首页 > 范文大全 > 口号大全

高一数学必修二教案人教版新版(大全5篇)

高一数学必修二教案人教版新版(大全5篇)



作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。

高一数学必修四教案

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·

·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·

一、练习讲解:《习案》作业十三的第3、4题

(精确到0·001)·

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·

四、作业《习案》作业十四及十五。

高一数学必修一教案

1.2.1投影与三视图

课型

新课

教学目标

1.了解中心投影和平行投影的概念;

3.简单组合体与其三视图之间的相互转化.

教学过程

教学内容

备注

一、

自主学习

1.照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识.

二、

质疑提问

下图中的手影游戏,你玩过吗?

光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.

一、中心投影与平行投影

思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?

投影的分类:

把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:

正视图:光线从几何体的前面向后面正投影,得到的投影图.

侧视图:光线从几何体的左面向右面正投影,得到的.投影图.

俯视图:光线从几何体的上面向下面正投影,得到的投影图.

几何体的正视图、侧视图和俯视图,统称为几何体的三视图.

三、

问题探究

思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?

思考3:圆柱、圆锥、圆台的三视图分别是什么?

思考5:球的三视图是什么?下列三视图表示一个什么几何体?

例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同.

四、

课堂检测

五、

小结评价

1.空间几何体的三视图:正视图、侧视图、俯视图;

3.三视图的应用及与原实物图的相互转化.

高一数学必修一教案

(1)理解直线与圆的位置关系的几何性质;

(2)利用平面直角坐标系解决直线与圆的位置关系;

(3)会用“数形结合”的数学思想解决问题、

用坐标法解决几何问题的步骤:

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论、

重点与难点:直线与圆的方程的应用、

问 题设计意图师生活动

生:回顾,说出自己的看法、

2、解决直线与圆的位置关系,你将采用什么方法?

生:回顾、思考、讨论、交流,得到解决问题的方法、

问 题设计意图师生活动

3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题

生:自 学例4,并完成练习题1、2、

生:建立适当的直角坐标系, 探求解决问题的方法、

8、小结:

(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、

生:阅读教科书的例3,并完成第

问 题设计意图师生活动

题的需要准备什么工作?

(2)如何建立直角坐标系,才能易于解决平面几何问题?

(3)你认为学好“坐标法”解决问题的关键是什么?

高一数学必修二教案

2、结合已学过的数学实例,了解类比推理的含义;

3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用、

一、课前准备

问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是

……所以n边形的内角和是

新知1:从以上事例可一发现:

叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。

新知2:类比推理就是根据两类不同事物之间具有

推测其中一类事物具有与另一类事物的性质的推理、

简言之,类比推理是由的'推理、

新知3归纳推理就是根据一些事物的,推出该类事物的

的推理、归纳是的过程

例子:哥德巴赫猜想:

观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

归纳推理的一般步骤

1通过观察个别情况发现某些相同的性质。

2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。

※典型例题

例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和sn的归纳过程。

变式1观察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……

你能猜想到一个怎样的结论?

变式2观察下列等式:1=1

1+8=9,

1+8+27=36,

1+8+27+64=100,

……

你能猜想到一个怎样的结论?

例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。

变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式

例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、

圆的概念和性质球的类似概念和性质

圆的周长

圆的面积

圆心与弦(非直径)中点的连线垂直于弦

与圆心距离相等的弦长相等,

※动手试试

2如果一条直线和两条平行线中的一条相交,则必和另一条相交。

3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。

三、总结提升

※学习小结

1、归纳推理的定义、

高一数学必修一教案

一、自主学习

1. 阅读课本 练习止.

2. 回答问题

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3. 完成 练习

4. 小结.

二、方法指导

1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

一、提问题

1. 对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明.

二、变题目

1. 试求下列函数的反函数:

(1) ; (2) ;

(3) ; (4) .

2. 求下列函数的定义域:

(1) ; (2) ; (3) .

3. 已知 则 = ; 的定义域为 .

1.对数函数的'有关概念

(1)把函数 叫做对数函数, 叫做对数函数的底数;

(2)以10为底数的对数函数 为常用对数函数;

(3)以无理数 为底数的对数函数 为自然对数函数.

2. 反函数的概念

在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.

3. 与对数函数有关的定义域的求法:

4. 举例说明如何求反函数.

一、课外作业: 习题3-5 a组 1,2,3, b组1,

二、课外思考:

1. 求定义域: .

2. 求使函数 的函数值恒为负值的 的取值范围.

相关内容

热门阅读
随机推荐