首页 > 范文大全 > 口号大全

比的基本性质数学教案大全(18篇)

比的基本性质数学教案大全(18篇)



教学工作计划需要适时进行调整和优化,以适应学生的学习进度和实际情况。以下是一些优秀的教学工作计划范文,希望能给大家提供一些教学设计的灵感和思路。

小学六年级数学《比的基本性质》教案

教学内容:

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

教学目的:

教学过程:

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

比的基本性质数学教案

一、利用旧知学习新知的学习方法。如在教学例1前,先让学生做一道这样的练习题:学校有8个篮球,12个排球,篮球和排球个数的比多少?让学生发表各种意见,然后讨论篮球和排球的个数比是写成8:12好还是写成2:3好?在教学例1时,先把例题转化成约分:14/21,1.25/4这种形式,让学生运用以前的知识经验进行计算;接着让学生把它看成比的形式,该怎么读呢?学生齐读。教师直接指出这就是我们要学的化简比;从而使学生在不知不觉中进入新的学习。学生学习起来也感觉很简单,容易接受。

二、加强对比,沟通知识间的联系。如8:12和2:3进行比较,通过讨论,发现比的特点,让学生更清晰什么是最简单的整数比;把约分转化成化简比,鲜明的对比,明确地理解化简比的方法。

三、从故事的情景中引入课题,激发学生学习的积极性,并突出学习化简比的必要性。在教学中,本人讲述了一个《商人和上帝》的故事,商人向上帝倾诉自己的努力,却得不到应有的回报,希望能得到上帝的支持和帮助;于是,上帝提出这样的要求:在所给的比当中选择一个比,就是你的朋友与商人的。商人只要从上帝提出的要求中(2.4:4.8、1/6:1/3、36:72等等)选择一个比,上帝就会无条件地送给他们所想的礼物;从商人的思考、难以选择的困惑中,让学生体会到化简比的必要性。

比的基本性质数学教案

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

出示例1:把下面各比化成最简单的整数比。

(1)。

问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)。

问:这是一道分数比,怎样才能使它转化成整数比?(引。

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)。

问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的'前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

四、作业。

1.练习十四第6、10题。

2.一列火车15小时行驶1200千米。

(1)写出行驶的路程和时间的比,并化成最简单的整数比。

(2)求出这个比的比值,再说出这个比值的含义是什么?

比的基本性质数学教案

填空:

教师追问:第三题()里可以填多少个数?第4题呢?

为什么3、4题()里可以填无数个数?

()里填任何数都行吗?哪个数不行?(板书:零除外)。

这里为什么必须“零除外”?

教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.。

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.。

1.用直线把相等的分数连接起来.。

2.把下列分数按要求分类.。

和相等的分数:

和相等的分数:

3.判断下列各题的对错,并说明理由.。

4.填空并说出理由.。

5.集体练习.。

四、照应课前谈话.。

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.。

这节课你有什么收获?

六、布置作业.。

1.指出下面每组中的两个分数是相等的还是不相等的.。

2.在下面的括号里填上适当的数.。

《比的基本性质》教案

教完“比的基本性质”后,我不停地在思考一个问题:学生学习数学知识有一个最重要的基础:已有知识,尤其对六年级学生而言,他们在以前学习的过程中,积累了丰富的数学知识,尽管这些知识的获得有的来自于他人的帮助,有的来自于自身的感悟,但是不管怎样,不管其来源如何,既然学生已经掌握,就纳入到了学生已有的知识结构体系中,这些的确是客观存在的现实,并作为小学生已有知识的一部分构成进一步学习新知的数学资源。《数学新课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。小学生已有的知识是学生进行数学学习的重要资源。

其实,对于小学生而言,由于他们已经有了许多相关的数学知识,很多教材中的“新知识”对于学生来讲并非“新知识”。正因为这样,我理解的小学生数学学习的实质是,用自己已有的知识与新知进行交互作用,进而重新建构自己的知识体系的过程。学生以前学习的“商不变的规律”、“分数的基本性质”、“比与分数、除法之间的关系”和今天学习的“比的基本性质”相互联系起来,让学生在已有知识的基础上学习新知就可以起到事半功倍的效果。

因此,学生的已有知识理所当然地成为他们数学学习的一个重要基础,进而成为我们进行数学教学的一个庞大资源库。而这些学生已经掌握的数学知识,为他们进一步学习数学提供了一个有利的条件。教师如果能够注意到这些情况,并将学生已有的知识科学合理进行利用,与学习数学新知互相结合起来,必将起到良好的效果。因此,关注学生已有的知识,贴近学生的实际情况,既是数学学科的特点所决定的,更是数学学习所必需的。

小学六年级数学《比的基本性质》教案

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

使学生理解比的基本性质,掌握化简比的方法。

一、复习。

1.除法中的商不变规律是什么?

