首页 > 范文大全 > 口号大全

小学六年级数学圆锥的认识教案大全(21篇)

小学六年级数学圆锥的认识教案大全(21篇)



教案是教学过程中的重要组成部分,能够有效地引导学生学习并促进他们的发展。这些六年级教案的编写思路很清晰,内容很丰富,是你编写教案的好范例。

小学六年级数学《圆锥的体积》教案

教学内容:

冀教版小学数学六年级下册第40~42页。

教学目标:

1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

教学重点:

了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

教学难点:

理解圆锥的高和圆锥体积公式中sh表示的实际意义。

教具学具:

1、等底等高的圆柱和圆锥型容器,一些沙子。

2、多媒体课件。

教学流程:

一、炫我两分钟。

主持学生指名叫学生回答下列问题。

1.圆柱有几个面?各有什么特点?

2.怎样计算圆柱的体积?

学生回答问题。

二、创设情境。

1.教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

2.出示问题情境。

最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)。

三、探究新知。

尝试小研究一(课前):了解圆锥的特点。

1.观察圆锥形的物体或图片,它们有哪些特点?

我的发现。

2.圆锥由1个()面和1个()面2个面组成,圆锥的底面是一个(),圆锥的侧面是一个()。

3.从圆锥顶点到底面圆心的距离是圆锥的(),用字母()表示。

小学六年级数学《圆锥的认识》教案

单元教学要求:

1.使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。

单元教学难点:灵活运用知识,解决实际问题。

教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1―3题。

教学要求:

1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。

教学难点:认识圆柱的侧面。

教学过程:

一、复习旧知。

1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

2.引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。

二、教学新课。

1.认识圆柱的特征。

2.认识圆柱各部分名称。

(1)认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:――底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。

(2)认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。

(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。

3.巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?

(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。

4.教学侧面积计算。

(1)认识侧面的形状。

六年级数学《圆锥的认识》教案

一、“魔术”导入,引出课题。

1、出示一个圆柱,谁能说说它的特征?

教师:现在看一看,老师能不能把这个圆柱变成你们说的那样。

二、教学实施。

1、初步感知。

电脑出示圆锥形实物图。

教师:观察上面这些物体的形状有什么共同点。

(利用课件动画光点的闪烁,闪动实物图的轮廓,移走实物的模像,剩下图形的轮廓,抽象出圆锥的几何图形。)。

教师:在生活中,你还见过哪些圆锥形的物体?

小结:圆锥不仅给我们的生活带来了方便,还美化了我们的生活。

2、了解圆锥的特征。

(1)认识圆锥各部分的特征。

教师:请同学们拿出学具中的圆锥,看一看,摸一摸,观察一下它有什么特点。

同桌讨论,全班交流。

教师板书圆锥各部分的名称。

学生拿出圆锥学具,同桌互相指认圆锥的顶点、底面和侧面。

(2)了解圆锥侧面。

让学生用手摸一摸、说一说自己的感受。

教师:圆锥的侧面是一个曲面。

小结:圆锥有一个顶点,圆锥的底面是一个圆,侧面是一个曲面。

(3)怎样画圆锥的平面图呢?

示范:先华一个等腰三角形,它的底边是虚线,然后画出它的底面,底面要画成椭圆形,最后标出顶点、底面、圆心、底面半径。

学生在练习本上画圆锥。

(4)认识圆锥的高。

教师:大家知道圆柱的高是两个底面的距离,那么,圆锥的高在哪里呢?

学生小组讨论,交流汇报。

教师:圆锥的高就是指从圆锥的顶点到圆心的距离。圆锥有多少条高呢?为什么?

(5)测量圆锥的高。

教师:由于圆锥的高在它的内部,我们不螚直接量它的长度,怎样测量圆锥的高呢?

课件演示测量过程,教师叙述:

先把圆锥的底面放平;用一块平板水平地放在圆锥的顶点上面;竖直地量出平板和底面之间的距离。

同桌互相配合,动手测量手中圆锥的高。

教师:谁来展示一下你的测量方法?

