教学计划是教师根据教学目标和教学内容,制定的一种组织教学活动的指导性文件。教学计划的范文还可以激发我们对教学设计的创新思维和探索精神。
学生已经掌握了多项式与多项式相乘,但是对于某些特殊的多项式相乘,可以写成公式的形式,直接写出结果,乘法公式应用十分广泛,也是本章重点内容之一。
平方差公式是第一个乘法公式,教学时,我是这样引入新课的,先计算下列各题,看谁做的又对又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激发学生的好胜心并为进一步探索新知搭建好有力的平台,然后我又让学生讨论交流上面几个等式左、右两边各有什么特点,你能用字母表示你发现的规律吗?你能用语言叙述这个规律吗?给学生充分的观察、分析、讨论交流的时间,老师应及时的给与必要的指导、鼓励和由衷的赞美,这一点我做的还很不够,今后要多多注意。
然后我有设计了这样一道题:下列多项式乘法中可以用平方差公式计算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)帮助学生理解公式的特征,掌握公式的。特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
以教师的精讲、引导为主,辅以引导发现、合作交流。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。
问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的.培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。
在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。
拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。
最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。
本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。
一、教学目标:
1、使学生理解和掌握平方差公式,并会用公式进行计算;
2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
二、重点、难点:
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
三、教学方法。
以教师的精讲、引导为主,辅以引导发现、合作交流。
四、教学过程。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
七、板书设计:
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;。
3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律.
学习重难点:
难点:探索平方差公式,并用几何图形解释公式.
学习过程:
一、自主探索。
1、计算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.
3、你能用自己的语言叙述你的发现吗?
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的a与b可以是数,也可以换成一个代数式。
二、试一试。
《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:
1、把数学问题“蕴藏”在游戏中。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
2、充分重视“自主、合作、探究”的教学方式的运用。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
3、自置悬念,享受成功。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
4、切实落在实效上。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
5、值得注意的是:
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。
这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容,而且非常不利于学生理解整式乘法和因式分解之间的互逆的关系。
在新课引入的过程中,首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。可以说,对新问题的引入,是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。
在这节课中就明显出现了这个问题,许多学生容易产生的问题都集中在一起让学生解决,反而将学生搞得不清不楚。所以,通过这节展示课也让我学到了很多,比如,化解难点时要考虑到学生的思维障碍,不可操之过急,否则适得其反。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
1、进一步提高分析,解决问题的能力。
2、学会条件整理,明晰解题思路。
3、理解设间接未知数的意义。
1、学会用列表格或画图法分析题目,理顺关系,使得各种数量关系一目了然,具有直观易懂的优点,避免了因数据多,关系复杂而混淆不清。
2、当直接设未知数时难于列出方程或找到相关的等量关系,我们可采取用间接设未知数的办法。
问题设疑:从a到长青化工厂,铁路走多少公里?公路走多少公里?
从长青化工厂到b,铁路走多少公里?公路走多少公里?
铁路每吨千米运价是多少?公路每吨千米运价是多少?
两次运输总支出为多少元?
分析:销售款与产品数量有关,原料费与原料数量有关,设产品重吨,原料重吨,根据题中数量关系填定下表:
产品吨。
原料吨。
合计。
公路运费(元)。
铁路运费(元)。
价值(元)。
题目所求数值是,为此需先解出与。
由上表,列方程组。
解这个方程组,得。
因此,这批产品的销售款比原料费与运输费的和多元。
1七年级某班同学参加平整土地劳动,运土人数比挖土人数的一半多3人,若从挖土人员中抽出6人去运土,则两者人数相等,原来有运土________人,挖土_______人。
2、足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分,一个队打11场,负3场,共得16分,那么这个队胜了______场。
当堂检测题。
1、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球有_______个,排球有______个,足球有_______个。
2、已知梯形的面积是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,则梯形的上、下底分别是____________。
3、小兵最近购买了两种三年期债券5000元,甲种年利率为5.8%,乙种年利率为6%,三年后共可得到利息888元,则他购甲种债券________元,乙种债券_______元。
4、甲对乙风趣地说:“我像你这样大岁数的那年,你才2岁;而你像我这样大岁数的那年,我已经38岁了。”则甲、乙两人现在的岁数分别是_______。
5、某商店为了处理积压商品,实行亏本销售,已知购进的甲、乙商品原价共为880元,甲种商品按原价打8折,乙种商品按原价打七五折,结果两种商品共亏196元,则甲、乙商品的原价分别为()。
a、400元,480元b、480元,400元。
c、360元,300元d、300元,360元。
1、左边为两数的和乘以两数的差,即在左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。
2、公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。
提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。
三、教学目标。
通过几方面的合力,提高学生归纳概括、逻辑推理等核心素养水平.。
四、教学重难点。
五、信息技术应用思路。
1.本课运用了信息技术辅助教学,主要使用的技术有:ppt课件、几何画板.。
(一)创设情境,导入课题。
你能用简便的方法计算出它的面积吗?看谁算得快:
师生活动:学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换.。
(二)探索新知,尝试发现。
计算下列多项式的积,你能发现什么规律?
(1)(m+1)(m-1)=;
(2)(5+x)(5-x)=;
(3)(2x+1)(2x-1)=.。
师生活动:学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论.。
信息技术支持:ppt动画演示.。
结论是一个平方减去另一个平方的形式,效果十分鲜明.。
(三)总结归纳,发现新知。
问题3:依照以上三道题的计算回答下列问题:
(1)式子的左边具有什么共同特征?
(2)它们的结果有什么特征?
(3)能不能用字母表示你的发现?
问题4:你能用文字语言表示所发现的规律吗?
(四)数形结合,几何说理。
提示:a2-b2与(a+b)(a-b)都可表示该图形的面积.。
(五)剖析公式,发现本质。
(六)巩固运用,内化新知。
问题6:判断下列算式能否运用平方差公式计算:
(1)(2x+3a)(2x–3b);
(2)(-m+n)(m-n).。
(1)(3x+2y)(3x-2y);
(2)(-7+2m2)(-7-2m2).。
信息技术支持:ppt展示书写步骤,有利于节省时间,提高效率,规范学生书写.。
(七)拓展应用,强化思维。
问题8:利用平方差公式计算情景导航中提出的问题:
信息技术支持:ppt展示书写步骤,有利于节省时间.。
(八)总结概括,自我评价。
问题10:这节课你有哪些收获?还有什么困惑?
提示:从知识和情感态度两个方面加以小结.。
师生活动:使学生对本节课的知识有一个系统全面的认识,分组讨论后交流.。
(九)课后作业。
1.必做题:课本p36习题2.1a组1、2.。
2.选做题:课本p36习题2.1b组1、2.。
作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异.。
七、教学反思。
(4)(+3z)(—3z)=_____。
(1)(x+1)(1+x),
(2)(2x+)(—2x),
(3)(a—b)(—a+b),
(4)(—a—b)(—a+b)。
帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/kouhaodaquan/633240.html