首页 > 范文大全 > 口号大全

四年级数学数学教案(模板13篇)

四年级数学数学教案(模板13篇)



教案还可以帮助教师对教学目标、教学内容和教学方法进行有针对性的分析和选择。针对四年级学生的学习特点和教学需求,以下是一些有效的教学方案供大家参考。

四年级数学教案

1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。

2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。

3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

目标:是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。

(1)停车场在广场的方向,距离大约是米。小红家在广场的偏方向,距离大约是米。

(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。

1、出示学校的录相或图片

问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。

2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?

3、小组汇报完成平面图绘制的计划,教师进行梳理:

(1)绘制平面图的方法:

先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。

(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。

4、小组活动,绘制平面图。

5、展示各组绘制的平面图,集体进行评议。

(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。

订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

(2)比较各个平面图,为什么有的图大,有的图小?

小结:1厘米表示的大小不同,图的大小也不同。练习:1、完成书上习题21页3、4题并订正。

老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等

四年级数学教案

1、让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。

2、使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。

3、使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减法计算能力的自觉性。

1、小数加、减法的笔算方法以及小数加减混合运算。

2、能根据数据特点正确应用加法的运算定律进行小数的简便计算。

1、理解小数点对齐,即数位对齐的道理。

2、灵活选用方法使混合运算简便。

3、感受解题策略的多样化和灵活性。

1、鼓励学生自主学习小数加减法知识。

小数加减法和整数加减法,两者之间有着割不断的联系和相同之处。整数加减法的计算方法,学生在三年级时就已经掌握了。因此,让学生充分应用旧知来自主学习小数的加减法成为本单元教学的一个重要策略。教学时,教师的职责是:帮助学生激活整数加减法的计算方法这一已有知识经验,并尝试用它来计算小数加减法;让学生明确列竖式时应如何对齐数位,懂得道理何在;学会用自己的语言表述自主尝试的过程和结果。通过自主学习本单元的知识,使学生懂得应用旧知来学习新知是获取知识的一条重要途径。

2、提倡解题策略的多样化。

为了使因材施教、让每一个人都得到充分发展的理念落到实处,教学时应注意关注不同学生解答问题的不同思路,积极鼓励学生用自己的方式思考问题,提出自己的解法。如,教学例1中解答“第二轮动作完成后中国队领先多少分?”的问题时,教师不宜作任何提示,而应让学生根据自身经验找到适当的解题方法。又如,教学例3、例4时,不需要将教材中出现的各种解题思路率先呈现给学生,而是让学生在独立思考、自主解答的基础上,通过合作交流,领会多种不同的解题思路,感受解题策略的多样性和灵活性,达到提高数学思考能力和计算能力的目的。

四年级数学教案

(1)知识与技能:学生在已有的知识基础上经历集合思想的形成过程,初步理解集合知识的意义。能结合具体情境体会用“韦恩图”解决有重叠部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重叠部分的问题。

(2)过程与方法:通过观察、猜测、操作、交流等活动,学生在合作学习中感知集合图的形成过程,能用集合图分析生活中简单的有重复部分的问题。

(3)情感态度价值观:在解决实验问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,体会数学的严谨性,感受数学与生活的联系,提高学习数学的兴趣。

集合思想方法解决简单的实际问题。

集合思想方法的形成过程。

“学习之星”和“劳动之星”的获奖奖励,“智慧星”和“守纪星”的获奖奖励,集合名称的磁板,获奖学生名字的卡片,课件。

一、脑筋急转弯导入新课师:今天这节课上老师会根据同学们的表现,评选出智慧星和守纪星。想要获得智慧星,那你课上需要积极动脑、认真思考。想要获得守纪星,那你课上就要认真听讲、坐姿端正、书写规范。看谁这节课既能获得智慧星又能获得守纪星。

谈话:同学们,你们玩过脑筋急转弯的游戏吗?想不想玩一玩?出示脑筋急转弯——理发师的困惑:

教师边讲解,边用课件播放声音。

师问:进来的怎么只有三个人呢?你们能帮理发师解决他的困惑吗?生:略师:在这里爸爸有双重身份,他既是孩子的爸爸又是爸爸的孩子。身份在这里重复了一次,所以只有3人。(板书:既??又??)像这样的问题,数学上称之为“重叠问题”今天就让我们一起去研究这类问题。

二、集合圈的深入探究师:根据同学们上一周的表现,李老师评选出了7名学习之星和5名劳动之星,那你们知道一共有多少名同学获奖了吗?(12名)师:有不同意见吗?生:没有师:那你们想不想知道都有谁获奖了?(课件展示获奖学生名单)师:从这张光荣榜里,你发现了什么?生:xxx既获得了“学习之星”又获得了“劳动之星”。