教师:如果是圆锥形的粮堆或沙堆,又该怎样测量它的高呢?

学生合作实验,交流展示。

三、实践运用,巩固新知。

1、以同桌为单位,利用教材的图示动手制作圆锥或自己设计并制作一个圆锥形的物品。比一比,谁的作品最精巧。

2、对比提升。比较圆柱和圆锥,它们有什么不同之处?

四、课堂小结。

教学目标。

1、认识圆锥、掌握它的特征。

2、通过观察圆锥建立空间观念。

3、培养学生的观察能力,以及从实物抽象到几何图形的能力。

教学重点:圆锥各部分的名城、高的测量方法。。

教学难点:圆锥的高的测量方法。

小学六年级数学《圆锥的认识》教案

2、从个位加起;。

3、个位满10向十位进1。

(2)笔算两位数减法,要记三条。

2、从个位减起;。

3、个位不够减从十位退1,在个位加10再减。

(3)混合运算计算法则。

1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;。

2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;。

3、算式里有括号的要先算括号里面的。

(4)四位数的读法。

1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;。

2、中间有一个0或两个0只读一个“零”;。

3、末位不管有几个0都不读。

(5)四位数写法。

1、从高位起,按照顺序写;。

2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(6)四位数减法也要注意三条。

2、从个位减起;。

3、哪一位数不够减,从前位退1,在本位加10再减。

(7)一位数乘多位数乘法法则。

1、从个位起,用一位数依次乘多位数中的每一位数;。

2、哪一位上乘得的积满几十就向前进几。

(8)除数是一位数的除法法则。

2、除数除到哪一位,就把商写在那一位上面;。

3、每求出一位商,余下的数必须比除数小。

(9)一个因数是两位数的乘法法则。

1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;。

2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;。

3、然后把两次乘得的数加起来。

(10)除数是两位数的除法法则。

1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

2、除到被除数的哪一位就在哪一位上面写商;。

3、每求出一位商,余下的数必须比除数小。

(11)万级数的读法法则。

1、先读万级,再读个级;。

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;。

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(12)多位数的读法法则。

1、从高位起,一级一级往下读;。

2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;。

3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

(13)小数大小的比较。

比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(14)小数加减法计算法则。

计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

(15)小数乘法的计算法则。

计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(16)除数是整数除法的法则。

除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(17)除数是小数的除法运算法则。

除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(18)解答应用题步骤。

2、确定每一步该怎样算,列出算式,算出得数;。

3、进行检验,写出答案。

(19)列方程解应用题的一般步骤。

1、弄清题意,找出未知数,并用x表示;。

2、找出应用题中数量之间的相等关系,列方程;。

3、解方程;。

4、检验、写出答案。

(20)同分母分数加减的法则。

同分母分数相加减,分母不变,只把分子相加减。

小学六年级数学《圆锥的认识》教案

1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。

2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。

圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。

圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

圆柱体积比等底等高圆锥体积多2倍。

圆锥体积比等底等高圆柱体积少。

(1)等底等高:v锥:v柱=1:3。

(2)等底等体积:h锥:h柱=3:1。

(3)等高等体积:s锥:s柱=3:1。

题型总结:

高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。

半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍。

削成最大体积的问题:

正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长。

浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。

等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3。

练习题。

1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体。积是(),如果圆锥的体积是36立方厘米,圆柱的体积是()。