2.分数的基本性质是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

1.教学比的基本性质。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

比的基本性质教案

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。

(1)4人小组交流(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

这节课有哪些收获?师生共同总结。

()年()班姓名。

你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

方法一。

方法二。

方法三。

方法四。

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号。

我的方法。

(写出过程)。

1

14:21。

2

36:15。

3

1/6:2/9。

4

2/3:3/4。

5

1.25:2。

6

5.6:4.2。

我的发现:

小学六年级数学《比的基本性质》教案

一、利用旧知学习新知的学习方法。如在教学例1前,先让学生做一道这样的练习题:学校有8个篮球,12个排球,篮球和排球个数的比多少?让学生发表各种意见,然后讨论篮球和排球的个数比是写成8:12好还是写成2:3好?在教学例1时,先把例题转化成约分:14/21,1.25/4这种形式,让学生运用以前的知识经验进行计算;接着让学生把它看成比的形式,该怎么读呢?学生齐读。教师直接指出这就是我们要学的化简比;从而使学生在不知不觉中进入新的学习。学生学习起来也感觉很简单,容易接受。

二、加强对比,沟通知识间的联系。如8:12和2:3进行比较,通过讨论,发现比的特点,让学生更清晰什么是最简单的整数比;把约分转化成化简比,鲜明的对比,明确地理解化简比的方法。

三、从故事的情景中引入课题,激发学生学习的积极性,并突出学习化简比的必要性。在教学中,本人讲述了一个《商人和上帝》的故事,商人向上帝倾诉自己的努力,却得不到应有的回报,希望能得到上帝的支持和帮助;于是,上帝提出这样的要求:在所给的比当中选择一个比,就是你的朋友与商人的。商人只要从上帝提出的要求中(2.4:4.8、1/6:1/3、36:72等等)选择一个比,上帝就会无条件地送给他们所想的礼物;从商人的思考、难以选择的困惑中,让学生体会到化简比的必要性。

这节课,学生都充满积极向上的信心,都在不断地探索中不断获得新知,在学生的练习反馈中,也发现大部分学生能掌握了这一知识点。

小学六年级数学《比的基本性质》教案

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

小学六年级数学《比的基本性质》教案

3、导入课题:

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

1、教学例3比的基本性质。

(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?

2、教学例4应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比

(1)12:18(2)(3)1、8:0、09

(1)让学生试做第(1)题

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

数学教案-比例的意义和基本性质

1、教学内容:

《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:

根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的`指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计。

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。

(一)复习导入。

让学生根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。

(二)教学新课。

第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的`能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。

第二部分:在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

(三)巩固练习。

在巩固练习环节中,第1题是三个判断题,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。

三、说教后反思。

这节课是概念教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的意义和基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

新课上完之后,我觉得这节课的内容学生掌握得还比较好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,因此需要加强学生这一方面知识的反复练习,才能使学生熟练掌握比例的基本性质。我觉得通过这一节课我学到了好多,作为一名教师,千万不能完全按照自己的我还要在实践中不断完善自己的教学方法。

文档为doc格式。

比的基本性质教案

课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

出示例1:把下面各比化成最简单的整数比。

(1)。

问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)。

问:这是一道分数比,怎样才能使它转化成整数比?(引。

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)。

问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

四、作业。

1.练习十四第6、10题。

2.一列火车15小时行驶1200千米。

(1)写出行驶的路程和时间的比,并化成最简单的整数比。

(2)求出这个比的比值,再说出这个比值的含义是什么?

《比的基本性质》教案

1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别。掌握能被2、5、3整除的数的特征。会分解质因数。会求最大公约数和最小公倍数。

2.使学生在理解的基础上掌握分数、小数的基本性质。

一、数的整除。

1.整除的意义:

教师:。想一想.“什么叫做整除?”指名回答,

教师进一步强调:。“整除中说的数是什么数?”(整数。)。

“商是什么数?”(整数。)“有没有余数?”(没有余数:)。

教师:“什么叫除尽?”。“两数相除.余数是0。)。

“整除和除尽有什么联系和区别?”指名回答。教师根据学生的回答,整理出下表:

教师:“可以看出整除是除尽的一种特殊情况。”

2.能被2、5、3整除的数的特征。

教师:“我们已经学过能被2、5、3整除的数的特征。同学们还记得吗冲指名说一说。然后提问:

“能被2、5整除的数,在判别方法上有什么共同的地方?”(都根据个位数进行判别。)。

“能被3整除的数。在判别方法上与能被2、5整除的数有什么不同?”(根据各个数值上的数之和进行判别。)。

教师:“什么叫做奇数?什么叫做偶数:”

“根据什么来判断—一个数是奇数还是偶数?”