师:你这个词用的真好,既??又??(板书)这样说我们就听得很明白了,谁还能像这位同学一样说说你的发现?生1:xxx既获得了“学习之星”又获得了“劳动之星”。

师:谁能把这两个同学的发现连起来说说?生2:

和都既获得了“学习之星”又获得了“劳动之星”。

师:你真会表达。下面请获奖的同学赶快到前面来,老师给大家颁奖。学习之星站到老师的右手边,劳动之星站到老师的左手边。你们俩应该站到哪儿?师:咦,我发现了一个问题,刚才我们明明算了12名同学获奖了,怎么才来了10个人呢?那两个人呢?(学生举手,迫不及待的回答问题。)你们有话想说,那好,你来说说?生:

和都既获得了“学习之星”又获得了“劳动之星”,所以他们两人在获奖名单里重复了。

师:哦,原来是这样。看来同学真是理解了这两个同学的位置了,那这两边呢?谁来说说右边同学的获奖情况?生:右边同学获得了“学习之星”。

师:“学习之星”还有中间的两个同学呢,我们只描述这5个人的获奖情况。

生:这5个人单单只获得了“学习之星”。

师:那谁来说说左边这3位同学的获奖情况?生:左边这3位同学只获得了“劳动之星”。

师:真不错,这下我们弄清楚了。那老师开始颁奖了,左边的同学每人发一颗“学习之星”,右边的同学每人发一颗“劳动之星”,中间的同学每人既发一颗“学习之星”又发一颗“劳动之星”。(师边说边给学生发小星星)师:那刚开始我们算得有12名同学获奖了,在今天的这种获奖的情况下是不对的,你能用画图的方法表示出今天有10位同学获奖了吗?先听清要求:画图时,要画清同学们的获奖情况,还要让我们能直观的看出一共有多少名同学获奖了,注意老师已经把这些同学的名字编好了相应的序号(课件展示),不要写这些同学的名字了,我们只用序号来表示同学就可以了。

生:独立画图。

师:画好的同学可以小组相互交流一下,看看小伙伴们画的图有没有值得你借鉴的地方。(师巡视学生画的图,选择有代表性的图到前面投影。)师:老师选择了几位同学画的图,下面请这几位同学分别到前面来讲一讲他们画的图。

师:像这种重叠问题,我们可以用韦恩图来表示。它是英国的数学家韦恩在1881年发明的,后来人们为了纪念他把这个图叫作韦恩图,也叫集合圈。(板书:集合)师:下面就请同学们跟老师一起用集合圈的方式来画画图。(师边讲边在黑板上画集合圈)先画一个封闭的椭圆表示“学习之星”,画好之后贴上这个集合圈的名字是“学习之星”。接下来该画什么了?生:“劳动之星”的集合圈。

师:那“劳动之星”的集合圈我们应该画在什么位置呢?师:为什么要把“劳动之星”的集合圈有一部分画到“学习之星”的集合圈里面呢?生:因为有人既获得了“学习之星”又获得了“劳动之星”。

师:再画一个封闭的椭圆表示“劳动之星”。下面我们把这些获奖同学的名字贴在相应集合圈的位置里。

师:这个集合圈我们就算画好了,那集合圈的各部分表示什么呢?我们一起来看大屏幕。阴影部分表示什么?师:根据我们画的集合圈在小卷子上列出算式(生列算式)。

师:谁来说说你怎么列的算式,并给大家讲讲你为什么这样列算式?生:我列的算式是7+5-2=10(名),“7”表示7名“学习之星”,“5”表示5名“劳动之星”,减去“2”是因为有2名同学重复了。

师:你讲的真清楚,大家都听明白了吧。

师:谁还有不同的方法?你们看这个图我们相当于把这些获奖同学分了几部分?(3部分)哪三部分?分别是几人呢?那你会列算式了吗?三、问题拓展师:这个问题我算式弄清楚了,现在老师又有想法了,我们下周还要选出7名“学习之星”,5名“劳动之星”,你们帮老师想一想有可能有多少名同学会获奖吗(出示课件)?今天的获奖情况是有2名同学重复了,有10个同学获奖了。那下次获奖可能多少名同学重复呢?生:3名,1名。