2.把一个圆柱削成一个最大的圆锥,这个圆柱的体积是48.15立方分米,削成的圆锥的体积是()立方分米,削去的体积是()。

3.把一个圆柱削成一个最大的圆锥,这个圆锥的体积是3.2立方分米,削去的体积是()立方分米,原来圆柱的体积是()。

4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是()。

5.一个圆柱与一个圆锥等底等高,圆锥的体积是19.2立方厘米,该圆柱的体积比圆锥的体积多()立方厘米。

6.等底等高的圆柱和圆锥,已知它们的体积之差是24立方分米,则圆柱的体积是()立方分米,圆锥的体积是()。

数学最大的数和最小的数。

最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

没有最小的数字,但有最小的自然数,就是“0”。

(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。

(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。

(3)取一个单位长度表示数量的多少要根据具体情况而确定。

(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

(5)制作条形统计图的一般步骤:。

a)根据图纸的大小,画出两条互相垂直的射线。

b)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

d)按照数据的大小画出长短不同的直条,并注明数量。

小学六年级数学《圆锥的认识》教案

1.仔细观察,哪个圆柱的体积是圆锥的的3倍。(单位:cm)。

2.等底等高的圆柱和圆锥,圆柱的体积是圆锥的(),圆锥的体积是圆。

柱的(),圆柱的体积比圆锥大(),圆锥的体积比圆柱小()。

3.一个圆柱和圆锥等底等高,它们的。

体积一共60立方厘米,那么,圆柱。

的体积是()立方厘米,圆锥的体积是()立方厘米。

4.等底等高的圆柱和圆锥,圆柱的体积比圆锥大10立方米,圆柱的体积是(),圆锥的体积是()。

5.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么,圆锥的体积是()立方分米,圆柱的'体积是立方分米。

6.等底等高的圆柱和圆锥,如果先在圆锥容器中注满水,水面高12厘米,

再全部倒入圆柱形容器中,水面高()厘米;如果先在圆柱容器中注满水,再把水倒入圆锥形容器直到注满,这时圆柱形容器中的水面高()厘米。

二.有关圆锥体积的实际问题练习。

1.把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高。

2.在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重35千克,这堆小麦大约有多少千克?(得数保留整千克数)。

3.一个圆锥形的小麦堆,底面周长是12.56米,高是2.7米,现在把这些小麦放到圆柱形的粮囤中去,恰好占这粮囤容积的78.5%。已知粮囤底面的周长是9.42米,求这个粮囤的高。(得数保留两位小数)。

7.建筑工地运来9.42吨砂,堆成一个底面周长是12.56米的圆锥形求砂堆的高。(每立方米砂重1.5吨)。

小学六年级数学《圆锥的认识》教案

教学内容:

教学目标:

1、初步认识圆锥,知道圆锥各部分的名称,掌握圆锥的特征。

2、了解圆锥的高的测量方法。

教学重点:

掌握圆锥的特征。

教学难点:

掌握圆锥高的'测量方法。

教学过程:

一、激趣定标。

1、回顾:我们学习了物体的哪些特殊形状?你能在生活中找出具有这些形状的物体吗?(三角形、长方形、正方形、圆、长方体、正方体、圆柱……)。

2、欣赏日常生活中圆锥形的物体,介绍圆锥,你还见过哪些圆锥形的物体?

今天我们就来认识圆锥。

二、自学互动,适时点拨。

【活动一】认识圆锥的特征。

学习方式:独立学习、组织交流。

学习任务。

1、取出圆锥体学具,请大家看一看、摸一摸,与圆柱比一比,你看到了什么?摸到了什么?说给同桌听。

2、通过观察,认识圆锥的顶点、面。

(1)圆锥有一个顶点和两个面,一个底面,一个侧面。

(2)圆锥的底面是一个圆,侧面是一个曲面。

3、讨论、交流,认识圆锥的高。

(1)圆锥的高在哪里?

(2)你能用自己的话说说什么是圆锥的高?(从圆锥的顶点到底面圆心的距离是圆锥的高。)。

(3)圆柱的高有无数条,圆锥的高有几条?

【活动二】测量圆锥的高与圆柱和圆锥的区别。

学习方式:动手操作、讨论交流。

学习任务。

2、小组讨论,动手合作测量圆锥体的高。

3、汇报测量的步骤及测量结果。

4、课件演示测量高的过程,注意:测量时,圆锥的底面要水平地放;上面的平板要水平地放在圆锥的顶点上面。

6、动手操作转动一根贴有直角三角形硬纸的木棒。

7、说说各自的发现。

8、交流圆锥和圆柱的联系与区别。

提问:圆锥和圆柱有哪些相同点,哪些不同点?

