高中教案应该紧密结合教材和学生的需求,设计出有针对性的教学方案。教案的长期积累可以提高教师的教学经验和教学水平,为优质教育的实现提供保障。
3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。
重点:理解平面直角坐标中点与数的一一对应关系;
难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。
教师准备四张大的纸质坐标格子。
一、温故知新,导入新课。
游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。
我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。
我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。
二、新课教学
课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是-4,点b数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。
学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小
b说我们可以每个点列一个数轴・・・
教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?
结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?
得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的`坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)
教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。
教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。
教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?
教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。
得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。
三、课程巩固
师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。
“练一练”:
在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。
教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。
四、小结作业:
思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。
平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成
水平的数轴称为x轴或横轴,习惯上取向右为正方向;
竖直的数轴称为y轴或纵轴,取向上为正方向;
两坐标轴的交点为平面直角坐标系的原点。
掌握三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点。
利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0.001).
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
将本文的word文档下载到电脑,方便收藏和打印。
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;。
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的'能力;。
归纳——猜想——证明的数学研究方法;。
3、数学思想:培养学生分类讨论,函数的数学思想。
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;。
难点:等比数列的性质的探索过程。
教学过程:
1、问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)。
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)。
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)。
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质。
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)。
1、小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习。
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、作业:
p129:1,2,3。
1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、教学设计过程:本节课主要从以下几个方面展开:
1)通过复习等差数列的定义,类比得出等比数列的定义;。
2)等比数列的通项公式的推导;。
3)等比数列的性质;。
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧。
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比。
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
等比数列性质请同学们类比得出.
【方法规律】。
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.
2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数。
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)。
3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.
【示范举例】。
例1:(1)设等差数列的`前n项和为30,前2n项和为100,则前3n项和为.
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.
文档为doc格式。
。
一、教学目标:
知识与技能:了解直线参数方程的条件及参数的意义。
过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义。
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:
教学重点:曲线参数方程的定义及方法。
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:
启发、诱导发现教学.
四、教学过程。
(一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
圆参数方程(为参数)。
(2)圆参数方程为:(为参数)。
2.写出椭圆参数方程.
(二)、讲解新课:
如果已知直线l经过两个定点q(1,1),p(4,3),
那么又如何描述直线l上任意点的位置呢?
2、教师引导学生推导直线的参数方程:
(1)过定点倾斜角为的直线的。
参数方程。
(为参数)。
【辨析直线的参数方程】:设m(x,y)为直线上的任意一点,参数t的几何意义是指从点p到点m的位移,可以用有向线段数量来表示。带符号.
(2)、经过两个定点q,p(其中)的'直线的参数方程为。其中点m(x,y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点m分有向线段的数量比。当时,m为内分点;当且时,m为外分点;当时,点m与q重合。
(三)、直线的参数方程应用,强化理解。
1、例题:
学生练习,教师准对问题讲评。反思归纳:
1)求直线参数方程的方法;。
2)利用直线参数方程求交点。
2、巩固导练:
补充:
1)直线与圆相切,那么直线的倾斜角为(a)。
a.或b.或c.或d.或。
2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.
解:直线化为普通方程是,
该直线的斜率为,
直线(为参数)化为普通方程是,
该直线的斜率为,
则由两直线垂直的充要条件,得,。
(四)、小结:
(1)直线参数方程求法;。
(2)直线参数方程的特点;。
(3)根据已知条件和图形的几何性质,注意参数的意义。
(五)、作业:
补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为。
【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。
解析:由题直线的普通方程为,故它与与的距离为。
五、教学反思:
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。
注:(1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使用”;。
(3)掌握“角的演变”规律,
(4)将公式和其它知识衔接起来使用。
重点难点。
重点:几组三角恒等式的应用。
难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式。
掌握三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点。
利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0.001).
