教学反思是指教师对教学过程进行反思和总结,以便改进和提高教学效果。接下来是一些优秀教师的教案分享,从中我们可以学到许多宝贵的教学经验。
教学内容:
长方体和正方体的认识。
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:
教学过程:
一、引入新课。
1、由平面图形引到立体图形。
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
二、引导探究。
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)。
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点。
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。
(2)棱的特点。
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。
(3)顶点的个数。
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征。
____让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
____小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高。
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征。
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系。
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
三、巩固练习。
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题。
学生独立完成后交流。
四、总结。
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;。
棱分长、宽、高,每组四条要记好;。
6个面对着放,对应面都一样。
五、课外延伸。
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
1、分数乘法算式的意义:
注:【求一个数的几分之几用乘法解答】。
2、分数与整数相乘:
用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】。
3、分数与分数相乘:
用分子相乘的积作为分子,用分母相乘的。
积作为分母,最后约分成最简分数。
4、分数连乘:
通过几个分数的分子与分母直接约分再进行计算。
()()=()()。
(3)45=210。
4:()=():()。
5.做一做。
完成课本中的做一做。
6.课堂小结。
(1)说一说比例的基本性质。
(2)你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;比值是否相等;内项之积是否等于内项之积。)。
三、巩固练习。
完成课文练习六第4~6题。
补充习题。
一题多变化,动脑解决它。
(1)在比例里,两个内项的积是18,
其中一个外项是2,另一个外项是()。
(2)如果5a=3b,那么,=,
(3)a︰8=9︰b,那么,ab=()。
教学反思:
比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。
将本文的word文档下载到电脑,方便收藏和打印。
1、分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
4、分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方法来解,也可以直接用除法。注:在单位换算中,要弄清需要换算的单位之间的进率是多少。
1.知识技能:学生经历用切割拼合的方法推导出圆柱体积公式。
的过程,理解圆柱体积公式的推导过程,掌握圆柱体积的计算方法。
2.数学思考与问题解决:在自主探究的过程中,运用圆柱体的体积解决简单的实际问题,培养学生独立思考及解决问题的能力。
3.情感态度:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重难点。
学生经历并理解圆柱体积公式的推导过程。
教学难点:圆柱体积的计算公式的推导过程及其应用。
教学过程。
一.情景导入,激起兴趣。
同学们,我们的图形世界十分丰富多彩,让我们一起来欣赏吧。这些图形都有什么特点?如何计算出它们的体积呢?你觉得圆柱的体积和什么有关?这节课我们一起来探究圆柱的体积。(板书:圆柱的体积)。
二.巧妙转化,探究新知。
1.呈现长方体、正方体和圆柱的直观图,它们都是直柱体,我们回忆一下长方体的体积公式。
长方体的体积=长×宽×高,长方体和正方体的体积的体积统一公式“底面积×高”,用字母怎样表示?(板书)。
2.出示圆柱体,它的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?回忆一下圆面积计算公式的推导过程。
学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径)根据学生的叙述,教师课件演示。(演示课件:圆转化成长方形,推导圆面积公式的过程。)。
3.现在老师给这个圆柱体变个魔术,仔细观察看看发生了什么变化?(动画演示)。
4.学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下。
(1)圆柱体转化成什么立体图形?
(2)它是怎样转化成这个长方体的?
使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。
小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。
今天,我们继续进行整理和练习。
1、根据下面的条件,说说数量间的相等关系。
(1)师傅每小时加工的零件比徒弟的3倍少18个。
(2)一堆黄沙运走了30车后还剩下16吨。
(3)一条围巾的价钱比一副手套价钱的2倍多25元。
2、在括号里填上含有字母的式子
(1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有( )人;舞蹈队和歌咏队一共有( )人,歌咏队比舞蹈队多( )人。
(2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的有( )人,跳绳的有( )人;踢毽的比跳绳的少( )人,踢毽的和跳绳的一共有( )人。
1、求x的值
(1)三角形面积275cm。 (2)长方形周长9m。
第(1)小题 先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。
第(2)小题
先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的依据。
学生列出的方程可能有以下几种情况:
2x+1.5×2=9 (x+1.5)×2=9 x+1.5=9÷2
问:这几个方程哪些你会解了?请你说说应怎样解?