三、达标测评。

1、完成课本第32页的“做一做”。

先让学生在教材的几何图形上标出圆锥的底面、侧面和高,再利用实物投影进行交流。

2、完成课本第35页练习六的第1题。

投影出示课本上各个物体的图片,指名说说每个物体由哪些图形组成。

3、完成课本第35页练习六的第2题。

先让学生在课本上连一连,再进行交流。

四、课堂小结。

通过这节课的学习,你有什么收获?

板书设计:

顶点:1个。

面:2个侧面(曲面)底面(圆)。

高:顶点到底面圆心的距离(只有1条)。

小学六年级数学《圆锥的体积》教案

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。

教学过程:

一、复习引新。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。

这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

4.学生练习。

5.教学圆锥高的测量方法。(见课本第13页有关内容)。

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。

(3)实验操作,发现规律。

你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积。

=底面积高。

用字母表示:v=sh。

8.教学例l。

(1)出示例1。

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

1.做练一练第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。

2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

练习三第4、5题。

小学六年级数学《圆锥的认识》教案

圆锥的认识教学反思:圆锥体在日常生活中是一种很少见的立体图形,学生疏于了解,对圆锥体缺乏必要的感性认识。因此,我认为如果直接按照教材的设计,开始就认识圆锥体的特征,学生会由于生活经验积累不够,而不能够全面地、准确地了解圆锥体的特征。为了使学生对圆锥体有更多的感性认识。积累丰富的第一手的资料,我设计了首先让学生制作圆锥体,再来认识圆锥体的特征的教学方法。课堂教学实践证明,学生在制作圆锥体的过程中,不仅发现了圆锥体是由一个扇形和一个圆围成的立体图形,而且还发现了扇形的弧长等于底面圆的周长这一关系,以及扇形所在圆的半径要大于底的'圆的半径等等教材中并未讲到的有关圆锥体的特征。试想,如果没有学生动手制作的体验,如果没有在制作过程中积累的充分的感性认知,仅凭观察实物,是肯定不会对圆锥体有这样深刻、全面的认识的,学生的语言也不会这样丰富,对圆锥体特征的描述也不会这样准确。

这一次的教学尝试,也让我认识到:尽管数学概念,数学定律,数学公式等是抽象的,但是,如果教师能够深入钻研教材,充分挖掘数学知识与学生已有经验的联系,就能化复杂为简单,化抽象为具体,让学生体验学习数学的成功与快乐。这一次教学尝试的成功之处就在于,对于学生感到很陌生的圆锥体,我给他们提供了一个实践的机会,让学生在动手实践中积累感性认识,从而抽象出圆锥体的特征。即让学生在实践中生成智慧。

六年级数学《圆锥的认识》教案

教学目的:

使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。

教具准备:

要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。

教学过程:

一、复习。

1、提问:圆柱体积的计算公式是什么?

2、圆柱的特征是什么?

二、导入新课。

三、新课。

让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。

板书谋题:圆锥。

教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。

出示有圆锥形物体的投影片。

教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。

随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。

然后指出:这样得到的图形就是圆锥体的几何图形。

教师指出:圆锥有一个顶点,它的底面是一个圆。

然后在图上标出顶点,底面及其圆心o。

同时还要指出:我们所学的圆锥是直圆锥的简称。

接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)。

让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。

教师顺着母线的方向演示。问:这条线是圆锥的高吗?

指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。

教师:圆锥的高到底有多少条呢?

引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。

2、小结。

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。

3、测量圆锥的高。

教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。

教师边演示边叙述测量过程:

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出乎板和底面之间的距离。

测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图。

教师:圆锥的侧面是哪一部分?

教师展示圆锥模型,指名学生说出侧面部分。

教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形?

学生回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”

留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧面展开后是一个什么图形。

然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。

四、课堂练习。

1、做“做一做”的题目。

让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。

2、做练习九的第1题。

让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。

3、做练习九的第2题。

小学六年级数学《圆锥的体积》教案

美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。

一、复习旧知,铺垫孕伏。

1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

2.复习高的概念。

(1)什么叫圆锥的高?