3.约数和倍数:

教师:“据整除的概念可以得到约数和倍数的概念:什么叫做约数?什么叫做倍数?”指名就一说。(如果a能被b整除。a就叫做b的倍数。b就叫做a的约数。)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

“能说6是约数.15是倍数吗:应该怎么说?”

教师说明:在研究约数和倍数时.我们所说的数一般只指自然数,不包括0。

教师:“一个数的约数的'个数是怎样的:”(有限的。)。

“其中最小的约数是什么数:最大约数是什么数?”(1.这个数本身。)。

“一个数的倍数的个数是怎样的:”(无限的。)。

“其中最小的倍数是什么数?”(这个数本身。)。

做练习十九的第:题。让学生直接做在书上。教帅可以说明做的方法:在含有约数2的数”下面写“2”,在3的倍数下面写“3”。在能被5整除的数下面写“5”,然后再进行判断。集体订正。

4.质数和合数。

教师指名说一说质数、合数的概念。可有意识地让学习有困难的学生说,其他同学进行补充。

教师:“怎样判断——个数是质数还是合数?”(检查这个数约数的个数.或查质数表。)指名说—说30以内有哪些质数。

让学生进行判断:—个自然数如果不是质数,那么一定是合数。学生判断后,教师说明:1既不是质数.也不是合数。

5.分解质因数。

指名说一说质因数、分解质因数的含义。

做练习十九的第5题。学生独立解答。教师巡视.集体订正。

6。公约数、最大公约数和公倍数、最小公倍数。

(1)复习概念。

教师:“什么叫做公约数?什么叫做最大公约数?”(几个数公有的约数,叫做这几个数的公约数;其中最大的—个叫做这几个数的最大公约数。)“怎样求几个数的最大公约数?”让学生举例说明。

“什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?”让学生举例说明。

教师:“什么样的数叫做互质数/(公约数只有l的两个数叫做互质数,)。

“质数和互质数有什么区别:”(质数足一个数。只有1和它本身两个约数;互质数是两个数.只有公约数1。)。

“两个不同的质数一定互质吗?”(两个不同的质数—定互质。)。

“互质的两个数一定都是质数吗?”(不一定,如4和9互质,4,9都是合数。)。

(2)课堂练习。

做练习十九的第1题、先让学生独立判断,集体订正时。让学生说—说判断的理由。

做练习十九的第4题。学生独立解答。教师巡视,集体订正。

教师根据前面的教学.整理出教科书第86页的概念联系图。也可以把该图变化成如下形式。

《比的基本性质》教案

教材第50、第51页的内容及练习十一的第4~8题。

教学目标。

1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

3、初步渗透事物是普遍联系的辩证唯物主义观点。

重点难点。

重点:理解比的基本性质,推导化简比的方法,正确化简比。

难点:正确化简比。

教具学具。

练习题投影片。

教学过程。

一导入。

1、比与分数、除法的关系。

如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。

老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?

(指名学生发言)。

二教学实施。

1、猜想。

老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。

汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证。

以小组为单位,讨论、验证一下刚才的猜想是否正确。

学生汇报。

3、小结。

经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

4、化简比。

出示例1(1)。

老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。

学生反复读几遍。

提问:你怎样理解“最简单的整数比”这个概念?

学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

15∶10=(15÷5)∶(10÷5)=3∶2。

180∶120=(180÷60)∶(120÷60)=3∶2。

出示例1(2)。

学生尝试把下面各比化成最简单的整数比。

老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

5、反馈练习。

(1)完成教材第51页的“做一做”,集体订正。

(2)完成教材第53页练习十一的第4题。

提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?

