首页 > 范文大全 > 口号大全

八年级数学函数教学设计大全(24篇)

八年级数学函数教学设计大全(24篇)



教学计划需要体现因材施教的原则,根据学生的不同情况制定不同的教学目标和教学策略。小编为大家准备了一些优秀的教学计划范文,供大家参考学习。

八年级上数学教学设计

以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。

1.知识与技能目标

学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2.过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3.情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

本册教材的主要内容有:三角形、全等三角形、轴对称、整式、分式。其中,三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的`培养,开展好数学活动。全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。分式主要学习分式的概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。

写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻,厌学普遍,听不懂的学生太多,上课发言的同学太少,回答问题没人愿意举手。

要在本学期获得理想成绩,老师和学生都要付出艰苦的努力,要在培养学生良好的学习习惯上狠下功夫,激发学生学习数学的兴趣,充分发挥学生学习的主体作用,并做好学生的查漏补缺工作。通过本学期教学,争取让学生的成绩得到提高。

(1)、认真做好教学工作。把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

(2)、上课时,老师要关注学生,让学生能专心听课,认真思考问题,不说话、不开小差、不做小动作、不做与上课无关的事。

(3)、兴趣是最好的老师,应激发学生学习数学的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

(4)、引导学生积极参加知识的构建,营造民主、和谐、平等、自主、探索、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生做笔记,捋清课堂知识脉络,使知识来源于学生的创造中。

(5)、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

(6)、培养学生良好的学习习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

(7)、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

认真上好每一堂课,坚持教改教研,与同行共同探讨数学教学方法,取长补短,吸取优秀教师的先进经验和教学技能。

6.提高自身科研能力,争取创造新的教学理念,促进教学发展;

7.不断进行教学反思,在工作中积累更多,更好,更宝贵的教学经验,撰写经验文章。

针对差生、优生辅导,我想采取以下做法: 1.优生辅导

主要要求班上成绩突出的学生,尽量会做课本“问题解决”中的练习,并能适当做些课外资料上的练习题。在此基础上,教师争取个别或小范围内对他们进行指导,讲解,并对一些提高题、难题的解题思路作出相应的分析,教给他们一些学习方法和解题技巧。

教兵”的方法,让一些成绩较好的学生帮助他们,指导监督他们的学习。适时也可由教师亲自辅导他们,让他们感受到温暖与自信。

八年级数学教学设计

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

勾股定理的应用。

勾股定理的应用。

一、知识点讲解。

知识点1:(已知两边求第三边)。

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?

知识点2:

利用方程求线段长。

(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?

(2)de与ce的位置关系。

(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?

利用方程解决翻折问题。

3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。

5、折叠矩形abcd的一边ad,折痕为ae,且使点d落在bc边上的点f处,已知ab=8cm,bc=10cm,以b点为原点,bc为x轴,ba为y轴建立平面直角坐标系。求点f和点e坐标。

6、边长为8和4的矩形oabc的两边分别在直角坐标系的x轴和y轴上,若沿对角线ac折叠后,点b落在第四象限b1处,设b1c交x轴于点d,求(1)三角形adc的面积,(2)点b1的坐标,(3)ab1所在的直线解析式.

知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系。

1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。

(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。

(3)在abc中,a:b:c=1:1:,那么abc的确切形状是_____________。

二、课堂小结。

谈一谈你这节课都有哪些收获?

应用勾股定理解决实际问题。

三、课堂练习以上习题。

四、课后作业卷子。

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

一、复习引入。

对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

二、例题讲解,巩固练习,总结数学思想方法。

活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。

活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

二、巩固练习,熟练新知。

通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

在教学设计的实施中,也存在着一些问题:

1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2.理解完全平方式的意义和特点,培养学生的判断......

勾股定理勾股定理11、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史.2、能力目标:(1)......

八年级数学教学设计

1、知识目标:

(1)掌握勾股定理;。

(2)学会利用勾股定理进行计算、证明与作图;。

(3)了解有关勾股定理的历史.