(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)。

评析:

圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

二、创设情境,引发猜想。

1.电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)。

2.引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)。

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)。

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)。

过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

评析:

数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

三、自主探索,操作实验。

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

出示思考题:

(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

(2)你们的小组是怎样进行实验的?

1.小组实验。

小学六年级数学《圆锥的体积》教案

美国教育心理学家奥苏伯尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。”本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的“等底等高”的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。

教学过程。

一、复习旧知,铺垫孕伏。

1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

2.复习高的概念。

(1)什么叫圆锥的高?

(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)。

评析:

圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

二、创设情境,引发猜想。

1.电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)。

2.引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)。

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)。

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)。

过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。

评析:

数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

三、自主探索,操作实验。

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

出示思考题:

(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

(2)你们的小组是怎样进行实验的?

1.小组实验。

六年级数学《圆柱和圆锥的认识》教案

(1)圆锥的高是。圆锥有()条高。

(2)将一个圆锥沿着它的.高平均切成两半,截面是一个()形。

(3)下图圆锥的高是()cm。

(4)圆柱的侧面展开,得到一个()形,把圆锥的侧面展开,得到一个()。

二、填一填。

1.指出圆锥的“底面”和“高”。

2.圆锥的底面形状是(),侧面是()面。

3.从圆锥的顶点到底面圆心的距离是圆锥的()。

小学六年级数学《圆锥的体积》教案

教学目标:

1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。

2、能运用公式解答有关的实际问题。

3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

教学重点:通过实验的方法,得到计算圆锥体积的公式。

教学难点:运用圆锥体积公式正确地计算体积。

教学过程:

一、创设情境,引发猜想。

在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。

小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

二、自主探索,操作实验。

1、出示学习提纲。

(2)你们小组是怎样进行实验的?

(3)你能根据实验结果说出圆锥体的体积公式吗?

(4)要求圆锥体积需要知道哪两个条件?

2、小组合作学习。

3、回报交流。

结论:圆锥的体积是等底等高的圆柱体积的1/3。

公式:v=1/3sh。

4、问题解决。

小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?

5、运用公式解决问题。

教学例题1和例题2。

三、巩固练习。

1、圆锥的底面积是5,高是3,体积是。

2、圆锥的底面积是10,高是9,体积是()。

(1)底面面积是7.8平方米,高是1.8米.。

(2)底面半径是4厘米,高是21厘米.。

(3)底面直径是6分米,高是6分米.。

4、判断对错,并说明理由.。

(1)圆柱的体积相当于圆锥体积的3倍.()。

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1.()。

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()。

四、拓展延伸。

一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?

五、谈谈收获。

六、作业。

小学六年级数学《圆柱和圆锥》教案

1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。

单元教学难点:灵活运用知识,解决实际问题。

(一)圆柱的认识。

教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。

1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

:认识圆柱的特征,掌握圆柱侧面积的计算方法。

认识圆柱的侧面。

一、复习旧知。

1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

2.引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。

二、教学新课。

1.认识圆柱的特征。

2.认识圆柱各部分名称。

(1)认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。

(2)认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。

(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的'两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。

3.巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?

(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。

4.教学侧面积计算。

(1)认识侧面的形状。

小学六年级数学《圆锥的体积》教案

1、通过动手操作实验,推导出圆锥体体积的计算公式。

2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)。

2、口算下列圆柱的体积。

(1)底面积是5平方厘米,高6厘米,体积=?

(2)底面半径是2分米,高10分米,体积=?

(3)底面直径是6分米,高10分米,体积=?

3、认识圆锥(课件演示),并说出有什么特征?

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)。

学生回答,教师板书:

圆柱------(转化)------长方体。

圆柱体积计算公式--------(推导)长方体体积计算公式。

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)。

(学生得出:底面积相等,高也相等。)。

教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)。

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)。

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验,并借助课件演示。

(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)。

a、谁来汇报一下,你们组是怎样做实验的?

b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)。

教师:同学们得出这个结论非常重要,其他组也是这样的吗?

学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)。

教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)。

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)。

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)。

(教师给体积公式与“等底等高”四个字上连线。)。

进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3。

=底面积×高×1/3。

v=1/3sh。

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。

课件出示:

想一想,讨论一下:?

