首页 > 范文大全 > 口号大全

分数教案设计大全(18篇)

分数教案设计大全(18篇)



教学工作计划是学校教师每学期制定的一份具体安排,它是教学工作的基础和保证。导入一款高效的教学工作计划,可以给学生带来更好的学习体验,以下是一些优秀的范文供大家参考。

《分数乘整数》教案设计

《分数乘整数》是九年制义务教育苏教版第十一册第一单元第一课时的内容,主要包括分数乘整数的意义与计算方法。它是在分数加减法和整数乘法的基础上安排的,本节课的学习将为本单元学习分数乘法应用题和混合运算作好铺垫。

依据新课程“三维一体”的教学目标要求,本节课我确定以下几个教学目标:

2、通过知识的迁移,经历观察、讨论、交流、推理、验证等教学活动,主动建构分数乘以整数的计算方法,培养学生的概括与推理能力,并能利用计算法则正确计算。

3、让学生参与知识的产生和发展过程,增强学生积极的数学情感,以及学好数学的愿望和信心。

本节课的教学重点:分数乘以整数的计算方法。

教学难点:分数乘以整数的意义及计算法则的推导。

根据教学内容的安排,有效的突出重点,突破难点,并考虑学生原有的知识经验和发展水平,并结合“以学生的发展为本”的教学理念。这节课通过自主探究、合作交流的学习方式,让学生经历发现问题、分析问题和解决问题的全过程,在同桌间通过独立思考,信息交流,抽象概括等数学活动,实现学习者的自觉、积极、主动的构建新知,老师只是作适当的启发,引导创设情境,充分调动学生的积极性,力求让全体学生全面参与,学得积极,学得主动。

基于上述设想,遵循学生的认知规律,我设计以下教学环节:

一、复习铺垫,设疑激趣,引出新知。

由于学生已学过了同分母分数的`加减法和整数乘法,具有一定的知识准备,以此作为新知的“生长点”。让学生复习整数乘法以及同分母分数加减法的计算,为学习新课做好铺垫,调动学生的知识储备。灵活设计“老师在路上遇到小新,在把例1转成生活中的数学,让学生猜猜老师是怎样解决这个问题的?”这富有挑战性的有趣味性的问题,激起学生自主探究的欲望。此时学生处于“口欲言而不能,心求通而末达”的愤悱状态,为学习新课做好积极的心理准备。

二、自主探究,积极构建,解决问题。

知识不能靠传递,而要靠学习者在原有知识经验的基础上积极建构。根据学生的猜测,动手计算,就会出现两种算法,一种是加法,一种是乘法,引导比较两个算式结构上有什么特点?有什么关系?力求让学生自己去感悟分数乘整数的意义。利用知识的迁移,通过观察、思考、讨论、交流、质疑等数学活动抓住重点突破难点。

我适时鼓励学生尝试解答分数乘整数,引导学生在独立思考的基础上,合作交流,学会倾听,学会反思,学会表达。汇报自己的想法和算法,鼓励学生用自己喜欢的方法,再去计算。并讨论是怎样算的,无形中引导学生用自己的话概括出了分数乘整数相乘的计算法则,渗透不完全归纳法,培养学生合情的推理能力。

三、边学边练,注重应用,巩固掌握。

本课教学针对重点、难点,完成相应的练习,边学边练,及时巩固强化认识,注重落实知识的应用,培养学生的应用意识和能力。同时练习注意层次的安排,最后我安排三个层次的练习:

(1)巩固意义,看图列式,多说分数乘整数的意义。

(2)多练习计算强化对法则的应用和理解。

(3)把课堂还给学生,将主动权交给学生以学生为主体,寓教于戏,力求课堂气氛活跃,及时评价、鼓励,让学生把苦学变为乐学。

文档为doc格式。

《分数除法》数学教案设计

3.培养学生分析问题和解决问题的能力.。

教学重点。

明确分数乘、除法应用题的联系和区别.。

教学难点。

明确分数乘、除法应用题的联系和区别.。

教学过程。

一、启发谈话,激发兴趣.。

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答。

二、学习新知。

(一)出示例8的4个小题.。

1.学校有20个足球,篮球比足球多,篮球有多少个?

2.学校有20个足球,足球比篮球多,篮球有多少个?

3.学校有20个足球,篮球比足球少,篮球有多少个?

4.学校有20个足球,足球比篮球少,篮球有多少个?