(对于有困难的学生,教师要多加关注,注意个别辅导。)
交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。
指名3位学生分别板演。再集体交流。
2、第6题、第7题、第9题、第10题
让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。
3、第8题
先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?
再让学生解答问题,然后说说自己有什么感想。
学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。
再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。
通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?
9.分数的基本性质是什么?10.割据分数的基本性质可以做什么?
11.什么叫约分?12.什么叫通分?
13.怎样把小数化成分数?怎样把分数化成小数?
14.怎样把分数化成百分数?怎样把百分数化成分数?
1.线段有什么特征?射线有什么特征?直线有什么特征?它们有什么共同的特征?
2.什么叫角?角的大小与什么有关,与什么无关?3.角按度数可分为哪几类?
4.什么叫锐角?什么叫直角?什么叫钝角?什么叫平角?
5.什么叫垂直?什么叫平行?6.什么叫三角形?
7.三角形按角分可分为哪几类?按边分可分为哪几类?8.什么叫轴对称图形?
9.什么是四边形?什么叫平行四边形?什么叫梯形?10.什么叫周长?
15.长方形、正方形、圆、半圆的周长各应怎样计算?
16.长方形、正方形、圆、平行四边形、三角形、梯形的面积各应怎样计算?
17.长方体、正方体、圆柱的表面积各应怎样计算?
18.长方体、正方体、圆柱、圆锥的体积各应怎样计算?
15.怎样把小数化成百分数?怎样把百分数化成小数?
16.什么样的分数可以化成有限小数?
8.什么叫合数?9.什么叫质因数?10.什么叫分解质因数?
11.能被2、3、5整除的数各有什么特征?12.什么叫偶数?
13.什么叫奇数?14.什么叫倍数?15.什么叫约数?
16.怎样求两个数的最大公约数和最小公倍数?
17.什么叫加法?什么叫减法?什么叫乘法?什么叫除法?
18.加法各部分之间的关系有哪些?减法各部分之间的关系有哪些?
19.乘法各部分之间的关系有哪些?除法各部分之间的关系有哪些?
20.四则混合运算的运算顺序是怎样的?
21.什么是加法交换律?用字母怎样表示?什么是加法结合律?用字母怎样表示?
22.什么是乘法交换律?用字母怎样表示?什么是乘法结合律?用字母怎样表示?
23.什么是乘法分配律?用字母怎样表示?
24.四则混合运算中,第一级运算有哪些?第二级运算有哪些?
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2.分数的分类。
真分数:分子比分母小的分数叫做真分数。真分数小于1。
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数。
1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2.分数的分类。
真分数:分子比分母小的分数叫做真分数。真分数小于1。
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数。
1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。
将本文的word文档下载到电脑,方便收藏和打印。
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件。
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、思考:0.2的倒数是多少?
五、小结:请学生说一说这节课学习了哪些内容。
六、作业:练习五3—8。
将本文的word文档下载到电脑,方便收藏和打印。
1、从具体情境中体会学习圆锥体积公式的必要性并进行大胆猜想。
2、在操作、观察、思考、探究等学习活动中推导出圆锥的体积公式,并能有条理的说出推导过程。
3、根据圆锥体积公式,解决简单的实际问题。
教学重难点。
教学重点:圆锥体积计算公式。
教学难点:圆锥体积计算公式的推导过程。
教学工具。
ppt课件。
教学过程。
一、激趣引入:
师:同学们都很棒,为了帮助大头儿子解决这个问题,这节课我们就来学习“圆锥的体积”的计算好吗?(板书课题)。
二、自主探究,合作交流。
一、认识圆锥的体积。
1、出示圆锥,引导学生说出圆锥的体积的意义。
课件出示:圆锥所占空间的大小叫做圆锥的体积。
2、演示排水法求圆锥的体积。
引导学生回忆不规则物体的测量方法说出排水法。
3、冰激淋不能用排水法求体积,要怎样求呢?
(二)教学例2.(探究圆锥的体积公式)。
1、引导学生猜想。
师:出示长方体、正方体、圆柱体。
同学们猜一猜,圆锥的体积计算应该和哪一个立体图形有关?
师:同学们再大胆猜一猜,圆锥的体积计算应该和什么量有关?