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;。

(2)通过问题的解决,提高学生的运算能力。

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;。

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学重点:勾股定理及其应用。

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。

教学用具:直尺,微机。

教学方法:以学生为主体的讨论探索法。

八年级数学教学设计

教学目标:

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点:体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体。

教学过程:

创设情景,引入新课(出示篮球比赛的一些画面)。

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把。

叫做这个n数的`算术平均数,简称平均数,记为.读作“x拔”.

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁1618212324262934。

相应队员数12413121。

平均年龄=(16×1。

数学八年级的教学设计

1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

2、通过分数的学教学重点:理解分数的意义。

教学难点:认识单位“1”和概括分数的意义。

ppt。

一、温故知新:

师:三年级上学期我们已初步学生:

师:谁能说出分数各部分的名称:生说师板书。

师总结引入新课:从以上看来同学们对分数已经有了初步的认识,但是关于分数的知识还有很多,这节课我们一起进一步研究分数。

二、探究新知。

(一)分数的产生。

1、出示米尺:同学们这是什么?(生:米尺)知道干什么用的吗?(生:测量用的)好我们一起测量我们的黑板(或人的身高),老师量时要认真观察,看会遇到什么问题,想一想应如何解决?(生:最后测量时不够一米了)。

3、教师小结:生活中在进行测量、分物或计算时,往往不能正好得到整数的结果,要想准确表示结果,这时常用分数来表示,这样分数就产生了。(出示并板书:分数的产生)。

3、教师总结:课件出示图,像这样一个物体、一个计量单位、或是一些物体等都可以看作一个整体,像这样的一个个整体都可以用自然数1来表示,这个1在数学上通常叫做单位“1”。

板书:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(齐读)。

谁能说说自然数1与单位“1”有什么不同吗?生:………。

我们把这个整体平均分成若干分,就是把单位“1”平均分成若干分,所以分数的意义是:

把单位“1”平均分成若干分,表示其中一份或几份的数就叫分数,齐读一遍。

(同学们表现得非常棒,同学们看看看生活中的单位“1”。出示图)。

四、巩固训练大闯关(看谁反应快、回答得对):

(出示练五、总结:通过学通过这节课的学掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。

学学一、复教师根据学生的分类,把假分数取出来,让学生观察。

2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。

3.揭示课题:这节课我们来一起学二、探究新知。15分钟)。

教学例3。

1.把3/38/4化成整数。

(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?

(2)讨论:如何把3/3、8/4化成整数?

2.把7/3、6/5化成带分数。

(1)提问:7/3、6/5的分子不是分母的倍数,这种情况怎样转化?

(2)交流讨论方法。

(3)学生在练小结:把假分数化成整数或带分数的方法。

学案。

1.根据真分数和假分数的意义进行分类,汇报交流。

2.交流假分数的分类情况。

3.明确本节课的学小结。

三、巩固练四、课堂总结。(5分钟)。

1.通过本节课的学课后小结。

本节课的.教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。

课后八又七分之三。

写作:_____________。

十五又六分之一。

写作:_____________。

二十三又四分之三。

写作:_____________。

1.读出下面的带分数。

31/8读作:_____________。

703/57读作:_____________。

24/79读作:_____________。

2.写出下面的带分数。

八又七分之三。

写作:_____________。

十五又六分之一。

写作:_____________。

二十三又四分之三。

写作:_____________。

答案:81523。

3.填一填。

(1)23÷9=()/()。

(2)6=12/()=()/3=()/5=24/()。

(3)31/2读作(),它的分数单位是(),它有()个这样的分数单位。

4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)。

答:张师傅做得快。

板书。

假分数化成整数或带分数的方法:

用分子除以分母,当分子是分母的倍数时,能化成整数,商就是这个整数;。

当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。

八年级数学教学设计

(1)感受生活中的等腰三角形。在学习等腰三角形之前,多数学生早已认识了等腰三角形。所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找“你身边的等腰三角形”。课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。学生们兴趣盎然地走进了《等腰三角形》的知识世界。

(2)形象认识等腰三角形性质特点。设计“已知等腰三角形的两边长分别为5和2,求周长”,我的目的是检查学生对“三角形两边和大于第三边”知识的掌握情况及“等腰三角形有两条相等的边”的理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:“等腰三角形两腰相等”。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。通过图形变异,学生认清了顶角是两腰的夹角而非上面的角,底角是腰与底边的夹角而非是下面的角。课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。