(1)通过刚才的实验,你发现了什么?

(2)要求圆锥的体积必须知道什么?

学生后讨论回答。

1、口答。

(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

a、学生完成后,进行小组交流。

b、你是怎样想的和怎样解决问题的。(提问学生多人)。

c、教师板书:。

1/3×19×12=76(立方厘米)。

答:它的体积是76立方厘米。

3、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)。

(1)提问:从题目中你知道了什么?

(2)学生独立完成后教师提问,并回答学生的质疑:

3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么不同的地方?

(2)例1是直接求体积,例2是求出体积后再求重量。

六年级数学《圆柱和圆锥的认识》教案

年级。

六年级。

主备人。

舒婷。

使用人。

舒婷。

课题。

课型。

新授。

教学。

目标。

1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。

教学。

重点。

1、在充分感知的基础上,探索圆柱和圆锥的特征。

2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学。

难点。

教学。

方法。

分析中归纳解题方法。

教具。

多媒体课件。

一、复习导入。

二、新授。

2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?

3、现在我们首先来研究圆柱。

(1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)。

(2)请一位同学代表你们组来说说你们发现了什么?

(3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?

(4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。

(5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?

(6)谁能完整的说一下圆柱的特征。

1.教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。

2、举出学生带来的东西中不是圆柱的例子。

3.揭示实物图,出现圆柱几何图形。

教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。

出示高、低不同的两个圆柱。

用直尺和三角板演示圆柱的高。

使学生明确:圆柱两个底面之间的距离叫做高。

4、下面我们来认识另一个立体图形———圆锥。

三、巩固练习。

四、全课总结。

八、作业设计。

课本20页练习五4.

九、板书设计。

圆柱的上、下两个面叫做底面.它们是两个完全相同的两个圆。

圆柱的侧面,是一个曲面。

圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。

教学。

反思。

本课时的内容较简单,但作为教师,我们并不能仅仅停留在教给学生有关圆柱和圆锥的特征这一层面上。研读教材,我发现教材力求体现让学生在主动探索的过程中感知圆柱和圆锥的特征,这与教师单纯地教给学生圆柱与圆锥的特征是有本质不同的。如果教师要教给学生这些知识的话,可能5分钟的时间就够了。但同样的,学生也可能很快就遗忘了。让我感到心有余而力不足的是,我很清楚自己在这节课中应该体现怎样的教学理念,应该怎样让学生主动参与新知识的学习,但实际操作时,却由于各种条件的限制没有很好地达成自己课前预设的教学效果。

六年级数学《圆柱和圆锥的认识》教案

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:长方体、正方体、圆柱体等,根据教材第14页“练一练”第1题自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。

教学过程:

一、复习引新。

1.说出圆柱的体积计算公式。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。

二、教学新课。

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

4.学生练习。

口答练习八第1题。

5.教学圆锥高的测量方法。(见课本第13页有关内容)。

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

(4)是不是所有的.圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积×。

=底面积×高×。

用字母表示:v=sh。

8.教学例l。

(1)出示例1。

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习。

1.做“练一练”第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。

2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

四、课堂小结。

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业。

练习三第4、5题。

小学六年级数学《圆锥的体积》教案

本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

圆锥体积公式的推导。

学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。

试验探究法小组合作学习法。

多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)。

2课时。

第一课时。

1、你能计算哪些规则物体的体积?

2、你能说出圆锥各部分的名称吗?

【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。

展示砖工师傅使用的铅锤体(圆锥),你能测试出它的.体积吗?

【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)。

探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?

1、猜想:猜想它们的底、高之间各有什么关系?

2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;。

3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)。

4、教师介绍数学专用名词:等底等高。

【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。

探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?

1、大胆猜想:等底等高圆柱与圆锥体积之间的关系。

2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)。

3、小组汇报试验结论(提醒学生汇报出试验步骤)。

教学预设:

(1)圆椎的体积是圆柱体积的3倍;。

(2)圆锥的体积是圆柱体积的三分之一;。

(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。

4、通过学生汇报的试验结论,分析归纳总结试验结论。

5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)。

【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。

探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。

1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?