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
2.教学重点。
函数单调性的概念,判断和证明简单函数的单调性.。
3.教学难点。
函数单调性概念的生成,证明单调性的代数推理论证.。
1.教学有利因素。
2.教学不利因素。
1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.。
为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:
(一)创设情境,引入课题。
问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?
设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)。
(二)引导探索,生成概念。
问题2:(1)下图是函数的图象(以为例),它在定义域r上是递增的吗?
(2)函数在区间上有何单调性?
预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.。
问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?
(2)已知,若有.能保证函数在区间上递增吗?
拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.。
(3)已知,若有,能保证函数在区间上递增吗?
拖动“拖动点”,观察函数在区间上的图象变化.。
(4)已知,若有。
能保证函数在区间上递增吗?
设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”
问题4:如何用数学语言准确刻画函数在区间上递增呢?
问题5:请你试着用数学语言定义函数在区间上是递减的.。
(三)学以致用,理解感悟。
判断题:你认为下列说法是否正确,请说明理由.(举例或者画图)。
(1)设函数的定义域为,若对任意,都有,则在区间上递增;
(2)设函数的定义域为r,若对任意,且,都有,则是递增的;
(3)反比例函数的单调递减区间是.。
例题:判断并证明函数的单调性.。
1.掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系。
【情感态度与价值观】感受数形结合的.思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题。
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.。
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。
(二)得出定义,揭示内涵。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点。
(2)标正方向。
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解。
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画。
(四)动手练习,归纳总结。
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育。
3、通过数轴比较有理数的大小。观察类比温度计回答问题。
(1)在数轴上表示的两个数,(右)边的数总比(左)边的数大;
(2)正数都(大于)0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的大小:-1.5,0.6,-3,-2。
巩固所学知识。
(五)、归纳小结,强化思想。
师生总结本课内容。
1、数轴的概念,数轴的三要素。
2、数轴上两个不同的点所表示的两个有理数大小关系。
3、所有的有理数都可以用数轴上的点来表示。
师:你感到自己今天的表现怎样?
习题2.21、2、3。
选作第4题。
(一)知识目标。
理解世界多极化趋势及国际竞争的实质,认识我国发展面临的机遇与挑战。
(二)能力目标。
提高运用马克思主义立场、观点和方法分析判断国际社会政治现象的能力,以及自主学习、探索的能力。
(三)情感、态度与价值观目标。
1、培养学生关心祖国在国际社会的地位、命运的民族责任感,以及热爱和平,维护本国利益和维护各国人民共同利益相统一的理念。
2、认识我国与发达国家的差距,增强忧患意识和勇于挑战意识。
教学重难点。
教学重点、难点。
当代国际竞争的实质。
教学工具。
课件。
教学过程。
(一)引入新课。
