首页 > 范文大全 > 汇报体会

初中数学平均数教案(专业15篇)

初中数学平均数教案(专业15篇)



教案还可以起到指导教师教学的作用,能够提前预设教学过程中可能出现的问题和解决方法。以下是一些注重实践操作和问题解决的初中教案,有助于培养学生的实际能力。

三年级数学平均数教案

学习内容:

练习十一1―3题,教材42页例1。

学习目标:

1、掌握平均数的意义和求平均数的方法。

2、知道移多补少求平均数的方法。

3、会根据数据列出算式求平均数。

学习重点:

学习难点:

正确计算平均数。

学习准备:

课件,小黑板,统计表。

学习流程:

一、导入。

拿8枝铅笔,指4名同学,要平均分怎样分?

每人2枝,每人手中一样多,叫平均分。2是平均数。

二、学习交流。

1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图。

(1)从图中,你知道了什么信息?

(2)他们四人怎样分才能一样多?

(3)平均分后是多少个?

2、课件展示统计图的变化过程。

(1)指名展示。

(2)这种方法叫什么?

点拨:移多补少。

3、要求平均数,还可以怎样想?

(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?

14+12+11+15=。

(2)平均分成4份,怎么办?

52÷4=。

4、归纳。

要求平均数,可以先求出()数,再平均分几份。

5、算一算你们小组的平均身高,交流展示求平均数的方法和过程。

6、算出各小组的平均体重,说说你们是怎么算的?

三、交流展示。

展示自己的学习成果,说清求平均数的方法和过程。

四、达标测评。

1、练习十一第2题。

(1)什么是最高温度?什么是最低温度。

(2)你知道了哪些信息?

(3)填写统计表:本周温度记录。

(4)计算出一周平均最高温度和最低温度。

(5)说说你是怎么算的?

2、测量小组跳远成绩,求平均数。

五、总结。

通过这节课的学习活动,你有什么收获?

三年级数学平均数教案

北师大版《义务教育教科书数学》四年级(下册)第90页。

【教学目标】。

(一)知识与技能:

1、使学生理解“平均数”的含义,初步掌握求平均数的方法,使学生能根据简单的统计表求平均数,培养学生分析问题的能力和操作能力。

2、结合解决问题的过程初步认识平均数,体会平均数的必要性,并能根据统计图表解决一些简单的实际问题,在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

(二)过程与方法:

采用“自主合作,相互交流”的方法更好地理解平均数。在解决实际问题的过程中,进一步积累分析和处理数据的办法,发展统计观念。

(三)情感态度、价值观:

向学生渗透事物间联系的思想和统计思想,使学生感悟到数学知识内在联系的逻辑之美,提高学生审美意识。

【教学重点】。

明确“平均数”的含义;掌握求“平均数”的方法。

【教学难点】。

感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

【教学准备】。

多媒体课件。

【教学过程】。

一、创设情境、激情导入。

师:刚才短片中,石正小学让你印象最深刻的是什么?

生1:美丽的.校园。

生2:是一所有特色的足球学校。

生:(很兴奋地)想啊。

师:现在就请我们一起看看当时的比赛情况!

设计谈话导入,一方面拉近了师生间的关系激起了学生的认知兴趣,另一方面也为学生探究活动的开展指明了方向。

二、合作交流、建立概念。

1、初步感知。

生1:我不同意。万一他后面两次踢进的多了,那我不就危险啦!

生2:我会同意的。做老师的应该大度一点。

师:呵呵,还真和我想到一块儿去了。不过,小力后两次的成绩很有趣。

(师出示小力的后两次点球成绩:5个,5个。生会心地笑了)。

生:5。

师:为什么?

生:他每轮都踢进了5个,所有用5来表示他的成绩最合适。

师:说的有理!小林出场了,三次成绩各不相同。这一回,又该用哪个数来表示小林的成绩比较合适呢(3、4、5)。

能不能通过移一移的办法使到小林三次点球的成绩看起来一样多?