(3)通过折纸探究等腰三角形的性质。课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。可以看到同桌两个同学在小声的讨论。等腰三角形“等边对等角”、“三线合一”都是由其具有轴对称性质引出的,学生得出“两个底角相等”较为容易。因为担心“三线合一”学生会感到困难,我特意介绍了三角形中的角平分线、高和中线,并为学生设计出对应表格,让学生填出“三线合一”的性质。这样做好处是降低了“三线合一”性质得出的难度,学生较易了解,但由于设定表格,学生就被牵着鼻子走,限制了他们在实践过程的发现,学生的填表仅是印证了课本上的说明,如果让学生自主发挥,时间多费些,课堂上不确定因素也多了点,但学习效果应该会好一点。

(4)运用“等边对等角”解决实际问题。

本节课从总体上看,学生基本掌握了等腰三角形“等边对等角”及“三线合一”的性质,学会了“等边对等角”的运用,较好的完成了教学目的。但我总觉得,这样上课,学习基础较好的学生不能满足,会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体效果可能会好些。

八年级数学教学设计

目的:巩固平方根的概念。其中在处理第5小题时,应先把带分数化为假分数。

不足:可以让学生求小数的平方根,如:求0.0004的平方根,可能学生会出现两种不同的方法:其一,直接求;其二,化为分数求,不管怎样都要引导学生去发现,最终归纳问题的症结在于当被开方数是小数时,其平方根小数点的位数应如何确定。于是再次引导学生通过观察得到结论:被开方数与其平方根小数点位数是2:1的关系。这样就能更深层次地提升学生的分析能力,教师在教学时有必要这样做。

练习2、求下列各数的平方根:(抢答)。

64,0.01,121,0.09,0,,,-0.36。

目的:熟练求平方根的方法并能提高解题的速度,从而活跃课堂气氛。把整节课的教学推向了高潮,也是本节课的亮点。

4、注意课堂教学的完整性。

目的:通过本节课的学习,使学生掌握平方根的概念,一方面使新授知识得到充分的应用,另一方面起到前呼后应的教学效果。

不足:由于时间较紧,所以讲解速度较快,可能使部分同学未能真正理解。

八年级数学教学设计

教师展示图片并介绍第二情景。

毕达哥拉斯是古希腊著名的数学家.相传在25以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.

(1)现在请你也观察一下,你能有什么发现吗?

(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

(3)你有新的结论吗?

[活动2]教师引导学生总结:

等腰直角三角形的两条直角边平方的和等于斜边的平方.在独立探究的基础上,学生分组交流.教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.

学生活动:每组派代表分别自己总结的观点,在教师的引导下,慢慢发现能否将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来;用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式.

[活动3]教师多媒体展示。

在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.你见过这个图案吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”

数学八年级的教学设计

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

掌握长方体和正方体表面积的计算方法。

长方体、正方体纸盒,剪刀,投影仪。

【复】。

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

【新课讲授】。

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的'长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

课后小结。

今天我们又学课后板书。

长方体的表面积=(长×宽+长×高+宽×高)×2。

正方体的表面积=边长×边长×6。

八年级数学教学设计

一、学生情况分析:

本年级学生:87人,其中男生52人,女生:25人。上期末数学考试最高分96分,最低分30分,平均分82,.总体上看,学生的数学成绩达到预期目标,,优生率为50%以上、及格率95%以上;在学生的数学知识上看,基本概念,基本计算掌握较好,基本的空间与图形知识都较欠缺;数学的思维较差;大部分学生对数学兴趣较浓。

二、教材分析:

1、体系结构:

(1)数学内容的引入,采取从实际问题情景境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过问题解决的过程,获得数学概念,掌握解决数学问题的技能和方法。

(2)教材内容的呈现,努力创设学生自主探究的学习情况和机会,适当编排应用性、探索性和开放性的,发挥学生的主动性、留给学生充分的时间与空间,自主探索、促进学生数学思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。