20世纪80年代末到90年代初,伴随着东欧剧变,苏联解体,美苏对峙的两极格局被打破,世界各种力量在错综复杂的利益关系中出现新的分化和组合,国际格局相应的发生重大变化。各国之间将呈现怎样的关系呢?下面就学习这方面的问题。
(二)进行新课。
一、-世界若干力量中心。
教师活动:引导学生阅读教材104页,思考几个探究性问题。
学生活动:积极思考并回答问题。
教师点评:当今世界正在形成的政治经济力量中心反映出世界格局多极化趋势,这与二战后形成的美苏对峙两极格局有明显不同。这种局面有利于世界的和平、稳定、发展和国际关系-化。中国作为维护世界和平的重要力量,在当今国际事务中发挥着越来越重要的作用。
二、世界多极化的发展趋势。
1、当今国际形势的一个突出特点是:世界多极化在曲折中发展。
(1)第二次世界大战后,形成了以美苏对峙为标志的世界两极格局。
(2)20世纪80年代末到90年代初,东欧剧变,苏联解体,美苏对峙的两极格局被打破。世界各种力量在错综复杂的利益关系中出现新的分化和组合,大国之间的关系经历着重大而又深刻的调整,国际格局向多极化发展。
学生活动:认真思考并积极讨论,踊跃发言。
教师点评:欧盟成员国的增加,有力的推动了欧洲一体化进程,使欧盟成为多极化力量中头等实力单位,在世界格局中占据更加重要的地位。俄罗斯当今的实力虽有所削弱,但仍具有巨大的经济科技潜力和强大的军事力量,其大国地位不容置疑;日本是仅次于美国的第二经济强国,目前正在保持经济大国基础上谋求政治大国地位。
(3)目前世界正在形成的若干个政治经济力量中心。美国、欧盟、俄罗斯、中国、日本等大国和国际组织在国际社会中扮演着重要角色。
广大发展中国家是反对霸权主义和强权政治、促进世界和平与发展的重要力量,是推动建立公正、合理的国际政治经济新秩序的主力军,是我国在国际舞台上的同盟军。
(4)世界多极化的形成将是一个漫长曲折的充满复杂斗争的演变过程。
2、世界多极化进程中的国际竞争。
(1)伴随着世界多极化进程,国际竞争越来越激烈。
面对急剧变化的世界,许多国家都在调整目标,力图为自己确立有利态势。美国极力维护其世界超级大国地位;日本和德国正努力跻身政治大国行列;中国坚定地走中国特色社会主义道路。
(2)竞争的意义:世界走向多极化,是时代进步的要求,符合各国人民的利益。由于世界多极化建立在多种力量相互依存又相互制约的基础上,因而有利于世界和平与发展。
总之,称霸与反霸的斗争将长期存在,这是影响国际和平与安全的一个基本因素。单极与多极的矛盾、称霸与反霸的斗争,将成为21世纪相当长一个时期内国际斗争的焦点。
三、抓住机遇,迎接挑战。
1、国际竞争及其实质。
世界格局的变化,各国目标的调整,形成了国家间既合作又竞争的局面。要对话与合作,不要对抗与冲突,已成为越来越多国家的共识。各国人民要求友好相处的呼声日益高涨。国家间在加强合作的同时,竞争也在加剧。
国际竞争表现在各个领域,有经济竞争、文化竞争、军备竞争、人才竞争、科技竞争等。
当前国际竞争的实质是以经济和科技实力为基础的综合国力的较量。
教师活动:阅读教材第106页“专家点评”内容,了解什么是综合国力?
学生活动:认真思考并踊跃发言。
教师点评:综合国力是指一个主权国家生存和发展所拥有的全部实力(即物质力和精神力)及国际影响力的合力。经济实力、科技实力、国防实力,这些物质力量是基础。其中,经济力和科技力已经成为决定性的因素。文化、经济、政治实力在综合国力竞争中越来越突出,民族精神、民族凝聚力是综合国力的重要组成部分。
教师活动:阅读教材第106页“相关链接”内容,了解各国是如何展开竞争的?
学生活动:认真思考并踊跃发言。
教师点评:当今世界,发展经济和科学技术是世界大多数国家关心的问题,各国之间的竞争也越来越多地转向经济和科技领域。世界多数国家都以发展经济和科技作为国家的战略重点,制定发展战略,努力增强自己的综合国力,力图在世界格局中占据有利地位。
2、加快发展,增强我国的综合国力。
教师活动:阅读教材第107页图表,并思考所提出的问题。
学生活动:认真思考并踊跃发言。
教师点评:发展才是硬道理。大力加快我国社会主义现代化进程,全面建设小康社会,增强国家实力,这是我国自立于世界民族之林的根本。
当前,我们要落实科学发展观,实现跨越式发展,尤其要着力于发展科学技术和提高国民素质,增强综合国力,积极参与国际合作与竞争。
(三)课堂总结、点评。
本节学习了世界多极化趋势,以及当前国际竞争的实质,通过学习深刻领会我国现代化建设面临的国际机遇和挑战,对于维护和实现我国人民的根本利益,促进我国经济发展和社会进步,提高我国的国际地位和影响力等,有重要意义。
课余作业。
分析讨论,面对当前的国际形势,我国应该如何抓住机遇、迎接挑战?