(3)完成教材第53页练习十一的第5题。

(4)完成教材第53页练习十一的第6~8题。

让学生说明理由,注意思维的逻辑性和语言的条理性。

三课堂作业新设计。

1、把下面各比化成最简单的整数比。

四思维训练参考答案。

课堂作业新设计。

1、6∶73∶13∶85∶67∶54∶14∶510∶1。

2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。

思维训练。

板书设计。

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简。

单的整数比,叫做化简比。

备课参考教材与学情分析。

比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想―验证―应用,让学生理解比的基本性质,应用性质化简比。

课堂设计说明。

我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。

根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。

比的基本性质数学评课稿

《比的基本性质》这节课是六年级上册第三单元的知识,李老师按照复习旧知(除法和分数),猜测比的性质,然后让学生验证,最后应用这个比的基本性质去化简,解决生活中的问题,整个教学过程清楚有条理,各个环节相扣。

李老师上这节课准备很认真,整堂课中充分运用了转化、迁移、归纳的数学思想。对分数的基本性质、除法的商不变规律进行复习,从而迁移到比的基本性质,很好地运用了这三者的联系。在推导比的基本性质中,还运用了猜测、归纳、验证,体现了数学的严谨。在教学过程中李老师采用启发点拨,唤起回忆,让学生自己去获取新知。并适时激发思维,提高学生灵活运用知识的能力。在学生掌握分数和小数比的化简方法后,老师又提出新问题:把:0.125化成最简单的整数比都有哪几种化简方法?这一问,激起学生的兴趣,大家积极动脑想不同的化简方法。这种教学方式极大限度地调动学生积极思维,培养了学生独立思考、灵活运用已有知识的能力,提高了学生分析问题和解决实际问题的能力。

一年级数学《比的基本性质》评课稿

今天听了冯老师执教的《比的基本性质》一课。冯位老师围绕活动主题,注重培养学生的数学思想,注重学生为教学主体,教师为教学的引导者、合作者,教学方法灵活,教学效果良好。

优点:

1、课堂教学中都体现了类推的数学思想,转化的思想,开学伊始对分数基本性质、除法商不变性质的复习,在教学中,由最简分数到最简整数比,这些由旧知的复习到新知的引入与理解,充分体现了数学中的类推思想和转化思想,不仅教会学生学习的方法,更提高了学生的学习能力,教学效果良好。

2、教学中做到了分散难点,抓住重点,突破难点,在课堂教学中,抓住了理解比的基本性质,利用学生课前阅读,各类判断题的判断(前项后项乘的数不同,前项后项运算不同,没有加上0除外等等),让学生对比的基本性质得到了充分的理解,并在教学中,有效建立分数的基本性质、商不变性质与比的基本性质的关系,分散了教学的难点,抓住重点,突破了难点,教学收到良好的效果。

3、课堂容量大,冯老师的教学根据六年级学生的特点,课堂教学容量大,将课堂教学看作是考试一样,引导学生在紧张、高效的情况下学习、了解、巩固、提高。

建议:教学中注重了学生在判断中理解比的基本性质,化简比与求比值的区别,但缺乏学生亲自动手化简的过程,如果让学生自己亲自去化简,会充分理解比的基本性质,会应用比的基本性质。

《比的基本性质》数学教学反思

教学时首先创设一个活动:你能移动一个小数点,使被除数、除数变成另一个小数而商不变;你能把一个分数的分子、分母变成分数值不变的较小的分数吗?使学生置于数学活动中,并在这个活动环境中调动其数学现实,从而发现、小结数学现象或规律。复习小结出’商不变的性质’,’分数的基本性质’。

学生理解了以前学习的内容,表面上看没有多大的联系,其实是潜在的迁移,发现了"小数、分数变大或变小"这一数学现象后,教师通过创设情景,让他们开展讨论、分析’分数、小数、比’之间如何’变换’,从不同的例子进行探讨,从而让他们主动经历探索规律的过程,使学生不仅品尝思维结果,还欣赏到思维过程的无限风光。

课堂讨论学生欲知如何’变换’而无从下手时,教师及时指点迷津,"可以借助我们举的例子来分析",为学生探监点明方法。当学生小结规律时,教师用拖足的语气引起学生的反思,如:照这样下去会发现……。进而引导学生对已发现的规律有一个完整的认识,会激励学生深入探监。

《比的基本性质》

教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

教学目的:使学生理解比的基本性质,掌握化简比的方法。

教学过程 :

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

出示例1:把下面各比化成最简单的整数比。

(1)      。

问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)。

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)。

问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

四、作业 。

1.练习十四第6、10题。

2.一列火车15小时行驶1200千米。

(1)       写出行驶的路程和时间的比,并化成最简单的整数比。

(2)       求出这个比的比值,再说出这个比值的含义是什么?

相关内容

热门阅读
随机推荐