师:最多有多少名同学重复获奖?生:5名。

师:为什么?生:因为“劳动之星”只有5人,所以最多只能有5人重复获奖了。

师:谁能按照一定的顺序把下周我们班获奖的重复情况都想全了,并说一说。

生:没有重复、重复1人、重复2人、重复3人、重复4人、重复5人(随着学生说,课件出示)。

师:那每种情况下有多少人获奖呢?分组做师:没有人重复获奖的情况。

生:7+5=12(人)师:那这个集合图该怎么画呢?生:画两个单独的圈,没有重复的部分。

师:(找学生说重复1人、重复3人、重复4人、重复5人的算式,并让学生说3/4清这样列式的原因。)那重复5人的时候,这个集合圈又该怎样画呢?生:“劳动之星”的圈都跑到“学习之星”的圈里去了(课件展示)。

师:那这个部分表示什么意思?有几人?(课件出示如下)学习之星生:这部分表示只获得了“劳动之星”,有2人。

师:我们来观察这些算式,你发现了什么?生:有几个人重复了,就去掉几人。

四、练习提升师:班里获奖同学的情况,我们都弄清楚了,真了不起,那今天没有获奖的同学呢?比如xxx,我想把他的名字也贴在黑板上,我应该贴在什么位置上。(贴在集合圈的外面)为什么啊?贴在外面表示什么呢?师:所以我们班里其他没有获奖的同学,都可以贴在获奖集合圈的外面。现在班里每位同学都找到了自己的位置,下面我们来帮同学们找到自己的位置。

这节课获得智慧星的有人,获得守纪星的有人,两项都获得的有人,两项都没有获得的有人,来上课的学生一共有多少人?师:请同学们,在小卷上独立完成,要求画出集合圈,并列算式。

六、课堂小结师:

今天我们学习了重叠问题,还用集合知识解决了不少问题,谁来说说你这节课的收获?

生1:我学会了画集合圈。

生2:我学会了重叠的问题可以用画集合圈的方法来解决。

生3:集合圈的画图方法能让我们很清楚得看清每个部分有多少人和一共有多少人。

师:你们的收获还真不少同学们,集合圈可以帮我们解决生活中有重复现象的问题以后这样的问题还有很多很多,就等着同学们去发现和解决。好,这节课就上到这里,下课。

四年级数学教案

1、通过具体活动,认识方向与距离对确定位置的作用。

2、能简单的描述路线图。

根据方向(任意方向)和距离描述简单的路线图。

教学准备:幻灯片。

1、出示投影:

照样子,填一填。

1号检查点在东偏北45的方向上。

2号检查点在偏的方向上。

3号检查点在偏的方向上。

4号检查点在偏的方向上。

(1)学生独立完成。

(2)学生发言,补充。

(3)老师讲评。

2、(1)小芳看小敏在东偏南30的方向上,小敏看小芳在什么方向上?

(要求学生在观察点上画出方向,再观察。)。

(2)书本p81页练一练第1题。

学生根据上题的练习,单独完成。请学生说说结果。(同桌说说)。

3、找位置,说距离。

(1)学校在小芳家北偏东40的方向上,距离是米。

(2)学校在小芳家偏的方向上,距离是米。

(3)学校在小芳家偏的方向上,距离是米。

(4)学校在小芳家偏的方向上,距离是米。

a.学生观察后回答有关的问题,先同桌说说,再请学生复述,其他补充。

b.老师小结。

4、完成81页练一练第2题。

5、课堂小结。

6、布置作业。

四年级数学教案

教科书52~53页小数的读写法,完成做一做题目和练习九的第6~7题。

使学生会读、写小数,并进一步理解小数的意义。

使学生会读、写小数。

幻灯、幻灯片

1、0.2是()位小数,表示()分之();

0.15是()位小数,表示()分之();

0.008是()位小数,表示()分之()。

2、0.4的计数单位是(),它有()个这样的计数单位;

0.07的计数单位是(),它有()个这样的计数单位;

0.138的计数单位是(),它有()个这样的计数单位。

1、教学小数的数位顺序表。

前面我们已经认识了小数,谁能举出一些小数的例子?

(0.20.050.0050.01……)

这些小数有什么共同特点?(小数点左边的数都是0)

在日常生活中你还见过其他的小数吗?谁能举出一些例子?

(1.540.63.1346.8……)

这些小数的小数点的左边还是0吗?

观察一下:小数可以分为几部分?

是不是所有的小数都比1小?

谁还记得整数的数位顺序?每个数位的计数单位是什么?相邻的计数单位间的进率是多少?

学生边回答边在黑板上板书整数数位顺序表。

接着提问:0.2表示什么?(表示两个十分之一)十分之一是它的计数单位;0.05表示什么?(表示百分之五,有五个百分之一)百分之一是它的计数单位。0.006表示千分之六,有六个千分之一,千分之一是它的计数单位。

多少个十分之一是整数1?