(二)学生试做.。

1.第一题。

解法(一)。

解法(二)。

2.第二题。

解:设篮球有个.。

解法(一)。

解法(二)。

解法(三)。

3.第三题。

解法(一)。

解法(二)。

4.第四题。

解:设篮球个.。

解法(一)。

解法(二)。

解法(三)。

(三)比较区别。

1.比较1、3题.。

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有。

什么不同的地方?

(1)观察讨论.。

(2)全班交流.。

(3)师生归纳.。

这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

2.比较2、4题。

(1)观察讨论.。

(2)全班交流.。

(3)师生归纳.。

《分数除法》数学教案设计

教学内容:

苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

教学目标:

数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

教学重点:

列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。

教学难点:

理解列方程解决简单分数实际问题的思路。

教学过程:

一、导入。

1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

出示:小瓶的果汁是大瓶的。

这句话表示什么?你能说出等量关系式吗?

如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

2、揭示课题:简单的分数除法应用题。

二、教学例5。

1、出示例5,学生读题。

提问:你想怎么解决这个问题?

2、讨论交流:你是怎么想、怎么算的?

(1)用除法计算。

引导讨论:为什么可以用除法计算?依据是什么?

(2)用方程解答。

讨论:用方程解答是怎么想的,依据是什么?

让学生在教材中完成解方程的过程,并指名板演。

3、引导检验:900是不是原方程的解呢,怎么检验?

交流检验的方法。

4、教学“试一试”

(1)出示题目,让学生读题理解题目意思。

(2)讨论:这里中的两个分数分别表示什么意思?

这题中的数量关系式是什么?

(3)这题可以怎么解答,自己独立完成,并指名板演。

(4)交流:你是怎么解决这个问题的?

4、小结。

三、练习。

1、做“练一练”。

各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

2、做练习十二第1题。

(1)读题,画出题目中的关键句。

(2)学生说题意。

(3)引导学生说出并在书上写出数量关系式。

(4)独立解答,并指名板演。

(5)集体评议并校正。

3、做练一练第2题。

启发:你是怎样分析数量关系的?为什么要列方程解答?

3、小结解题策略。

四、作业:练习十二第1、3、4题。

板书设计:(略)。

三年级数学分数教案设计

教学准备:

教学目标:

1、复习、整理本单元的知识,在练习中进一步加强分数的加减法的熟练性。

2、通过多种形式的`练习,巩固分数加减法,在游戏、应用中体验数学的趣味性。

基本教学过程:

一、基本练习。

1、说分数和小数的意义。

0.40.80.7。

2、同分母分数加减法。

3、简单的异分母加减法练习。

4、练习五的第1题(分数加减法的混合运算)。

这里重点练习分数的通分和运算顺序。

二、垃圾分类。

1、看图,理解图意。

2、提问:

废纸类与玻璃类共占几分之几?

看图表,根据图中的数据,你能提出哪些数学问题?

3、小组内提问,并组内进行解答,

4、全班汇报,集中交流。

三、解方程。

在复习解方程的过程中,进行分数加减法的练习。

四、找数字游戏。

猜一猜,这些数字可能是什么?与同学进行交流。

先进行分数和小数的互化练习,然后确定数字的范围。

教学反思:

五、分析统计图,回答问题。

1、根据统计图中的数据,回答:

读2本和3本书的学生数占全班人数的几分之几?

你还能提出哪些数学问题?组内自己解决自己提出的问题。

六、想一想,算一算。

先自己算一算,想一想:

你发现了什么规律?

用刚才发现的方法,不用计算,你能直接得出-的结果吗?

七、小结。

八、实践活动:建造“分数墙”

《分数除法》数学教案设计

下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材:

1、教材内容:我认为可以理解为探索法则――理解法则――应用法则,进一步体现了新课标中“情境引入――数学建模――解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、教学目标。

知识目标:(1)、理解分式的乘除运算法则(2)、会进行简单的分式的乘除法运算。

能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。(2)能解决一些与分式有关的简单的实际问题。

情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。(2)、培养学生的创新意识和应用意识。(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用.

5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法:

教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的.,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法:

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。2、合作学习。

四、说教学程序。

1、类比学习,探索法则。(约3分钟)。

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)。

教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。

7、作业布置,凝固新知。(约2分钟)教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)。

五.说板书设计:

主板书采用纲要式,一目了然。

一、分式的基本性质1、文字叙述2、符号表述。

二、应用。

最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。

《分数除法》数学教案设计

在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。

我认为优点体现在:

二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。

不足之处是:

我认为有以下两点值得去深思:

一、有没有把课堂还给学生?