2、展示交流,理解求平均数的两种方法。

数学上,像这样从多的里面移一些补给少的,使得每轮个数都一样多。这一过程就叫“移多补少”。移完后,小林每轮看起来都踢进了几个(4个)。

小刚也踢了三轮,成绩又怎样?(3、7、2)。

讨论交流:现在,又该用几来表示他的成绩同学们先独立思考,然后看看除了移动补少的方法外有没有更快、更好的方法来解决?你有什么发现?学有困难的同学也可以自学课本90页。

3、引出课题:平均数。

数学上,我们把通过移多补少或计算后得到的每一轮同样多的这个数,就叫做原来这几个数的平均数。(板书:平均数)。

这里的平均数4是表示小刚的最高水平?是最低水平?那表示的是?(板书:平均水平)。

4、理解平均数的意义。

正式比赛前,我主动提出踢四轮的想法。前三轮射门已经结束,怎么样,想不想看看(师呈现前三轮成绩:4个、6个、5个)。

猜猜看,三位同学看到我前三轮的成绩,可能会怎么想。

5、体会平均数的取值范围。

出示4次成绩(4、6、5、1)凭直觉,刘老师最后的平均数可能是几个。

感知最后的平均成绩应该比最大的数6小,比最小的数1大。

[生列式计算,并交流计算过程:4+6+5+1=16(个),16÷4=4(个)]。

6、体会平均数的特点——敏感性。

失败乃成功之母,你觉得老师输在哪里?

试想一下:如果老师最后一轮踢进9个,比赛结果又会如何呢。

看来,要使平均数发生变化,只需要改变其中的几个数。

其实呀,平均数很敏感,善于随着每一个数据的变化而变化,任何一个数据的“风吹草动”都会使它改变,这正是平均数的一个重要特点。

三、巧设练习,巩固新知。

1、计算平均数。

你能计算这一周的平均最高气温是多少摄氏度吗?平均数是一个知冷暖的“人”。

2、为了使同学们对平均数有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。

没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米平均数只反映一组数据的一般水平,并不代表其中的每一个数据。平均数是一个很善变的“人”。

3、好了,探讨完身高问题,我们再来看看池塘的平均水深。(师出示图)。

平均水深110cm,小明身高140cm下河游泳不会有危险!您认同吗?

生:不认同,最深的地方有200cm,下河游泳还是有危险的。

师:看来,平均数还是个危险的“人”。

4、体会极端数据对平均数的影响。

你们知道在实际的一些比赛中是如何计算平均分的吗?刘老师带来了中央电视台青歌赛的视频请看!

去掉最高分和最低分的目的是什么?平均数是一个严谨的“人”。

5、看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。

20xx年5月14日综合外媒报道,世界卫生组织(who)13日发布了20xx年版《世界卫生统计》报告。报告指出,从总体上看,全世界人口的寿命都较以往有所增加。中国在此次报告中的人口平均寿命为:男性74岁,女性77岁。

一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢。

假如我就是那位73岁的老伯伯,你们打算怎么劝劝我。

平均数是一个会开玩笑的“人”。

四、畅谈收获、回顾总结。

平均数是一个怎样的“人”?您懂他了吗?

五、回应课本、课后延伸。

今天我们学习的是课本第90页的内容,请大家翻开书看看内容,有没有不明白的地方?发现重点可以用笔划起来。

板书设计。

平均数。

平均数是一组数据平均水平的代表。

移多补少。

一样多。

合并平分。

(4+6+5+1)÷4=4(个)。

1

三年级数学平均数教案

教学目标:

(一)知识与技能。

理解平均数的意义,初步学会简单的求平均数的方法。

(二)过程与方法。

学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

(三)情感态度和价值观。

感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

教学重点:

掌握求平均数的方法,“移多补少”“先合并再平分”的实际意义和应用。

教学难点:理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。

教学准备:多媒体课件。

教学过程:

一、创设情境、生成问题。

师:生活中有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?今天我们就来探索平均数的奥秘。(板书:平均数)。

二、探索交流,解决问题。

1、平均数的意义和求法。

师:读情境图,从图中知道了什么?你能根据统计图提出什么问题?(学生独立完成,小组交流,全班汇报)。

生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了14、12、11和15个塑料瓶。

生2:所解答的问题是平均每人收集了多少个。

师:你能解释“平均每人收集了多少个”的意思吗?(小组交流,全班汇报)。

生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。

师:你能理解“同样多”是什么意思吗?