多少个百分之一是十分之一?

多少个千分之一是百分之一?

这些小数每相邻两个计数单位间的进率是多少?(10)

这和整数相邻两个计数单位间的进率是一样的,因此,一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右边,向整数一样计数。

10个十分之一是整数1,整数个位的右边应该是什么位?

十分位的计数单位是多少?百分位、千分位、万分位的计数单位分别是多少?

指出345.679整数部分中的每一位分别是什么位?

再指出小数部分的十分位、百分位、千分位上分别是多少?

2、教学小数的读法

出示最大古钱币的相关数据:高:0.58米、厚:3.5厘米、重:41.47千克

问:你会读出古钱币的有关数据吗?

谁能总结一下小数的读法?

强调:读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

完成做一做:读出下面小数

3、教学小数的写法

(1)例3:据国内外专家实验研究预测:到2100年,与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。

你会写出上面这段话中的小数吗?

(2)做一做:写出下面的小数。

零点零七五点零六十点零零二

三百点七一零点零一四十五点五零三

1、填空

0.9里面有()个0.1

0.07里面有()个0.01

4个()是0.04

2、小数点右边第二位是()位,第四位是()位,第一位是(),第三位是()。

3、说出24.375每个小数位上的数各是几个几分之一?

4、读出下面各数

(1)南江长江大桥全长6.772千米。

(2)土星绕太阳转一周需要29.46年。

(3)1千瓦时的电量可以使电车行驶0.84千米。

四年级数学教案

生:间隔排列的规律。

师:我们能不能运用学过的规律帮助它们解决困难呢?

生:能。

师:我们一起去吧!

1、出示例题的上半部分及情境图(暂不出现问题)。

师:从情境图中你看到了哪些景物?

生1:林**旁的树。

生2:做操的兔子。

生3:送花盆的猴子。

师:请阅读题目中的文字,了解题目的数学信息 。

师:怎样理解"从一端到另一端共栽了7棵树","相邻的两棵树相隔3米" ?

学生:7棵树分成了6段,每段3米。

学生:这里实质求6个3米是多少。

师:林**的两头都栽树,相邻两棵树相隔3米,也就是林**被树分成的每段的长度是3米。

2、出示第(1)个问题:林**长多少米?

生:会

3、学生列式解答,教师巡视,如发现不同的解法都让学生写在黑板上,并组织讨论。

(2)在两头都栽树的情况下,林**被树分成的段数与树的棵树有什么关系 ?

(3)这道题应该分成几步计算? 先算什么 ?再算什么 ?

4、出示第(2)个问题:兔子做操的队伍长多少米

学生独立解答,共同订正。

师:谁能说说每步求出的是什么?

生:5-1=4表示5个兔子分成了4个间隔。

生:4×2=8表示每两只兔子相隔2米,4个间隔共8米。

师:说得非常好!我们是根据什么想到的?

生:根据我们上节课学的间隔排列规律想到的。

5、做“试一试"

师:这道题中的林**指的是哪一条林**?

生:就是例题里的那条林**。

师:全长知道了吗?

生:全长是18米。

学生独立完成。

师:比较(1)(2)两题,在物体的排列上有什么相同的地方 ?

生:都是从一端到另一端,物体的间隔长度一定。

师:在计算方法上有什么相同的地方?

生:段数比物体的个数少1。

生:每段长度与段数相乘得总长度。

师:(板书)

物体个数-1=段数 每段长度×段数=总长度

师小结:这节课我们将运用间隔排列的物体数量间的关系,也就是我们上节课找到的规律来解决一些实际问题。(板书课题)

1、做第1题

学生独立解答,一人做在小黑板上,全班共同订正。

师:走廊两端放花和不放花一样吗?

生:不一样

生:两端放花,花的盆数比分的段数多1。

生:两端不放花,花的盆数有可能和分的段数相等。

生:也有可能比分的段数少1。

2、做第2题。

(1)出示题目,学生独立完成,指明板演,集中交流订正,说出每步算出的是什么。

师:植树方案包括哪些?