(3)教材内容的编写,把握课程标准,同时又具有弹性,编入一些选学内容,以适应较高程度学生学习的需要,使不同水平的学生都得到发展。

(4)教材内容的叙述、行当介绍数学内容的背景知识与数学史料等,将背景材料与数学内容融为一体,激发学生学习数学的兴趣,引导学生体会数学的`文化价值。

(5)现代信息技术的应用在教材中占有适当地位,有利于学生理解概念、自主探索、实践体验。

2、教材体例。

(1)教材的正文中,根据教材内容的实际需要,适当设置了一些相应的栏目。如“观察”、“思考”、“实验”、“想一想”、“试一试”、“做一做”等,给学生适当的思考空间,让学生通过自主探索,获得体验和感受,掌握必要的知识。

(2)结合教材各块内容,安排一些有关的阅读材料,涉及数学史料、数学家故事、实际生活中的问题、数学趣题、知识背景等,扩大学生的知识面,增强学生的应用意识和对数学的兴趣,对学生进行爱国主义和人文主义精神教育。

(3)控制习题总量,降低难度,增加探索、开放、实践类型的习题,按照不同的要求,编制不同水平的练习题,按课时给出随堂练习,每一节设置习题,每章的复习题设程度不一的a、b、c、三组,以满足不同层次的学生的发展需要。

(4)增强了研究性课题学习,给学生更多的发展空间,让学生自己动手,提高解决问题与合作交流的能力。

(5)每一章的开始,设置有展现该章主要内容的导图与导入语,以期激发学生的学习兴趣与求知欲。

三、教学方法及措施:

让学生明确学习目的、端正学习态度,给学生以理想前途教育,培养学生对数学学科的学习兴趣,教给学生学习方法,多与学生勾通,多和学生一起分析问题,培养学生解决问题能力。深入钻研教育教法,精心备课,精心设计教学环节,习题降低教学坡度和教学难度,认真反思自己的教育教学过程。

四、培优、转差措施:

根据学生的不同基础情况分别给予学生不同教学要求,按学生的不同基础布置不同的作业,因材施教。多与差生交流,与差生交朋友,分析差生差的原因,给差生以信心和关心,尽量给差生降低学生上的坡度;对于优生教师利用课余时间拓宽学生知识面,培养学生分析问题解决问题能力。在教学中适当对知识进行拓展,给优生以充分思索的空间,多让优生自主探索,鼓励优生合作交流。

五、本期最终要达到的目标:

期末考试优生率50%以上,高分率20%,及格率95%以上。

第十一章数的开方。

1、让学生经历又一次数系的扩展过程,进一步体验数学发展源于实践,又作用于实际的辩证关系。

2、理解平方根、算术平方根、立方根等概念;认识平方与开平方、立方与开立方间的关系;会用平方、立方的概念求某些数的平方根与立方根,并用根号表示,会用计算器求一个非负数的算术平方根及任意一个数的立方根。

3、了解无理数和实数的概念,知道实数与数轴上的点一一对应。

4、能估计某些无理数的大小,培养学生的数感与估计能力,会进行简单的实数运算。

第十二章整式的乘除。

1、探索并了解正整数幂的运算法则(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),并会运用它们进行计算。

2、探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法运算。

3、会由整式的乘法推导出乘法公式,了解两个乘法公式的几何背景,并能运用公式进行简单的计算。

4、通过从幂的运算到整式的乘法,再到乘法公式的学习,了解乘法公式来源于整式乘法,又运用于整式乘法的辩证过程,并初步认识到事物发展过程中“特殊――一般――特殊”的一般规律。