生:每人收集的个数一样。

师:那有什么方法能使每人收集的个数一样呢?

生:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多。师:这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的.平均数。

师:还有其他方法能知道平均数吗?

生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。

师:请用算式表示出来。

生:(14+12+11+15)÷4。

=52÷4。

=13(个)。

答:平均每人收集了13个。

师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,它是不是每个人真正收集的矿泉水瓶数量?引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

刚刚我们初步学会了平均数的计算方法,接下来老师碰到了一个问题,你能帮我解决吗?

2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)。

师:读图表,你能找出哪些数学信息?(学生独立完成,小组交流,全班汇报)。

生1:已知第4小组男生队和女生队踢毽比赛成绩表。

生2:所求的问题是男、女两队,哪个队成绩好?(学生独立完成,小组交流,全班汇报)。

师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)。

生:男生队平均每人踢毽个数女生队平均每人踢毽个数。

(19+15+16+20+15)÷5(18+20+19+19)÷4。

=85÷5=76÷4。

=17(个)=19(个)。

1719。

答:女生队的成绩好些。

生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。

师:对!在人数不等的情况下,用平均数表示各队的成绩更公平更好一些。

师:那么问题来了,你觉得这个平均数会比原来的数的最大数大吗?会比最小的数小吗?

三、巩固应用,内化提高。

在生活中我们也会遇到很多用到平均数的地方。接下来老师来考考你们学习的如何。

四、作业。

1、做一做第1题。

2、判断题。

(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。()。

(3)小明所在的1班学生平均身高1、4米,小强所在的2班平均身高1、5米。小明一定比小强矮。()。

3、做一做第2题。

五、回顾整理反思提升。

师:通过本课学习,你有哪些收获?

数学教案-平均数一

教学目标:

1.会正确读、写多位数,并能比较数的大小。

2.能用万、亿为单位表示大数。

3.能根据实际问题的需要求一个数的近似数。

教学重点:会正确读、写多位数,并能比较数的大小。

教学难点:能根据实际问题的需要求一个数的.近似数。

教学过程:

一、多位数的读、写的练习。

练习一第1题:先回顾计数单位的顺序,再根据书中的数据说说它们是几位数,最高位在什么位上,并进行读、写。

二、多位数的改写。

练习一第2题:先复习多位数的不同数位上数字的不同意义。再进行数的改写。

三、读写游戏。

同桌间进行的游戏:第1步一个同学读数,另一个同学根据所读的数写数,经过几次读数,两人可交换角色;第2步一个同学写数,另一个同学根据所写的数读数,然后交换角色进行。在同桌练习的基础上,可选派代表在全班进行比赛,以激发学生的兴趣。

四、多位数比大小。

做第4题:完成后说说比较的方法。

(一)组数游戏:

请每个同学准备一些数字卡片;然后请学生代表提出组数的要求,根据要求每个同学都摆一摆;接着,选择一部分学生所摆的数,供全班观察讨论。

(二)有关近似数的练习。

讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。

板书设计:练习一。

亿级万级个级。

千百十亿千百十万千百十个。

亿亿亿万万万。

13820000。

计数单位一千三百八十二万。

三年级数学平均数教案

大家都听过小猫钓鱼的故事吧?今天老师也要给大家讲一段小猫钓鱼的故事。

一、小猫钓鱼认识平均数。

1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)。

3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。

方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。

5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。

二、进一步理解平均数。

1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”

2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?

3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?

三、歌唱比赛,理解平均数的必要性。

1、森领卡拉ok大赛就要开始了,许多小动物都赶着去观看比赛呢!

3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。

4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的.人数不同,所以算总分是不公平的,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。

四、生活中灵活应用平均数。

看完卡拉ok比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)。

这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?

五、平均数的应用。

三年级数学《平均数》教案

1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

2、使学生认识统计与生活的联系,发展学生的实践能力。

3、巩固求平均数的计算方法。

一、情景导入。

2、学生动手解决,并交流解决的方法。

(1)组织交流解决的方法。

(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。

二、探究体验。

1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。

2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?

5、组织交流计算的方法与结果。

6、组织讨论:从刚才的这件事,你有什么发现?