生:栽什么树。

生:怎样栽。

生:跑道两头栽不栽 ,草坪四个角上栽不栽 ,每隔几米栽一棵。

生:需要多少棵

(2)各小组讨论植树方案,填制下表。

植树方案

植树地点

植树品种

树苗棵数

(3)各小组展示植树方案,全班评议。

评议重点:

1)根据树的品种考虑相邻两棵树的距离是否合适。

2)根据设计的栽法,树苗棵树的计算是否正确。

生:我们运用了间隔排列规律解决了植树问题。

师:我们今天解决的植树问题,类似这样的问题在生活中很多,希望同学们做有心人,发现这样的问题,并努力解决它。

找规律(间隔排列)

物体个数-1=段数 每段长度×段数=总长度

两端放花,花的盆数比分的段数多1

两端不放花,花的盆数有可能和分的段数相等或比分的段数少1

四年级数学教案

四年级上册第78、79页上的例l及相应的课堂活动,练习十五第1~2题。

1.经历三位数乘两位数计算方法的探索过程,会进行三位数乘两位数的笔算。

2.能应用所学知识主动探索三位数乘两位数的计算方法,培养学生的迁移能力和灵活应用所学知识解决实际问题的能力。

三位数乘两位数的笔算方法。

乘第二个因数十位时积的写法。

教师准备多媒体课件、视频展示台。

一、复习引入,准备学习

1.口算。(课件出示题目及答案)

学生完成后,集体订正,并让学生说一说是怎样算的。

2、用竖式计算。(课件出示题目及答案)

23×32 24×27

指名两名学生板演,其余学生在练习本上计算,完成后集体评议。

教师:怎样笔算两位数乘两位数?

引导学生说出:用第二个因数的个位和十位分别去乘第一个因数;乘到哪一位,积就从那一位写起;哪一位乘得的积满几十,就向前一位进几;最后再把两次乘得的`积加起来。(课件显示)

教师:这节课我们要在两位数乘两位数的基础上来探究三位数乘两位数。(板书课题:三位数乘两位数的笔算(一)。)

二、探究例1,学习新知

1.提出问题

多媒体课件出示例1情境图。

教师:我们继续走进丰收的果园。从题目中你了解了哪些信息?你能提出哪些数学问题?

学生1:张阿姨32时共采摘脐橙多少千克?

学生2:李叔叔一共包装脐橙多少筐?

(学生回答后,课件显示以上两个问题)

2.初步尝试

(1)尝试口算

教师:我们先来解决第一个问题,该怎样列式呢?

学生列出算式:123×32。(课件显示算式并板书)

教师:如果要口算123×32,你觉得该怎样口算?

引导学生说出:可以先口算123×2=246,再口算123×30=3690,再把246+3690=3936。

(2)尝试笔算

教师:是不是感觉口算起来很困难?也容易出错?如果数字再大一些,我估计就有同学吃不消了。为了让计算更准确,通常我们用竖式来进行计算。你能仿照两位数乘两位数的方法用竖立计算123×32吗?试试看。

学生尝试计算,教师巡视指导,做完后让学生同桌或小组进行交流。

教师:现在我请一位同学上台来给大家讲讲自己是怎样计算的?

指名学生上台汇报,学生汇报时重点让学生说清楚:先算什么,再算什么,积怎样写,最后又怎么办。(课件显示结果)

(3)探讨难点

引导学生观察后说出:计算123×30这一步时,由于第二个因数的3在十位上,表示3个十,与123个位上的3相乘,就得9个十,也就是90,所以9应写在十位上,个位的0省略不写,因为9写在十位上就已经能表示9个十了。也就是说123×30的积要从十位写起。

3.再次尝试

教师:现在请同学用同样的方法去解决一下第2个问题。

学生独立解决问题(二),完成后指名上台汇报,重点说说是怎样用竖式计算的。(课件显示第二个问题的算式及结果)

4.总结算法

引导学生说出:一样,只是多乘一位。

教师:那三位数乘两位数该怎样用竖式计算呢?同桌说一说。

学生讨论后汇报:三位数乘两位数,用第二个因数的各个数位分别去乘第一个因数;乘到哪一位,积就从那一位写起;哪一位乘得的积满几十,就向前一位进几;最后再把几次乘得的积加起来。(课件显示,学生齐读)

5.提炼数量关系

教师:刚才解决这两个数学问题,用到的数量关系分别是什么?

学生1:每时采摘的千克数×时间=一共采摘的千克数。

学生2:每天包装的筐数×时间=一共包装的筐数

引导学生说出:两个数量关系都可以用工作效率×工作时间=工作总量。(课件显示)

三、练习提高,加深理解

1.数学书79页课堂活动(课件出示题目)

学生独立完成,完成后指名学生上台汇报展示。(可让学生边板书边汇报;也可指名4名学生板演,完成后结合竖式介绍自己的算法。)

2.数学医院(课件出示题目及答案)

学生独立判断后,说出错在哪里,应怎样改正。

3.数学书81页练习十五1、2题。

学生独立完成后校对答案。(课件出示题目及答案)

四、课堂小结

今天我们学习了什么知识?你的收获是什么?

