紧扣学生已有经验,密切数学与生活联系,引导学生通过小组比较、互动、合作讨论等方式分析数量关系,再独立完成解答过程,做到扶放适度,促进学生在半独立、独立实践中掌握知识,提高解决问题的能力,培养学生自主学习意识和创新意识,学会探究问题的方法。
教学过程主要分三个层次。
第一、通过形式多样的复习做铺垫,面向全体学生为学习新知做好充分准备。主要设计三道复习题:1、找单位“1”的量;2、根据分率句写数量关系式;3、分数乘法应用题。
第二、探究新知教学。首先例1的教学通过教师与学生逐步图示和引导,着重帮助学生分析题中的数量关系,使学生明确这种题型的分析思路与乘法应用题是一致的,再放手让学生通过独立练习,明确解题的基本方法,通过比较复习题与例1的异同,让学生感知乘、除法的内在联系,最后进行口述检验,旨在让学生养成良好的学习习惯;其次在教学例2时,与例1不同之处,只是涉及到两种量,教学画图时要画两条线段,再放手让他们小组合作完成作图,数量关系的分析,放手让他们自己解答,培养他们分析问题、解决问题的能力。
第三是巩固提高阶段。练习安排上做到循序渐进,第1题基本上同例题一样叙述数量间关系,第2题在叙述上稍做变化,第3道增加一步为两步计算的应用题,旨在培养学生思维灵活性,同时注重对学生语言表达能力的训练。练习中基本上采用全部放手的做法,让学生独立分析解答,教师在引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。练习后,师生共同进行课的,老教师布置课后作业。
1、运用所学知识解决一些生活中的实际问题。
2、加强列方程的思维训练。
3、培养学生分析问题解决问题的能力。
:备注
活动一:复习与准备
1、爸爸的体重75千克,小明的体重是爸爸的7/15。
(1)、小明的体重是多少千克?
(2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?
(3)让学生说出数量关系并列式计算
活动二:出示例1
1、与复习题比较有什么不同?
2、要求小明的体重应该知道什么条件?为什么?
3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?
4、学生自己列式计算
5、与复习题比较有什么相同点和不同点?你发现了什么?
小结:(略)
1、要求学生自己做第二问
(1)、要求画图分析
(2)、与第一问比有什么不同?
(3)、根据什么等量关系列方程?
小结:
活动三:巩固练习
1、38页做一做
2、40页1、2
板书设计
教材第29~30页“分数除法(三)”。
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。
2.在解方程中,巩固分数除法的计算方法。
1.能够体会方程是解决实际问题的重要模型。
2.能够用方程解决实际问题。
一、创设情景激趣揭题
1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?
2.引入并板书课题。
二、扶放结合探究新知
1.根据这些数学信息,你能提出哪些数学问题?
2.引导学生逐一解答提出的问题。
4.引导观察,找出有什么相同点和不同点?
三、反馈矫正落实双基
1.指导完成p29的试一试的1,2题。
2.你能根据方程
x×1/5=30
编一道应用题吗?
3.请你想一个问题情景,遍一道分数应用题。
四、小结评价布置预习
1.引导小结
通过本节课的学习你有哪些收获?
2.布置预习
整理前面所学知识。
板书设计:
分数除法(三)
跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?
参加活动总人数×2/9=跳绳的人数
解:设操场有x人参加活动。
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一:复习
1、根据条件说出把哪个数量看作单位1。
(1)棉田的面积占全村耕地面积的2/5。
(2)小军的体重是爸爸体重的3/8。
(3)故事书的本数占图书总数的1/3。
(4)汽车速度相当于飞机速度的1/5。
2、找单位1,并说出数量关系式。
(1)白兔的只数占总只数的2/5。
(2)甲数正好是乙数的3/8。
(3)男生人数的1/3恰好和女生同样多。
3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?
集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)
二、新授
(1)指名读题,说出已知条件和问题。
(2)共同画图表示题中的条件和问题。
(3)分析数量关系式
提问:根据水份占体重的4/5,可以得到什么数量关系式?
学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。
根据学生的回答,把线段图进一步完善。
提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)
让学生试列方程,并说出方程表示的意义。
让学生把方程解完,并写上答案。
出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)
2、比较。
提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?