二、如何“还”?

很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。

说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。

《分数乘整数》教案设计

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1.改写算式。

+++=()×()。

+++++++=()×()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的.边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

《分数的基本性质》教案设计

分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

概念:分数的分子和分母同时扩大或缩小相同的倍数(这儿讲的倍数除0外),分数的大小不变。

分数是指整体的一部分,或更一般地,任何数量相等的部分;是一个整数a和一个正整数b的不等于整数的'比。

约分:把一个分数的分子、分母同时除以公因数,分数的值不变。约分的依据:分数的基本性质。

利用约分可以化简分数,当直接约分有困难时,可以将分子分母分解质因数后约分。

通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程。

《分数的基本性质》教案设计

有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!

(二)自主探究,发现规律。

1、出示例1的四幅图。

我们先来看一道题目。分别用分数表示每个图里的涂色部分。

(1)谁来说第一个?

全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?

(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?

2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?

先别急,先来看看有哪些实验要求。

咱们这个实验的目的上一什么?验证什么?

咱们实验的方法有哪些呢?

实验有什么要求?操作有序什么意思呢?要听从小组长的安排。

1、实验目的:验证猜想。

2、方法:折一折、分一分、画一画、算一算......

3、要求:小组合作,明确分工,操作有序。

我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!

学生操作,老师巡视指导。

集体交流结果。

咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。

把你的发现先和同桌交流交流。

生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。

师:还有谁想说说你的.发现?

生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。

师:换一组数据来说说自己的发现?

生:由到,分子、分母都被缩小了3倍,它们的大小不变。

师:为什么要0除外?

生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。

我们一齐读一遍。

师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?

除法中商不变的性质你还记得吗?

同学们想想看,这两个性质之间有什么关系呢?

根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。

师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?

师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。

(三)巩固练习,强化记忆。

好,那下面咱们就用今天学的知识来做几道题,好不好?

1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。

集体交流。

2、下面我们来填空补缺想理由。(出示练一练第二题)。

他们这样填是根据什么?

3、出示练习十一第二题。

独立完成,集体订正。

(四)课堂作业,运用知识。

练习十一第三题。

(五)课堂小结,认识自己。

今天这节课,你学到了什么?

《分数的基本性质》教案设计

(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给。

学具:每位同学准备三张相同的长方形纸片。

(一)复习准备。

1.口答:(投影片)。

根据120÷30=4,不用计算直接说出结果:

(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。

2.说一说依据什么可以不用计算直接得出商的?

3.说出商不变的性质。

教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

(二)学习新课。

(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。

教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

教师:请比较这三个分数的大小?

你根据什么说这三个分数相等?

学生口答后老师用等号连结上面三个分数。

(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

学生口述分数基本性质的内容,老师把板书补充完整。

教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)。

用学生自己的例题说明后,用投影片再说明:

2.把一个分数化成大小相等,而分子或分母是指定数的分数。

(2)口答练习:(学生口答,老师板书。)。

教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

新课教学分为两部分。

第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

《分数除法》数学教案设计

分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。

一、从生活入手进行教学。

数学来源于生活,教学要从学生的生活经验和已有的知识背景出发,给他们提供充分的从事数学活动和交流的机会。在本课教学的一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目:六年级男生人数是全班人数的二分之一,男生有27人,六年级有多少人?让学生简单计算。然后再让学生介绍本班的情况,自编类似的应用题,交给另一部分同学解答,引发学生参与教学的积极性,使学生感受到数学就在自已的身边。在生活中学习数学,其乐无穷!

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。

我在教学中努力体现自主、合作、探究的学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师在教学中存在偏差。教师往往喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端;或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的部分,无为地做深入的、细碎的剖析,这样既浪费了宝贵的课堂时间,又起不到好的效果。教学中我把分数除法应用题与分数乘法应用题结合起来进行教学,让学生通过讨论、交流、对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义的教育思想。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如是、占、比、相当于后面就是单位1;知1求几用乘法,知几求1用除法等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

教学中存在的不足之处在于,启发不够到位。教学过程中学生时有答非所问和不知怎样答的情况,如归纳本节课中的应用题特点时,由于没有引导学生分析数量。

将本文的word文档下载到电脑,方便收藏和打印。

《分数的基本性质》教案设计

2.培养学生观察、分析、思考和抽象、概括的能力.。

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.。

教学过程。

一、谈话.。

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

整数的互化方法.今天我们继续学习分数的有关知识.。

二、导入新课.。

(一)教学例1.。

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.。

1.分别出示每一个圆,让学生说出表示阴影部分的分数.。

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)。

(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)。

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)。

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).。

4.观察、分析相等的分数之间有什么关系?