四年级数学教案

北师大版小学数学四年级第七册第二单元《画角》。

本教材是在学习了量角器使用方法的基础上进行的,使学生认识到量角器不光能量角,而且还能帮助我们画角。

本班有学生19名,其中男生有12名,女生有7名,班上学习风气比较正,大多数学生能自觉学习,只有两名学生因年龄小有些吃力,学生合作意识比较强。

1、会用量角器画指定度数的角。

2、会用三角板画一些特殊度数的角。

用量角器画指定度数的角。

在使用量角器画角时,内外圈不分。

通过回忆量角器的使用方法,激励学生,量角器不光能量角,还能帮助我们准确地画角,你们愿意试试吗?自然地过渡到今天的知识点。之后给学生宽松的环境,充分的时间,让学生在自主探索中获取有用的技能和方法。同时边画边说基本步骤,培养学生的语言表达能力和逻辑思维能力。通过用三角板画一些特殊度数的角。培养学生灵活解决问题的能力。

一、复习引入

1、学生任意画角,并量出自己所画角的度数。

教师巡视,发现问题。

2、展示量角中读错的度数,巩固量角方法,引起学生注意

二、新课学习

1、师:刚才画的角度数不一,小组能不能想办法让组内每个同学所画角的度数都相等?

师巡视,发现:有的小组同学没有按要讲求去做,仍“各自为政”,自画自角。

2、教师再次强调要求:

大多组:由小组同学发现直接用三角板画比较快,统一采用此方法

3、画角方法

(1)以50度为例:

生1:错误画法

生2:展示正确画法!

纠正画角中的问题:

a。点顶点。

b。画其中一条边。

c。确定另一条边另一条边如何确定?自学书本:p58页

(2)展示借助三角板画角的方法

4、小组再次画同样的角

要求:不画直角、平角、周角这类特殊角

5、巩固练习:

(1)画出下列度数的角:

40度140度

(2)在点和射线上分别画出70度、120度角:

三、在教师要求下画角:

1、画60度角(你想怎么画?)

(一般会出现有的用三角板画,有的同学用量角器画。)

说一说,哪种更方便。

2、画75度角

(你想怎么画?)

(一般会出现有的用三角板画,有的同学用量角器画。)

说一说,哪种更方便。

画150度角

3、画15度角

在发现用两个三角板拼不出来后,学生们都用量角器画角,只有一个学生采用展示量角器画15度角的方法。

展示用三角板“减角”的方法画。

4、画100度角

看到100度角很多学生采用三角板拼的方法,短暂时间后放弃三角板用量角器画。

师:三角板只能拼(减)特殊角,很多角需要用量角器画

四、课堂总结:

这节课你学会了什么?

四年级数学教案

4:00离校。口算出我们每天的在校时间。

2.引入新课。

我们已经学会计算同一日内经过时间的问题,今天我们要继

续学习有关经过时间问题的计算。(板书课题)

1.出示例3,学生读题。

提问:求经过时间的问题的计算,我们可以借助于什么方法?

指名学生口答,老师在黑板上画直线图。

提问:题里用的是什么计时法?

一艘轮船从南京开往南通,什么时候开出的?是什么时候到达的?

指名学生口答,老师在直线图上标出。

提问:这艘轮船一共行驶了多少时间?你是怎样想的?

指出:这艘轮船从第一天出发到第二天到达目的地,经过的时间是由两部分合起来的:从第一天22时到24时经过了2小时,又从第一天24时(也就是第二天0时)到8时经过了8小时,所以一共经过了10小时。

追问:一共行驶了多少小时?是由哪两部分时间合起来的.?

2.做练一练。

提问:从第一天18时到第二天10时,经过的时间是由几部分合起来的?是哪几部分了

指名学生板演,其余学生做在练习本上。

集体订正,说说每一步是怎样想的。

1.练习十第7题。

指名板演,其余学生做在练习本上。

集体订正,让学生说一说每一步是怎样想的。

指出:求两天间经过的时间,要先算出第一天用了多少小时,再加上第二天用了多少小时。

2.判断下面的每一种说法对不对。

(1)20时就是晚上10时。()

(2)0时就是晚上12时。()

(3)一、三、五、七、月是大月。()

(4凡是单月都是大月。()

(5)凡是双月都是小月。()

(6)8月30日的后一天是9月1日。()

3.练习十第8题。

怎样算出一共放假多少天?