3、学生通过观看试验汇报结论。

4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。

5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。

【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。

2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议。

【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。

这节课你学到了什么呢?

1、做在书上作业:练习四第4、7题。

2、坐在作业本上作业:练习四第3题。

小学六年级数学《圆锥的认识》教学设计

六年制第十二册数学第48—49页的内容,完成第49页上面的“做一做”和练习十二的第1—2题。

使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。

圆锥的特征。

圆锥形物体一个、圆锥的模型一个、cai课件四件。

圆锥形实物,模型一个、一块平板(或玻璃),一把直尺。

一、导入新课。

师:我们已经学习了圆柱的有关知识,谁能告诉老师圆柱有什么特征?(指名答)。

请同学们拿出自己准备好的物体,看一看,摸一摸,感觉一下,它与圆柱有什么不一样?

生观察感知后,说出自己的结果,师肯定:

这个物体有一个曲面,一个顶点和一个面是圆。

像这样的物体就叫做圆锥体,简称圆锥。也就是这节课我们要学习新的立体图形。

二、新授。

〈1〉出示多媒体cai课件的三幅圆锥形实物图。

(此处有图)。

提问:这些物体的形状是什么?(圆锥)。

这时利用cai课件动画光点的闪烁,闪动实物图的轮廓,紧接着把实物的模像移走,只剩下图形的轮廓,抽象出圆锥体的几何图形。

(此处有图)。

接着改变不同的方向,师说明:这样的图形就是圆锥体的几何图形。

指出:圆锥的这个曲面叫做侧面,同时标出“侧面”让学生看着圆锥形物体,指出:

从圆锥的顶点到底面圆心的距离叫做高。

用cai课件演示作高,接着顺着母线的方向演示、强调:

沿着曲面上的线都不是圆锥的高,圆锥的高只有一条。

〈3〉生拿出学具,同桌互指圆锥的底面、侧面、顶点、高。

2、小结。

谁能归纳一下圆锥有什么特征?(指名试答)。

师板书:底面是圆,侧面是一个曲面,有一个顶点和一条高。

3、教学测量圆锥的高。

提问:圆锥的高能直接测量吗?为什么?

(圆锥的高在它的内部,不能直接量出它的长度)。

采用多媒体cai课件(二)演示。

边演示,边讲解测量过程。

〈1〉先把圆锥的底面放平;。

〈2〉用一块平板水平地放在圆锥的顶点上面;。

〈3〉竖直地量出平板和底面之间的距离,读出数值。

生自己量手中的圆锥学具的高。

4?教学圆锥侧面的展开图。

设问:圆柱的侧面展开是什么图形?圆锥的侧面展开又是什么图形呢?

生思考讨论后,指名回答。

师:我们通过实验来看看。

出示cai课件(三),一步一步演示:

(此处有图)。

使学生认识:侧面展开后是一个扇形。

再利用cai课件将其展开图合拢,恢复原状,以加深对圆锥侧面的认识。

三、课堂练习。

1、做教科书第49页“做一做”

2、做练习十二的第1题。

3、做练习十二的第2题。

采用cai课件,拆分组合,指名口答。

四、小结。

这节课我们学习了圆锥,想一想:圆锥有什么特征?侧面展开后是一个什么图形?

板书设计。

(此处有图)。

圆锥的特征:

底面是圆,侧面是一个曲面,有一个顶点和一条高。

六年级数学《圆柱和圆锥的认识》教案

本节课中,学生不仅掌握了圆柱的特征,而且观察、比较、分析、归纳等能力也得到了培养。反思教学过程,我体会如下:

思维过程,整体地感知圆柱的特征。在讨论圆柱的侧面时,设置悬念,先让学生猜一猜圆柱的侧面展开会是什么图形,通过猜测再进行验证,认识到长方形与圆柱侧面积之间的关系。在练习阶段,我设计了针对性练习和发展性练习,在形式,难度,灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。

在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。

相关内容

热门阅读
随机推荐