课后小结。
学了这节课,你有什么收获?
课后习题。
完成课后练习题。
板书。
世界多极化:不可逆转。
根据德国心理学家艾宾浩斯绘制的遗忘曲线,学生对知识的遗忘遵从先快后慢的规律,有效的回忆可以加深对知识的理解,掌握知识的内在联系,延缓知识的遗忘。教师要采用不同的形式,整理阶段的基础知识,使内容条理化、清晰化地呈现在同学的面前,从而完成由厚到薄的过程,对重难点和关键点,进行重点的、有针对性的讲解。配以适当的练习,提高学生对基本知识和基本方法的深刻性和准确性的理解掌握。促进学生科学合理的知识结构的形成,使知识系统化和网络化。
旧知检测。
要想有效的提高课堂的复习效率,就须克服“眼高手低”的毛病。很多同学上课时处于一种混沌的状态,一听就懂,一做就错;一听就会,一到自己做就不会了。为避免这样的情况,就必须让学生更好地了解自己知识的掌握情况。可以设置几个基础的填空和一个左右的解答题,通过解答的过程让学生“自知自明”。激发起兴趣,有效地提高复习的效率。
精选精讲。
精心的选择适量的典型例题,分析解决这些问题应该是一堂复习课的核心内容。解题的目的绝不是仅仅解决这个问题本身,而是要给出通性通法,揭示解决问题的一般规律,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。
本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位。
为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:。
一、知识与技能。
理解合力、分力、力的合成的概念理解力的合成本质上是从等效的角度进行力的替代。
探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法。
通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观。
培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:
一、重点。
合力和分力的概念以及它们的关系。
实验探究力的合成所遵循的法则。
二、难点。
平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介。
本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。
实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。
本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。
四、教学过程设计。
采用六环节教学法,教学过程共有六个步骤。
教学过程第一环节、创设情景导入新课:
第二环节、新课教学:
展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代法是一种重要的物理方法。
第三环节、合作探究:
首先,教师展示实验仪器,让学生思考如何设计实验,,如何进行实验呢?学生面对器材可能会觉得无从下手。再次设置问题引导学生思维,让学生面对仪器分组讨论以下四个问题。
问题1要用动画辅助说明。在问题2中,教师要强调结点的问题,用动画说明。问题3中,直观简洁的描述力必须用力的图示,用图片说明。问题4让学生注意测力计的使用,减小实验误差。通过对这四个问题的讨论,再结合多媒体动画的展示,使学生对探究的步骤清晰明了。
然后,学生分组实验,合作探究,记录合力与两分力的大小和方向,作出力的图示。实验完成后请学生展示实验结果,应该立即可得出结论一:比较分力与合力的大小,可得互成角度的两个力的合成,不能简单地利用代数方法相加减.
那合力与分力到底满足什么关系呢?
此时要引导学生思考:既然从数字上找不到关系,哪可不可以从几何上找找关系呢?学生会立即猜想出o、a、c、b像是一个平行四边形的四个顶点,ob可能是这个平行四边形的对角线.哪么猜想是否正确呢?亲自实践才有发言权,学生动手作图:以oa、oc为邻边作平行四边形oacb,看平行四边形的对角线与ob是否重合。
学生作图后发现对角线与合力很接近。教师说明实验的误差是不可避免的,科学家经过很多次的、精细的实验,最后确认对角线的长度、方向,跟合力的大小、方向一致,说明对角线就表示f1和f2的合力.由此得到结论二:力的合成法则——平行四边形定则。
进入。
第四环节:归纳总结。
将本文的word文档下载到电脑,方便收藏和打印。
一、教学目标:1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.
二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.