(1)观察转化成,的分子、分母发生了什么变化?

(的分子、分母都乘上了2或的分子、分母都扩大了2倍.)。

(2)观察。

(二)教学例2.。

出示例2:比较的大小.。

1.出示图:我们在三条同样的数轴上分别表示这三个分数.。

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.。

(1)这三个分数从形式上看不同,但是它们实质上又都相等.。

(教师板书:)。

(2)你们分析一下,、各用什么样的方法就都可以转化成了呢?

1.观察前面两道例题,你们从中发现了什么变化规律?

“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)。

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

教师板书字母公式:

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的性质相类似.)。

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)。

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.。

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解。

决一些有关分数的问题.。

3.教学例3.。

例3把和化成分母是12而大小不变的分数.。

板书:

教师提问:

(1)?为什么?依据什么道理?

(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。

(3)?为什么?依据的什么道理?

(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,

三年级数学分数教案设计

教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

l教学重点:

理解单位“1”和分数的意义。

l教学难点:

理解单位“1”和分数的意义。

l教学准备:

教具准备:自制教学课件。

学具准备:小棒、练习纸。

l设计意图:

《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

l教学过程:

一、谈话导入。

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、提出要求:

二、分数的产生。

1、板书课题。

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义。

1.理解一个整体。

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流。

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体。

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)。

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体。

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)。

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义。

(1)、找其他分数。

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)、汇报交流。

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4。

师:为什么分母都是4呢?

生:因为都是平均分成了4份。

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数。

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1。

师:分母为什么会不一样呢?

生:取的份数不同。

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3。

师:分子其实就是表示——取的份数。

师:同学们不仅观察能力强,分析、概括能力也很出色。

4.揭示分数的意义。

(1)逐步理解分数的意义。

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:说的真好。如果不是平均分成9份,板书5/,那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/()。

师:很多份可以是几份?——2份,3份……。

师:我们可以用一个词来表示(板书:若干份)。

师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是()/()。

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位。

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4。

师:5/9的分数单位?

生:1/9。

师:5/99。

生:1/99。

师:()/1000。

生:1/1000。

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数。

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一。

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填。

(1)说说3/5的意义。

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活。

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6。

(2)、长江约3/5的水体受到不同程度的污染。

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境。

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8。

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难。

师:这节课我们学习了什么?你有什么收获?还有什么问题?

百分数的应用教案设计

一、导入。

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。

板书课题:“利息”

二、新课。

出示例题:小丽1月1日把100元钱存入银行,存定期一年。到1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期―年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的'利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少。

元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

“二年应得利息多少元?”学生口述,教师接着板书:×2。

小丽的存款到期时可以得到的利息是35.64元。

“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

三、巩固练习。

做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

四、作业。

练习一的第1题。

百分数的应用教案设计

2.理解算理,使学生学会计算定期存款的利息.。

3.初步掌握去银行存钱的本领.。

教学重点。

1.储蓄知识相关概念的建立.。

2.一年以上定期存款利息的计算.。

教学难点。

“年利率”概念的理解.。

教学过程。

一、谈话导入。

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.。

二、新授教学。

(一)建立相关储蓄知识概念.。

1.建立本金、利息、利率、利息税的概念.。

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.。

(2)教师板书:

存入银行的钱叫做本金.。

取款时银行多支付的钱叫做利息.。

利息与本金的比值叫做利率.。

2.出示一年期存单.。

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.。

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)。

4.出示国家最新公布的定期存款年利率表.。

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.。

(3)那什么是年利率呢?

(二)相关计算。

1.帮助张华填写存单.。

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)。

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结。

请你说一说如何计算“利息”?

三、课堂练习。

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息。

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)800×11.7%。

(2)800×11.7%×2。

(3)800×(1+11.7%)。

(4)800+800×11.7%×2×(1-20%)。

四、巩固提高。

(一)填写一张存款单.。

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

五、课堂总结。

通过今天的学习,你有什么收获?