7、小结:平均数能较好地反映一组数据的总体情况。

三、实践应用。

1、说说生活中还有哪些事要通过求平均数来解决问题。

2、生独立完成练习十一第4、5题。

四、全课总结。

1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

2、师总结。

三年级数学平均数教案

1、使学生理解平均数的含义,初步学会简单的求平均数的方法。

2、理解平均数在统计学上的意义,感受数学与生活的联系。

3、发展学生解决问题的能力。

【重点难点】使学生理解平均数的含义,初步学会简单的求平均数的方法。

【教学过程】。

学生动手解决,并交流解决的方法。

2、引入“平均数”

1、出示情景图:说说老师和同学们在干什么?

2、出示统计图:引导学生收集信息。

3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

教师带领学生共同理解平均数的计算过程以及其中蕴涵的意义。

6、小结。

师:同学们,电视上比赛评分时,为何要去掉一最高分,去掉一最低分?你能说说理由吗?

引起了学生的激烈讨论。学生通过讨论解决实际问题,对平均数的理解又上升到一个高度,明白平均数不是一个实在的数,去掉最高分和最低分是为了让最后得分不会偏离平均分太远。

三、巩固训练。

四、小结:

通过这节课的学习,你们有什么收获,还有什么问题?

平均数小学三年级数学教案

生:(齐)喜欢!

师:如果张老师告诉大家,我最喜欢并且最拿手的体育运动是篮球,你们相信吗?

生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。

生:(齐)想!

生:我不同意。万一他后面两次投中的多了,那我不就危险啦!

生:我会同意的。做老师的应该大度一点。

师:呵呵,还真和我想到一块儿去了。不过,小强后两次的投篮成绩很有趣。

(师出示小强的后两次投篮成绩:5个,5个。生会心地笑了)

生:5。

师:为什么?

生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。

师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢?我们也一起来看看吧。

(师出示小林第一次投中的个数:3个)

师:如果你是小林,会就这样结束吗?

生:不会!我也会要求再投两次的。

师:为什么?

生:这也太少了,肯定是发挥失常。

生:(齐)不同。

生:我觉得可以用5来表示,因为他最多,二次投中了5个。

师:也就是说,如果也用5来表示,对小强来说

生:(齐)不公平!

师:该用哪个数来表示呢?

生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。

师:不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。

生:(齐)那他还有一次投中3个,比4个少1呀。

师:哦,一次比4多1,一次比4少1

生:那么,把5里面多的1个送给3,这样不就都是4个了吗?

(师结合学生的交流,呈现移多补少的过程,如图1)

生:(齐)4个。

师:能代表小林1分钟投篮的一般水平吗?

生:(齐)能!

师:轮到小刚出场了。(出示图2)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,然后在小组里交流自己的想法。

生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。

(结合学生交流,师再次呈现移多补少过程,如图3)

师:还有别的方法吗?

生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。

[师板书:3+7+2=12(个),123=4(个)]

生:能!都是4个。

师:能不能代表小刚1分钟投篮的一般水平?

生:能!

生:使原来几个不相同的数变得同样多。

师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢?在小组里说说你的想法。

生:在这里,4是3、7、2这三个数的平均数。

师:不过,这里的平均数4能代表小刚第一次投中的个数吗?

生:不能!

师:能代表小刚第二次、第三次投中的个数吗?

生:也不能!

生:这里的4代表的是小刚三次投篮的平均水平。

生:是小刚1分钟投篮的一般水平。

(师板书:一般水平)

(师呈现前三次投篮成绩:4个、6个、5个,如图4)

师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想?

生:他们可能会想:完了完了,肯定输了。

师:从哪儿看出来的?

生:你们看,光前三次,张老师平均1分钟就投中了5个,和小强并列第一。更何况,张老师还有一次没投呢。

生:我觉得不一定。万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。

生:万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了?

师:情况究竟会怎么样呢?还是让我们赶紧看看第四次投篮的.成绩吧。

(师出示图5)

师:凭直觉,张老师最终是赢了还是输了?

生:输了。因为你最后一次只投中1个,也太少了。

师:不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗?

生:大约是4个。

生:我也觉得是4个。

生:不可能,因为只有一次投中6个,又不是次次都投中6个。

生:前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。

生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。

师:那你们为什么不估计平均成绩是1个呢?最后一次只投中1个呀!