2、认识等底等高的圆柱和圆锥。
师课件演示怎样是等底等高的圆柱和圆锥。
板书:学生猜想。
3、实验验证猜想。
(1)明确实验方法、理解实验表和实验要求。
(2)学生实验。
(3)交流实验结果。
学生小组汇报,老师课件演示。
(4)得出结论。
师:通过实验你发现了什么?
生1:等底等高的圆柱是圆锥体积的3倍。
生2:等底等高的圆锥是圆柱体积的三分之一。
师:那不等底等高的圆柱和圆锥两个容器的容积存在这个倍数关系吗?
生:不存在。
明确哪个学生的猜想是对的。
4、推导圆锥的体积。
引导学生推导圆锥的体积。
师:根据我们得出的结论,你能写出圆锥的体积计算公式吗?
根据学生回答板书:v圆锥=13v圆柱=13sh。
师:想一想,根据刚才的实验,你发现了什么?要求圆锥的体积必须知道什么?
生:圆锥的体积等于它等底等高圆柱体积的三分之一。
师:为什么有三分之一?
生:因为实验时,圆锥向和它等底等高的圆柱里倒了三次。
师:我们知道了怎样求圆锥的体积,那么假如圆柱形冰淇淋和圆锥形的冰淇淋是等底等高,你们说大头儿子买哪种合算呢?(这时同学们异口同声回答答案)。
师:所以,数学来源于生活,生活离不开数学,生活中有很多问题都可以用我们所学的数学知识来解决。
5、练一练(运用公式):
师:我们继续来解决生活中的数学问题。
课件出示34页做一做第1题,学生独立解决,全班交流。
(二)教学例3.(运用公式拓展)。
课件出示例3。
学生读题,分析题意。
学生独立解决,全班交流。
规范做题格式。
(三)思考;求圆锥的体积,还可能出现那些情况?
引导学生梳理:
已知底面半径求体积;。
已知底面直径求体积;。
已知底面周长求体积。
三、巩固练习。
1、填空(课件)。
2、判断(课件)。
3、34页做一做第2题,学生独立做,集体订正。
四、课堂小结。
同学们,这节课有什么收获?
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新知探究。
(一)课件出示自学目标。
1、通过学习掌握求一个数的几分之几是多少的应用题的解。
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
(二)、教学例1。
1、课件出示自学提示。
(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的”。
(2)、结合线段图理解题意,找到解题思路。
(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(4)、在分析题意的基础上,学生独立列式、计算。
2、学生根据提示自学。
全班交流汇报:
2500×=1000(平方米)。
3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、当堂测评。
练习四第2题、第3题。
学生独立完成,教师巡回指点,照顾差生。
小组内订正后。
四、课堂总结。
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)。
设计意图:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。
由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
1、让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2、培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。
3、让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。
让学生先独立完成,再点评。
2.完成“练习与实践”第8题。
引导学生列举几组对应的数值。
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题。
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)。
第2小题让学生在教材的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题。
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。
怎样求图上距离?怎样求实际距离。
学生量出的图上距离。
利用的线段比例尺,求出相应的实际距离。
1、出示以灯塔为中心的平面图。
(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?
相机指出:东——e西——w南——s北——n。
(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。
2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。
学生可能说:
(1)把女生人数看作“1”——找单位“1”
(2)男生人数有这样的2份,女生人数有这样的3份。
(3)一共有这样的5份。
(4)女生比男生多1份——份数。
(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5。
(6)女生是男生的3/2——分数。
小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。
二、新授。
1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”
2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。
3、学生独立完成,教师巡视指导。
4、指名交流解题思路。
5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?
6、学生独立完成,小组交流。指名交流。
学生可能想到:
(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”
50÷(3+2)=10(人)10×3=30(人)。
(二)将关键句转化成分数来理解“女生占全班人数的3/5”
50×3/5=30(人)。
7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。
8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)。
三、巩固练习。
1、练一练:学校美术组有35人,是合唱组人数的5/8。学校合唱组有多少人?