请大家算一算,一共放假多少天,告诉老师。

4.练习十第9题。

向学生说明在生活里经常出现时间问题。

让学生在课本上写出来,然后口答每次时刻。(老师板书)

让学生说一说,第二、三次取信时间各是下午的几时。

5.练习十第10题。

让学生填在课本上,然后口答。要求说一说是怎样想的。

6.练习十第11题。

让学生填表中的数,然后口答。

提问:这两列火车到达的时间有什么不同?在计算运行时间时,方法上有什么不同?

始的时刻到24时经过的时间,再加上第二天所用的时间。

1.练习十第6题,直接填在书上。

2.练习十第12、13题。

课后感受

经过时间=结束时间-开始时间,学生在练习中经常会在减不够的时候倒过来计算的,尤其是在跨2天的经过时间计算上,还是有点问题。也许是我讲的并不是很清楚吧。

四年级数学教案

1、能发现、再现物体的序列,体验不同的排序方法,在操作活动中有规律地设计图案,提高动手能力。

2、培养幼儿思维的多样性,初步感知数学中的规律美。

1、多媒体课件。

2、彩色珠子、彩皮、腰带、彩带等。

3、玩具小熊一个,篮子若干。

一、感知规律

1、观看课件,引导幼儿发现并讲出其中的规律出示玩具小熊,师:小朋友你们看,这是谁呀?(小熊)

师:小熊他今天可开心了,因为他搬新家了,让我们一起看看他家的新房子吧!(观看课件画面)小熊的新家漂亮吗?(漂亮)

师:今天小熊还请了三位好朋友到家里做客呢,看看他们是谁呀?(小兔,小猫,小狗)

师:三位好朋友接到小熊的邀请可高兴了,他们要出发啦!

师:(观看课件画面)哦,这三位好朋友每人都走了一条小路,哇小路上还有好看的小石头呢!让我们一起看看他们走的小路上的小石头是怎样的。

师:先来看小兔,他走的小路上的石头是怎样的呢?(一块红色一块绿色一块红色一块绿色……)

师:小兔走的小路是一格一排列的石头小路。小猫走的小路呢?(一块绿色两块蓝色一块绿色两块蓝色……)

师:小猫走的路是一格二排列的石头小路。小狗呢?(一块红色一块蓝色一块黑色一块红色一块蓝色一块黑色……)

师:小狗走的小路是一、一、一排列的石头小路。

师:小朋友,你们觉得这三条小路看上去漂亮吗?(漂亮)为什么?(引导幼儿说出小石头的排列有规律)

2、观看课件,引导幼儿按规律排列

(1)引导幼儿发现并尝试接着规律排列师:到了小熊家,小熊请三位好朋友吃点心啦!咦?怎么是个空盘子呀?原来这是个神奇的盘子哦,盘子上有一些花纹,只要将盘子上的花纹按一定的规律说下去,好吃的点心就会出现了。你们想不想试一试呀?(想)师:看看小兔拿到的盘子是什么花纹?(一块红色一块黄色一块红色一块黄色)接下来应该怎么排呢?(与老师一起讲述)(一块红色一块黄色一块红色一块黄色……)看看对不对?哇,是什么好吃的点心呀?(萝卜)师:小猫的盘子呢?(一朵大花二朵小花一朵大花二朵小花)接下来应该怎样呢?(请幼儿讲述)(一朵大花二朵小花一朵大花二朵小花……)是什么点心呀?(小鱼)幼儿与老师一起吃美味的"小鱼"。

师:我们也来帮帮小狗吧!谁愿意来说一说?(正方形、圆形、三角形,正方形、圆形、三角形)接下来呢?(正方形、圆形、三角形,正方形、圆形、三角形……)(骨头出现)

(2)拓展幼儿思维师:小朋友,除了这些排列,你们还有没有不一样的排列?(两个高人两个矮人……三个大碗两个小碗……)

二、应用创作师:吃完了点心,小熊要请大家唱歌跳舞啦,你们看,小熊打扮的漂亮吗?(漂亮)那让我们也把自己打扮一下和小熊一起跳舞吧!

1.简单介绍各小组的活动内容师:老师为你们准备了各种材料:花环和大小彩色花;彩色珠子和线;腰带和彩色丝带。选择你自己喜欢的材料开动吧!

2.幼儿自选小组活动(1)装饰花环(2)串项链(3)装饰彩带裙

三、评价活动师:谁来介绍一下你的作品呢?