生:也不可能。这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不止1个了。

生:小一些。

生:还要比最小的数大一些。

生:应该在最大数和最小数之间。

师:是不是这样呢?赶紧想办法算算看吧。

[生列式计算,并交流计算过程:4+6+5+1=16(个),164=4(个)]

师:和刚才估计的结果比较一下,怎么样?

生:的确在最大数和最小数之间。

师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿?

生:最后一次投得太少了。

生:如果最后一次多投几个,或许你就会赢了。

师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。

(生估计或计算,随后交流结果)

生:如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。

师:你是通过移多补少得出结论的。还有不同的方法吗?

生:我是列式计算的。4+6+5+5=20(个),204=5(个)。

生:我还有补充!其实不用算也能知道是5个。大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。

师:那么,最后一次如果从原来的1个变成9个,平均数又会增加多少呢?

生:应该增加2。因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。所以平均数应增加2个。

生:我是列式计算的,4+6+5+9=24(个),244=6(个)。结果也是6个。

师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。

(师出示图6、图7、图8,三图并排呈现)

(生独立思考后,先组内交流想法,再全班交流)

生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。

师:最后的平均数

生:也不同。

师:看来,要使平均数发生变化,只需要改变其中的几个数?

生:一个数。

师:瞧,前三个数始终不变,但最后一个数从1变到5再变到9,平均数

生:也跟着发生了变化。

生:我发现平均数总是比最大的数小,比最小的数大。

师:能解释一下为什么吗?

生:很简单。多的要移一些补给少的,最后的平均数当然要比最大的小,比最小的大了。

师:其实,这是平均数的又一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。

生:我还发现,总数每增加4,平均数并不增加4,而是只增加1。

师:那么,要是这里的每一个数都增加4,平均数又会增加多少呢?还会是1吗?

生:不会,应该增加4。

生:想!

生:超过的部分和不到的部分一样多,都是3个。

师:会不会只是一种巧合呢?让我们赶紧再来看看另两幅图(指图7、图8)吧?

生:(观察片刻)也是这样的。

师:这儿还有几幅图,(出示图1和图3)情况怎么样呢?

生:超过的部分和不到的部分还是同样多。

师:奇怪,为什么每一幅图中,超出平均数的部分和不到平均数的部分都一样多呢?

生:如果不一样多,超过的部分移下来后,就不可能把不到的部分正好填满。这样就得不到平均数了。

生:就像山峰和山谷一样。把山峰切下来,填到山谷里,正好可以填平。如果山峰比山谷大,或者山峰比山谷小,都不可能正好填平。

师:多生动的比方呀!其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第三个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。

(师出示如下三张纸条,如图9)

生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。

师:照你看来,它们的平均长度会比10厘米长还是短?

生:应该短一些。

生:大约是9厘米。

生:我觉得是8厘米。

生:不可能是8厘米。因为7比8小了1,而12比8大了4。

师:它们的平均长度到底是多少,还是赶紧口算一下吧。

生:有可能。

师:不对呀!不是说队员的平均身高是160厘米吗?

生:平均身高160厘米,并不表示每个人的身高都是160厘米。万一李强是队里最矮的一个,当然有可能是155厘米了。

生:平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170 厘米。

师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影,图略)画面中的人,相信大家一定不陌生。

生:姚明!

生:不可能。

生:姚明的身高就不止2米。

生:姚明的身高是226厘米。

师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数

生:那就一定有人身高不到平均数。

师:没错。据老师所查资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的一般水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看池塘的平均水深。

(师出示图11)

师:冬冬来到一个池塘边。低头一看,发现了什么?

生:平均水深110厘米。

生:不对!

师:怎么不对?冬冬的身高不是已经超过平均水深了吗?

生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能 会有危险。

师:说得真好!想看看这个池塘水底下的真实情形吗?

(师出示池塘水底的剖面图,如图12)

生:原来是这样,真的有危险!

师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。这不,前两天,老师从最新的《健康报》上查到这么一份资料。

(师出示:《2007年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)

生:中国男性的平均寿命比原来长了。

生:我想,老伯伯可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。

师:老伯伯之所以这么想,你们觉得他懂不懂平均数。

生:不懂!