根据学生的回答,帮助学生整理出:
(1)看作单位1的数量相同,数量关系式相同。
(2)复习题单位1的量已知,用乘法计算;
例1单位1的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。
三、巩固练习
1、做书p34做一做
要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。
2、做练习九第1题。
先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。
四、小测:(略)
六、布置作业
练习九第2题
教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。
再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:
(出示)4/71/3 203/4 3/816 2/33/2
2、(复习倒数)其中当计算完2/33/2时提问:
看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))
说得不错,下面就请同学们说说下面各数的倒数分别是什么?
(出示) 3/8 4 1 2/9
3、把100千克的一桶油平均分成2分,每份是100千克的( )/( ),求100千克的1/2,列式为___。
把24千克的一袋面粉平均分成3份,每份是24千克的 ( )/( ),求24千克的1/3,列式为:_____。
同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。
(一)教学例1
1、教学第一种算法
例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
读题
提问:怎样列式?(4/52)
怎样计算呢?
(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)
从图中你能看出每份是多少米?(板书:2/5升)
那么2/5升是怎样算出的呢?
4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)
(2)补充例证
如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?
(3)观察比较
提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数 板书课题)
(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。
2、教学第二种算法
(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)
(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。
(3)让学生做试一试的题(自主选择计算方法)
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
(4)你能用简炼的语言概括一下这种方法吗?
教师板书:分数除以整数,等于分数除以整数的倒数
(5)你认为这个计算方法有什么重要的地方需要提醒大家。
教师用红笔标注。
老师也为同学们准备了一套星级赛题,你们有信心挑战吗?
一星题:
1、课本56页的练一练第1题
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
二星题:
2、这里还有6道题,哪些同学愿意到前面来解答的?
练一练第2、3题
让学生能根据题目灵活选择计算方法
做好以后进行集体讲解和订正
三星题:
8/94=8/91/4=2/9 2/73=2/73=6/7
8/94=8/91/4=2/9 3/73=3/71/3=1/7
师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。
四星题:
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
五星题:
1、如果a是一个不等于0的自然数,13 a等于多少
问:你能用具体的数来检验这个结果吗?
2、( )/( )3=5/18 7/( )=( )/24
本课我们学习了什么内容?
1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。
2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。
3、通过练习,培养计算能力及初步的逻辑思维能力。
1、重点是确定运算顺序再进行计算。
2、难点是明确混合运算的顺序。
1、复习整数混合运算的运算顺序。
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;
如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面。
的,最后算中括号外面的。
2、整数四则混合运算定律在分数四则运算中同样适用。
3、说出下面各题的运算顺序。
(1)428+63÷9―17×5(2)1.8+1.5÷4―3×0.4。
(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)。
1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。
a、可以从条件出发思考,根据彩带长8m,每朵花用2m彩带,可以先3。
算出一共做了多少朵花。
b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
2、列出综合算式,想一想它的运算顺序,再独立计算。
3、独立完成p34“做一做”第1、2题。
4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。
独立完成练习九第1题,组长检查核对,提出质疑。
巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。
学习心得__________(a.我很棒,成功了;b.我的收获很大,但仍需努力。)自我展示台:(把你个性化的解答或创新思路写出来吧!)。
1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。
2、引导同学通过动手操作、探索分数除以整数的算理,归纳计算方法,并能根据题目特点灵活选用较合适的计算方法。
3、能够运用分数除以整数的方法解决简单的实际问题。
4、将计算与生活紧密结合,培养同学的数学应用意识。
理解分数除法的意义,掌握分数除以整数的计算方法。
分数除以整数计算法则的推导过程。
一、创设情景,教学分数除法的意义。
1、师:同学们我们学过整数除以整数以和小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(1)。