互相观赏,评价个别作品,表扬有创意的幼儿。

四、结束活动

师:孩子们,把自己打扮起来吧!(一起把自己的作品戴在身上欢乐起舞)

师:时间不早啦,我们该和小熊说再见了,小熊再见!(挥手离开小熊家)

四年级数学教案

教学目标:

1,通过人民币和外币的兑换,体会求积,商近似值的必要性,感受数学与日常生活的密切联系。

2,能感受按照要求求出积,商的'近似值。

基本教学过程:

一、创设情境:呈现中国银行20xx年3月公布的关于外币和人民币之间的比率。

二、自主探究,创建数学模型。

首先引导学生进行解答。由于货币的最小单位一般是分,以元为单位时第三位小数没有意义,所以一般需要保留两位小数,因此学生将体会到求积,商近似值在生活中的应用。

三、巩固与应用。

1、试一试,可以让学生用计算器算出得数,然后根据得。

数按要求用四舍五入法求出近似值。

2、练一练:p71/1,2,3,4。

第1题:这是人民币和港币的兑换,12.51。07,超过了11元港币;也可以用兵11.07,不到本世纪末2元,因此11元港币不够。

第2题:这是人民币和日元的兑换,要注意的是:50007.09所得到的近似值还需要去乘100.

第3题:这是欧元换人民币,50009.15=45750(元)不需要。

近似值.

第4题:这是求近似值在其他问题中的应用,在这里不能四舍五入,而要根据具体情况灵活应用,因此,本题培养了学生灵活解决实际问题的能力.

四、总结。

根据学生的练习情况进行小结.

教学反思:这部分内容是教学的难点,学生接触比较少,掌握起来比较困难,要进一步理解算理。

四年级数学教案

北师大版小学数学四年级第七册第二单元《画角》。

本教材是在学习了量角器使用方法的基础上进行的,使学生认识到量角器不光能量角,而且还能帮助我们画角。

本班情况及学生特点分析:本班有学生19名,其中男生有12名,女生有7名,班上学习风气比较正,大多数学生能自觉学习,只有两名学生因年龄小有些吃力,学生合作意识比较强。

1、会用量角器画指定度数的角。

2、会用三角板画一些特殊度数的角。

:用量角器画指定度数的角。

在使用量角器画角时,内外圈不分。

通过回忆量角器的使用方法,激励学生,量角器不光能量角,还能帮助我们准确地画角,你们愿意试试吗?自然地过渡到今天的知识点。之后给学生宽松的环境,充分的时间,让学生在自主探索中获取有用的技能和方法。同时边画边说基本步骤,培养学生的语言表达能力和逻辑思维能力。通过用三角板画一些特殊度数的角。培养学生灵活解决问题的能力。

教学过程:

1、学生任意画角,并量出自己所画角的度数。

教师巡视,发现问题。

2、展示量角中读错的度数,巩固量角方法,引起学生注意

1、师:刚才画的角度数不一,小组能不能想办法让组内每个同学所画角的度数都相等?

师巡视,发现:有的小组同学没有按要讲求去做,仍“各自为政”,自画自角。

2、教师再次强调要求:

大多组:由小组同学发现直接用三角板画比较快,统一采用此方法

3、画角方法

(1)以50度为例:

生1:错误画法

生2:展示正确画法!

纠正画角中的问题:

a.点顶点。

b.画其中一条边。

c.确定另一条边另一条边如何确定?自学书本:p58页

(2)展示借助三角板画角的方法

4、小组再次画同样的角

要求:不画直角、平角、周角这类特殊角

5、巩固练习:

(1)画出下列度数的角:

40度140度

(2)在点和射线上分别画出70度、120度角:

1、画60度角(你想怎么画?)

(一般会出现有的用三角板画,有的同学用量角器画。)

说一说,哪种更方便。

2、画75度角

(你想怎么画?)

(一般会出现有的用三角板画,有的同学用量角器画。)

说一说,哪种更方便。

画150度角

3、画15度角

在发现用两个三角板拼不出来后,学生们都用量角器画角,只有一个学生采用展示量角器画15度角的方法。

展示用三角板“减角”的方法画。

4、画100度角

看到100度角很多学生采用三角板拼的方法,短暂时间后放弃三角板用量角器画。

师:三角板只能拼(减)特殊角,很多角需要用量角器画

四年级数学教案

1.使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2.使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

教学过程。

一、创设情境,激趣引入。

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)。

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)。

二、设疑引探,自主建构。

1.操作感受。

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)。

2.分类建构。

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)。

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)。

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)。

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)。

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

3.交流质疑。

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

三、巩固练习,深化认识。

1.试一试。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

2.做想想做做第2题。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

3.做想想做做第3题。

学生独立完成判断,并说明理由。

四、全课总结。

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

五、举例检验。

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

[总评]。

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

相关内容

热门阅读
随机推荐