5、探索并了解单项式除以单项式,多项式除以单项式的法则,并能进行简单的整式除法运算。

6、了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以互相转换的辩证思想。

7、会用提取公因式、公式法(直接用公式不超过两次)进行因式分解。

8、让学生主动参与到一些探索实践过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力。

9、通过本章一些生活实例的学习,体会数学与生活的密切联系,在一定程度上了解数学的应用价值,提高数学学习兴趣。

第十三章全等三角形。

1、全等三角形主要介绍了三角形全等的性质和判定方法。

2、直角三角形全等的特殊条件。

3、更多的注重学生推理意识的建立和对推理过程的理解,

4、学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质5、探索三角形全等的条件。

第十四章勾股定理。

1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。

2、体验勾股定理的探索过程,掌握勾股定理,会用勾股定理解决相关问题。

3、掌握勾股定理的逆定理,会运用勾股定理的逆定理解决相关问题。

4、运用勾股定理及其逆定理解决简单的实际问题。

5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

第十五章数据的收集与表示。

1、数据的描述通过对实际问题的讨论,使学生体会数据的作用。

2、更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息。

5、教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。

七、课时安排。

第11章数的开方9课时9月1日------9月10日结束新课,11日考试。

第12章整式的乘除28课时9月12----10月16日结束新课,17日考试。

第13章全等三角形22课时10月20日---11月20日结束新课,21日考试。

第14章勾股定理9课时11月24日---12月3日结束新课4日考试。

平行四边形12课时12月22日----1月12日结束新课,13日考试。

复习备考1月14日----2月6日。

八年级数学教学设计

知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.

数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.

情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.

2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.

八年级数学教学设计

2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.。

3.了解立方根的性质----唯一性.。

4.区分立方根与平方根的不同.。

5.分清两个互为相反数的立方根的关系,即。

5.渗透特殊---一般的数学思想方法.

1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.。

3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.。

2.学生通过对实际问题的解决,体会数学的实用价值.。

重点:立方根的概念及求法.。

难点:立方根的求法,立方根与平方根的联系及区别.。

本节内容教学法为:类比法。

八年级数学函数教案

认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。

活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。

知识与技能目标:

(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。

(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。

(3)会对一个具体实例进行概括抽象成为函数问题。

过程与方法目标:

(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。

(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感态度与价值观目标:

(1)经历函数概念的抽象概括过程,体会函数的模型思想。

(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

数学八年级教学设计

知识与技能:

在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

过程与方法:

通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

情感态度与价值观:

通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

教学重难点。

教学重点:

掌握平行四边形的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学工具。

多媒体课件,平行四边形纸片,剪刀,学具袋。

教学过程。

1复习旧知。

请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)。

2情境引入。

(一)、故事激趣。

同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)。

(二)、学生思考、猜测。

3探究新知。

(一)利用方格,初步探究。

1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

课件出示:比较两个图形的大小,然后引进格子图。

师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)。

2、同桌交流方法。

3、生汇报想法。

4、通过数方格你发现了什么?

(二)动手操作,深入探究。

2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

(板书:割补法)。

3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

4、展示学生作品:不同的方法将平行四边形变成长方形。

提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

(边说边板书)。

4学以致用。

(一).课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

(板书:s=ah=6×4=24㎡)。

(二).课件出示练习题,学生独立完成。

1.

2.有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?

3.填表。

4.判断:。

(1)平行四边形的底是7米,高是4米,面积是28米。()。

(2)a=5分米,h=2米,s=100平方分米。()。

5.下面对平行四边形面积的计算对吗?

6×3=18(平方米)()。

6.下面对平行四边形面积的计算对吗?

8×7=56(平方分米)()。

7.思考题:你有几种方法求下面图形的面积?

课后小结。

回想一下刚才我们的学习过程,你有什么收获?

计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推的?

八年级《一次函数》教学设计

1、本节课首先从最简单的正比例函数入手、从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

2、会根据已知信息写出一次函数的表达式。

八年级数学《一次函数》评课稿

张老师《一次函数》一课,创设了有利于调动学生学习兴趣和激发求知欲的多种情景,展现了有利于培养学生学习态度和对数学自主学习能力的教学策略,探索怎样恰当进行概念教学。张老师的课思路清晰,语言精炼、准确,重点突出。既有充分利用学案导学,又有个人的创新、独到之处,把教学过程变成学生对知识的探索过程,取得了良好的教学效果。

学生在解决一次函数的.定义问题时,往往忽视了正比例函数是一次函数的特殊形式,张老师在教学中强调一次函数与正比例函数的关系,并通过实例来说明,加强二者之间的联系。如讲解例题y=,让学生探讨当这个函数分别是一次函数,正比例函数时k应满足的条件,把一次函数与正比例函数的区别与联系很好的阐述清楚,相信学生再解决一次函数的定义问题时就不会漏掉正比列关系的可能性。

课堂中的每个环节,无论是例题、练习题、习题的处理,张老师充分放手让学生自己动手,动口,老师只引导点拨,善于启发学生,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一。教学过程中注意了与学生的沟通,有较强的驾驭课堂的能力。