引导参与,探究新知。
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2。
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
1,借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。2,掌握一个数除以分数的计算方法,并能正确计算。
教学重点。
一个数除以分数的计算方法。
教学难点。
一个数除以分数的计算方法。
教学准备教学时数。
1课时。
教学过程。
一,创设一个“分一分”的活动。1,出示:第27页的情境图。
从整数除以整数到整数除以分数,借助除法的意义和图形语言,体会“除以一个数”与“乘这个数的倒数”之间的关系。
2,创设自主的探索空间,让学生通过观察、比较与思考,发现知识的内在联系,让学生更好地理解分数除法的意义的机会,更主要的是教会学生一种学习的方法。(即分数除法的意义可联系整数除法的意义进行学习)。
二,画一画。
1,让学生画图个观察,分析图中反映的数量关系2,学生体会分数除法的意义和算法。三,填一填,想一想。
让学生观察、比较、从而发现问题中蕴藏的规律。(进一步理解分数除法的意义)。
四,试一试。
学生巩固对除法计算的理解,重点引导学生先约分再乘,这样算比较简便。五,练一练。1,第28页第2题,利用分数除法解方程,既应用了分数除法的计算方法,又为今后用方程解决问题进行铺垫。
2,第28页第3题,利用分数除法知识解决实际问题,给学生交流的空间。集体订正时让学生说说解题的思路。
。
使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。
实物投影仪。
一、复习。
1.根据算式32×25=800写出两道除法算式。
2.说出下面各数的倒数。
0.25、3、5、1、
3.填空。
(1)30÷5表示把30平均分成()份,
求其中()份是多少。
(2)求18的是多少,可以用算式18×(),
也可以用算式18÷(),所以18÷3=18×()。
二、新授。
1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?
大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?
板书:给小猴子做一件背心需要多少米花布呢?
怎样列算式呢?
师:小组讨论一下,怎样计算呢?
哪位同学上来交流一下你组的计算过程呢?
教师归纳总结:
(1)可以根据题意画出线段图。
(3)根据分数乘法的意义,把米平均分成3份,求每份是多少,也就是求的是多少。
1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。
2、教学绿点部分。
现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)。
学生独立操作解答。
此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。
师:小组讨论交流,观察、比较、分析“”和“”在计算方法上的异同点。
最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
问:上述结语中为什么要添上“0除外”?
三、巩固练习。
1.课本第61页的第1、2题。
2.下面的计算有错吗?错的请改正。
3.填空。
四、作业。
1.自主练习第4、8、9题。
2.判断对错。
苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。
数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。
理解列方程解决简单分数实际问题的思路。
一、导入。
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题。
二、教学例5。
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的,依据是什么?
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验:900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、练习。
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习十二第1题。
(1)读题,画出题目中的关键句。
(2)学生说题意。
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、做练一练第2题。
启发:你是怎样分析数量关系的?为什么要列方程解答?
3、小结解题策略。
四、作业:练习十二第1、3、4题。
1、知道分数除法的意义,掌握分数除以整数的计算法则。
2、动手操作,通过直观认识理解整数除以分数,总结法则,正确计算。
3、培养观察、比较、分析的能力和语言表达能力,提高计算能力。
1、重点是理解算理,正确总结、应用计算法则。
2、难点是理解整数除以分数的算理。
2、口算下面各题:
1323843151×3 × × × ×6 × 543839412115
数,求另个一个因数。(都是乘法的逆运算。)
3、巩固分数除法意义的练习:p28“做一做”
4、阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?
对照不同的折法,列式计算,注意它们的计算过程以及算理。
7、根据自己的折纸实验和算式,说一说分数除以整数要如何计算?
分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
6115559÷3 ÷3 ÷20 ÷5 ÷10 ÷6 72168313
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。
运算顺序,简便运算。
一、复习引新
二、教学新课
三、
四、作业
1、说说下面各题的运算顺序。
8÷2+9÷318÷(12-3)
2、引入新课
1、教学例1
这道题要先算什么,再算什么?
上下练习。
引导观察计算过程,说明递等式书写的规范过程,并说明理由。
2、组织练习。
练一练1
说顺序后练习。
3、例2
说运算顺序,这里除法的两步按照计算法则要怎样算?
观察转化成乘法后的算式,想一想,是不是可以简便运算?
上下用简便算法。
问:用了什么运算定律?
4、练习;
练一练2
这里除一个数要怎样算?
用简便算法。
说说各运用了什么运算定律,是怎样算的?
说说运算顺序,要注意什么?
练习111~3、4、5
课后感受
混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/kouhaodaquan/663862.html