六、布置作业。

分数除法教案设计

学情分析:

五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。教材分析:

(一)》是第五单元第一课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。教学目标:

1.在涂一涂、算一算等具体实践操作活动过程中,探索并理解分数除法的意义。

2.掌握分数除以整数的计算方法,明确算理,并能正确掌握计算。

3.能够运用分数除以整数的方法解决简单的实际问题。

4.在涂一涂,算一算的过程中养成动手操作能力和探究问题的能力。

教学重点:

引导学生探索并掌握分数除以整数的计算方法,并能正确计算。教学难点:

2、能够运用分数除以整数的方法解决简单的实际问题。教具准备:长方形纸、课件。教学过程:

一、创设情境,提出问题。

二、自主探究小组交流自主学习提示。

1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。2.同桌之间说一说彼此的想法。

3.有困难的同学,可以借助课本第55页的提示,完成这两个问题。

三、展示、交流、释疑。

活动一:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?请同学们拿出图。

(一)来涂一涂。

这就是这节课我们要学习的分数除法。(板书)。

2、初探算法。

活动二:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?请大家在图。

(二)的上面涂一涂。

3、我们来验证一下算法。

4、知识小结:除以一个整数(零除外)等于乘这个整数的倒数。

四、实践应用。

2、填一填师:学会了知识就要灵活的运用,这道题你们能填上吗?学生独立在书上第56页填一填,想一想。集体订正。

3、解决问题。

师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?学生在练习本上列式解答。

运用分数除法能解决生活中的很多问题呢。谁能像老师这样来说一说生活中的问题,让大家解决。

五、课堂总结学生谈一谈本节课的收获。

六、布置作业:练一练第3、5、6题。

七、板书设计:

除以一个整数(0除外)等于乘这个整数的倒数。

百分数的应用教案设计

_____________________________________。

2.桶里装有一些油,用去了60%,恰好是48千克,原来桶里装有多少千克的油?

_____________________________________。

3.一条绳子长48米,剪去全长的75%,还剩多少米?

_____________________________________。

4.一条绳子,剪去全长的.75%,还剩下12米,原来绳子长多少米?

_____________________________________。

5.生产车间上个月制造零件1280个,本月比上月超产15%,本月制造零件多少个?

_____________________________________。

6.生产车间本月制造零件1472个,比上个月超产15%,上个月制造零件多少个?

_____________________________________。

7.小丽身高126厘米,正好是父亲身高的70%,父亲身高多少厘米?

_____________________________________。

_____________________________________。

_____________________________________。

_____________________________________。

分数教案设计

前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:

(出示)4/71/3203/43/8162/33/2。

2、(复习倒数)其中当计算完2/33/2时提问:

看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))。

说得不错,下面就请同学们说说下面各数的倒数分别是什么?

(出示)3/8412/9。

3、把100千克的一桶油平均分成2分,每份是100千克的()/(),求100千克的1/2,列式为___。

把24千克的一袋面粉平均分成3份,每份是24千克的()/(),求24千克的1/3,列式为:_____。

同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。

(一)教学例1。

1、教学第一种算法。

例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

读题。

提问:怎样列式?(4/52)。

怎样计算呢?

(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)。

从图中你能看出每份是多少米?(板书:2/5升)。

那么2/5升是怎样算出的呢?

4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)。

(2)补充例证。

如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?

(3)观察比较。

提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数板书课题)。

(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。

2、教学第二种算法。

(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)。

(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算。

通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的`倒数的思路。

(3)让学生做试一试的题(自主选择计算方法)。

计算好了以后,再请学生说说你的思路是怎么样的。

使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

(4)你能用简炼的语言概括一下这种方法吗?

教师板书:分数除以整数,等于分数除以整数的倒数。

(5)你认为这个计算方法有什么重要的地方需要提醒大家。

教师用红笔标注。

老师也为同学们准备了一套星级赛题,你们有信心挑战吗?

一星题:

1、课本56页的练一练第1题。

做此题的目的使学生明确当遇到分子能整除时比较简便。

可以选用这样的方法。

二星题:

2、这里还有6道题,哪些同学愿意到前面来解答的?

练一练第2、3题。

让学生能根据题目灵活选择计算方法。

做好以后进行集体讲解和订正。

三星题:

8/94=8/91/4=2/92/73=2/73=6/7。

8/94=8/91/4=2/93/73=3/71/3=1/7。

师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。

四星题:

4、练习十一第2题。

本题的题目关键要让学生进行比较,分数乘法和除法的区别。

五星题:

1、如果a是一个不等于0的自然数,13a等于多少。

问:你能用具体的数来检验这个结果吗?

2、()/()3=5/187/()=()/24。

本课我们学习了什么内容?

相关内容

热门阅读
随机推荐