一点建议:本节课是否可以把训练目标再拓宽一点,除了强化一次函数与正比例函数的联系,适当延伸自变量取值范围和函数值的确定,加强对一次函数式的理解,为下节学习一次函数图像做好铺垫。

八年级数学《一次函数》评课稿

20xx年12月9日,我有幸聆听的昆仑中学王小平老师讲的《反比例函数的图象及性质》。听后感觉颇受启发。

《反比例函数的图象及性质》是九年级数学教材中的重点内容,也是难点所在,它安排在了学生理解反比例函数的意义并掌握了描点法画函数图象的基础上进行教学。

王老师这节课的优点有以下几个方面:

1、教态大方,教学语言科学规范,简约明了,语速始终,具有启发性。

2、知识的细节方面强调到位,。

3、注重了学生动手操作能力的培养,并对图象形状让个别学生进行了交流。

4、教师基本功扎实,板书整齐大方。

最后我说一下我对这节课的一些想法:

1、王老师应该将本节课的内容比例再协调一下,将画图的时间减少一些,重点放在引导学生总结反比例函数的性质上来,可以尝试让学生课前做几个图,降低作图带来的时间差。

2、学生参与课堂较少,练习题的设置没有层次性。

以上只是我的个人看法,说的不对的地方请批评指正。

八年级数学下教学设计

备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。

二:教学内容不好处理。

在“2.一次函数的图象”中有平移的问题,

(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.

2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲。

环节二:概括一次函数图象的性质。

一次函数y=kx+b有下列性质:

(2)当k0时,y随x的增大而______,这时函数的图象从左到右_____.

(3)当b0时,这时函数的图象与y轴的交点在:

(4)当b0时,这时函数的'图象与y轴的交点在:

待定系数法的引入上用“弹簧的长度y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”

三:难度不好处理:

如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”

学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。

八年级数学《一次函数》评课稿

听了张老师的这节复习课,受益颇多,觉得自己离张高的距离还很远,张老师对课堂的驾驭游刃有余,对复习课定位准确,对教材理解到位又不失深度,紧密根据学情设置课堂内容各环节,自然、流畅又实用。我从以下两方面谈谈自己对本节课的认识:

一次函数在初中数学函数的起始,是对以前的二元一次方程的升级版,更是以后学习其他函数的基础,所以一次函数就内容上讲起着承上启下的作用。而《一次函数图像》对学生来说是学习中的一个难点,所以张老师选择在这个单元新课之后上这么一节复习课,本身就是对教材内容精确的把握。

张老师在课后发表自己的设计意图中有谈到自己的对学情的分析,我认为一位老师课堂内容设置要是脱离了学情,那么这节课注定是作秀、失败的。而张老师的各环节设置紧紧联系学生的认知基础,进行恰到好处地设置问题,从简单的一次图像引入,让学生判断k、b的符号,到后面各问题设置层层递进,由易入难,显得特有层次感。而实际上我所说的“难”,正式这节的亮点问题。从平日生活中的两种灯泡---------节能灯和白炽灯的选择和使用出发设计问题,这本身就能吸引大家眼球,而问题紧密联系一次函数图像对选择方案作出判断,直观形象易懂;并引导学生进行变式训练,对一题进行各方位的改编,而问题又不会让学生“够不着”,在学生认知基础上一点一滴前进,真正提高了学生思考能力、思维能力。

八年级《一次函数》教学设计

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。

1、教学目标。

知识与技能目标。

(1)初步理解二元一次方程和一次函数的关系;

(2)掌握二元一次方程组和对应的两条直线之间的关系;

(3)掌握二元一次方程组的图像解法。

过程与方法目标。

(2)通过做一做引入例1,进一步发展学生数形结合的意识和能力。

(3)情感与态度目标。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

2、教学重点。

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系。

3、教学难点。

数形结合和数学转化的思想意识。

1、教法学法。

启发引导与自主探索相结合。

2、课前准备。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置。

第一环节:设置问题情境,启发引导。

内容:1.方程x+y=5的解有多少个?是这个方程的解吗?