(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)。
(2)反思:为什么把美术组人数是合唱组的5/8转化为合唱组的人数是美术组的8/5。
(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。
板书:问题转化成已知条件的几分之几。
2、练习十四5:
(1)看图填空。
绿彩带。
红彩带。
绿彩带比红彩带短2/7,红彩带比绿彩带长()/()。
(2)一杯果汁,已经喝了2/5,
喝掉的是剩下的()/(),剩下的是喝掉的()/()。
3、练习十四6。
(1)白兔和黑兔共有40只,黑兔的只数是白兔的3/5。黑兔有多少只?
黑兔只数占白兔、黑兔总只数的()/()。
已经看的页数是没有看的页数的()/()。
4、只列式,不计算。(说说你是怎样转化的)。
(1)修一条长30千米的路,已经修的占剩下的2/3,已经修了多少千米?
(2)山羊有120只,比绵羊少1/6,绵羊有多少只?
6、思考题:
有两枝蜡烛。当第一枝燃去4/5,第二枝燃去2/3时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是():()。
全课小结:今天这节课,我们学习了什么知识?你有哪些收获?
板书设计:
用转化思路解答分数除法应用题。
繁??
用方程解答:用乘法解答:
解:设女生有x人。
x+2/3x=35。
5/3x=3535×3/5=21(人)。
x=21。
答:女生有21人。
教学内容:
教学目标:
1、过程与方法:结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、知识与技能:了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3、情感态度与价值观:体验数学在解决现实问题中的价值,丰富购物经验。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的解释。
教学过程:
一、创设情境、设疑激趣。
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理。
购物呢?这节课,我们就来研究购物问题。(板书:学会购物)。
二、引导探究、自主建构。
活动一:促销。
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
1、学生自学。
2、交流。
(预设)。
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
(这里不需学生能精确计算每个商店的优惠额度,但大体上能了解每个商店更适合。
2怎样购物。)。
(二)提出问题(1):买1袋这种方便面去哪家商店合适?买2袋、3袋呢?
1、思考。
2、全班交流。
(预设)师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学。
们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5袋或5袋以上就可以得到甲店的优惠条件。
(三)提出问题(2):买7袋这种方便面去哪家商店合适?买8袋、9袋、10袋呢?
1、自己独立思考、计算。
2、全班交流。
(预设)。
师:现在如果想买7袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
板书:
甲店:1.5×6=9(元)。
乙店:1.5×7×90%=9.45(元)。
结论:甲店合适。
(按以上方法交流买8、9、10袋的结果)。
10袋情况预设:
甲店1、1.5×9=13.5(元)。
13.5÷10=1.35(元)。
甲店2、1.5×10=15(元)。
10+2=12(袋)。
1.5÷12=1.25(元)。
乙店:
1.5×10×90%=13.5(元)。
(这里面甲店的第二种购买方法,虽花了15元,但能得到12袋,有的学生会认为这是一种较便宜方案,现实生活中也如此。所以不应按错误定论。)。
(四)提出问题(3)买多少袋方便面才能达到丙店的优惠条件?
学生计算后汇报。
30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。
(五)提出问题(4)。
1、学生独立计算。
2、小组内交流。
3、全班汇报。
师:谁能解释这到底是为什么?
(预设)。
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20袋,20×1.5=30(元),可以打八折优惠,所以只花了24元,20×1.5×80%=24(元)。
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
继续探究:出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:所以购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优。
惠政策,就能够少花钱多购物,这叫“合理购物”。
活动二:有奖销售。
(一)师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书81页,读一读上面的销售广告,了解广告中的数学信息。
学生阅读“有奖销售”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
学生独立思考并计算。然后全班交流。
1、奖品总金额。
500×10+100×20+50×60=10000(元)。
2、中奖率:(60+20+10)÷1000=9%。
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
1000×100=100000(元),商家至少卖出10万元的商品。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000元,10000÷100000=10%,奖金额最多占销售额的10%。
(四)提出问题(3)。
学生独立思考、计算。
继续探究:分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
三、强化训练、应用拓展。
请你算一算,再比一比,为学校拿个主意:到哪个商家购买更便宜?
甲:一次购买20台以上(含20台)的,按七五折优惠。
乙:“买十送三”,即每买10台另外免费送3台同样的电视机,不满10台仍按原价计算。
四、自主反思、深化体验。
师:通过本节课的学习,你有哪些收获想与大家交流一下?
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/huibaotihui/63758.html