三、教学方法:阅读材料、思考与交流。
四、教学过程。
(一)、普查。
1、【问题提出】p7。
通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用――统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持.教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛.
教科书提出了三个有代表性的问题.第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等.人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等.第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解.学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差.教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小.同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用.第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持.
2、【阅读材料】p4。
“阅读材料”是课堂阅读,目的是让学生了解普查工作的特点和重要性,以及我国目前主要的一些普查工作.进而,总结出普查的主要不足之处,这是从一个方面说明了抽样调查的必要性.
普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.
普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.
普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.
(二)、抽样调查。
【例1和其后的“思考交流”】p8~9。
紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现.这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性.这从另一个方面说明了抽样调查的必要性.然后,教科书通过抽象概括总结出抽样调查的两个主要优点.
【例2和其后的“思考交流”】p9~10。
主要是讨论在抽样调查时,什么样的样本才具有代表性.在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导.在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的.误差.
由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.
抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.
解:统计的总体是指该地10000名学生的体重;个体是指这10000名学生中每一名学生的体重;样本指这10000名学生中抽出的200名学生的体重;总体容量为10000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.
例2为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:
a.测量少年体校中180名男子篮球、排球队员的身高;。
b.查阅有关外地180名男生身高的统计资料;。
c.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高.
解:选c方案.理由:方案c采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体.
例3中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面三名同学为电视台设计的调查方案.
甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.
乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.
丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.
请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?
解:综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.
(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.
(四)、作业:p10练习题;p10【习题1―2】。
五、教后反思:
一)、培养良好的学习兴趣。
1、课前预习,对所学知识产生疑问,产生好奇心。
2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
3、思考问题注意归纳,挖掘你学习的潜力。
5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
二)、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
三)、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
在复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然。让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”。一道好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处。
“山重水复”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上教给学生“点金术”,等等。
在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则。
教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西。”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法。复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极的探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。
作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。我们可采用“焦点访谈”法较好地解决这个问题,因大多数题目是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”。我们大可不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通。
引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网。
对重点内容应重点复习.首先拟出主要内容,然后有目的有针对性地做相关内容的题目,着重收集主要题型和技巧解法,像小论文式地重组知识,不要盲目地做题,要有针对性地选题,回味练习.
高考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法、换元法、分离常数法等操作性较强的数学方法.同学们在复习时应对每一种方法的实质,它所适应的题型,包括解题步骤都熟练掌握.其次应重视对数学思想的理解及运用,如函数思想、数形结合思想.
应注意实际问题的解决和探索性试题的研究。
现在各地风行素质教育,呼吁改革考试命题.增强运用数学知识解决实际问题的试题,在其他省市的高考命题中已经体现,而且难度较大,这一部分尤其是探索性命题在平时学习中较少涉及,希望同学们把近几年其他省、市高考试题中有关此内容的题目集中研究一下,有备无患.这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力.
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
(二)规律方法总结。
1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。
基本初等函数。
基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。
(二)规律方法总结。
1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。
2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。
本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
函数。
函数是高中数学的核心内容,函数的思想方法贯穿了高中数学的始终。近几年高考试题函数热点之一是考查函数的定义域、值域、单调性、奇偶性以及函数的图象。函数、方程、不等式关系密切,要学会对具体问题抽象概括、分析探索、透彻理解,从而构造函数,借助方程、不等式的知识,最终解决问题。实现函数、方程、不等式的沟通与转化,是高考的又一热点。考查函数内容的同时,用函数的思想观点研究问题,以及数形结合思想、分类讨论思想的灵活熟练应用,也是高考的一个重点。
规律方法总结。
求函数解析式时,针对条件的特点可选用换元法、待定系数法、凑项法、列方程组法等进行求解。其中换元法是常用的方法,但要特别注意正确确定中间变量的取值范围,否则就不能正确确定函数的定义域。判断函数单调性主要的方法有定义法、导数法、图象法。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/kouhaodaquan/565518.html