2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。

第二环节自主探索方程组的解与图像之间的关系。

内容:1.解方程组。

2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。

第三环节典型例题。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。

第四环节反馈练习。

内容:1.已知一次函数与的图像的交点为,则。

2、已知一次函数与的图像都经过点a(2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3、求两条直线与和轴所围成的三角形面积。

4、如图,两条直线与的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。

第五环节课堂小结。

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1、二元一次方程和一次函数的图像的关系;

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

2、方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

3、解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。

第六环节作业布置。

习题7.7。

附:板书设计。

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。

八年级《一次函数》教学设计【精选】

1、问题导入:

请同学们思考后回答:

(1)找出问题中的变量并用字母表示,列出函数关系式、

(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?

以上这些问题,请各小组讨论一下,派代表回答、引出课题(板书课题)教师最后总结一次函数的概念、(板书)。

1、做一做:

我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目)。根据学生的动手实践、观察与讨论,得出结论:一次函数的图象是一条直线、特别地,正比例函数的图象是经过原点的一条直线。

2、接下来教师提问:

(1)观察所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点。

4、巩固训练:

(1)在同一平面直角坐标系中画出下列函数的图象。

将直线向上平移5个单位,得到直线_______________________、

(由学生到前板演)、

函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?

1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师运用现代化的教学手段来演示点的移动情况,进一步促进了学生对一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值随自变量的增大而增大、(教师板书)。

八年级数学《一次函数》评课稿

从这节课可以看出冯老师本着“以学生为本,以学生的发展为本”的教育理念,精心选取例题,尽力做到了让每一个学生都能在课堂上有所收获。这节课教学脉络清晰,并突出了重点、抓住了关键、突破了难点,在教学的各环节中围绕学习目标、学习重点进行,依据教学实际,灵活而恰当地采用教学方法,拉近了师生之间的情感距离,同时也拉近了学生与社会、与生活之间的距离。课堂上,老师尽可能地组织学生运用合作、小组学习等方式,在培养学生合作与交流能力的同时,调动了每一个学生的参与意识和协作的积极性。

本节课体现了以下几点:

1、以优带差的学习策略,增加了学生学习的参与度。

2、使用知识链接,设置台阶,减缓学习坡度。

3、通过问题初探,搭建引桥,降低学习难度。

4、由一题多变,一题多解,巧用开放,拓展了思维宽度。冯老师在习题的安排上独具匠心,巧妙地安排了一题多变,一题多解,使学生在吃得饱的基础上又能够吃得好,从而全面激发了学生学习数学的兴趣。

5、课堂把握住了动与静的关系,学生动中有静,静中有动,动静结合;

6、课堂展示了数学课中思与做的关系。

建议:

1、多展示几组专题训练,集中解决本节建立适当坐标系的难点,多用题目,增加训练密度。

2、加强课堂检测,摸清学生掌握程度。

八年级数学勾股定理教学设计

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

一、知识点讲解。

知识点1:(已知两边求第三边)。

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?

知识点2:

利用方程求线段长。

(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?

(2)de与ce的位置关系。

(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?

利用方程解决翻折问题。

3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。

5、折叠矩形abcd的一边ad,折痕为ae,且使点d落在bc边上的点f处,已知ab=8cm,bc=10cm,以b点为原点,bc为x轴,ba为y轴建立平面直角坐标系。求点f和点e坐标。

6、边长为8和4的矩形oabc的两边分别在直角坐标系的x轴和y轴上,若沿对角线ac折叠后,点b落在第四象限b1处,设b1c交x轴于点d,求(1)三角形adc的面积,(2)点b1的坐标,(3)ab1所在的直线解析式.

知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系。

1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。

(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。

(3)在abc中,a:b:c=1:1:,那么abc的确切形状是_____________。

二、课堂小结。

谈一谈你这节课都有哪些收获?

三、课堂练习以上习题。

四、课后作业卷子。

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

一、复习引入。

对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

二、例题讲解,巩固练习,总结数学思想方法。

活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。

活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

二、巩固练习,熟练新知。

通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

在教学设计的实施中,也存在着一些问题:

1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

八年级《一次函数》教学设计

本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。

设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题、并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。

通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家。

相关内容

热门阅读
随机推荐