生:老伯伯,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。弄不好,你还会长命百岁呢!

师:谢谢你的祝福!不过,光这么说,好像还不足以让我彻底放心。有没有谁家的爷爷或是老太爷,已经超过71岁的?如果有,那我可就更放心了。

生:我爷爷已经78岁了。

生:我爷爷已经85岁了。

生:我老太爷都已经94岁了。

师:真有超过71岁的呀!猜猜看,这一回老伯伯还会再难过吗?

生:不会了。

师:探讨完男性的平均寿命,想不想了解女性的平均寿命?有谁愿意大胆地猜猜看?

生:我觉得中国女性的平均寿命大约有65岁。

生:我觉得大约有73岁。

(师呈现相关资料:中国女性的平均寿命大约是74岁)

师:发现了什么?

生:女性的平均寿命要比男性长。

生:不一定!

生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。

师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

三年级平均数数学教案

1、 使学生理解平均数的意义,初步学会简单的平均数的方法。

2、 理解平均数在统计学上的意义。

3、 培养应用所学知识合理、灵活解决简单的实际问题。

教学重点

使学生理解平均数的意义,初步学会简单的平均数的方法。

教学难点

培养应用所学知识合理、灵活解决简单的实际问题。

教学过程:

1、他们在干什么?其中有一个红领巾小队收集的情况是这样的(给出数据7个 5个 4个 8个)。

2、看了这些数据,你获得了那些信息?你是怎么发现的?

3、他是怎么得到平均每人收集6个的呢?请同学们拿出学习材料,四人小组讨论一下。最后,推选一位同学介绍你们小组的学习成果。

小组汇报

(板书)还有其他方法吗?(以多补少)

3、那平均数是不是就是以前学过的每份数呢?为什么?(7+5+4+8)表示什么?

总数量(板书)4又表示什么呢?总份数,那你们知道平均数可以怎么求吗?

4、刚才同学们通过自己讨论,尝试,发现了平均数,学会了求平均数。知道这个红领巾小队平均每人收集6个。如果我们全班40名同学都去参加,一次可以收集多少个呢?你是怎么想的?这就是平均数的一个用处。我们还可以推想出全年级的收集的个数。

1、 我们已经学会了求平均数的方法,你们能解决有关平均数的问题吗?老师这里有一组来自会展中心博览会的消息。出示下列信息:

(1)美食节开幕后,第一天参观的有3万人;第二天参观的有4万人;第三天参观的有1万人。

(2)李刚参加打靶比赛,第一次中了7环,第二次中了9环,第三次与第四次共中了16环。

2、你能求什么问题?请大家做在练习本上。

反馈时强调:我们在求平均数时要找准总数量与总份数之间的对应关系。

3、平均数问题在我们生活中有很广泛的应用,我从统计部门了解一组平均数。出示:

(1)1959年南宁市女性平均寿命是52岁,1999年南宁市女性平均寿命是72岁。

我们同学家里的住房面积有多大?你们能算出你们家里平均每人的住房面积吗?

我们同学家里的人均住房面积比9平方米大的有多少?

100%的同学都比9平方米大。生活是很幸福的,我们一定要珍惜这样幸福的日子,好好学习。

生活当中还有那些地方也用到平均数呢?谁举例

1、平均数在生活中的用处确实非常广泛,我们学校的校医非常关心我们同学的身体健康,经常要了解我们同学的平均体重,平均身高等,(出示班级座位图):

2、老师了解了这么些数据:(出示)你们能求出这一小组同学的平均身高吗?自己试一试。

3、请一位同学来说一说。

4、这样同一个班里,抽取了两组数据,求出的平均身高是135厘米和130厘米,到底那一个更接近全班同学的平均身高呢?请认为是135厘米的同学说说理由。

三年级数学《平均数》教案

教学目标:

1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

2、使学生认识统计与生活的联系,发展学生的实践能力。

3、巩固求平均数的计算方法。

教学过程:

2、学生动手解决,并交流解决的方法。

(1)组织交流解决的方法。

(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。

2、出示情景图,告诉同学穿兰色衣服的'是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?

5、组织交流计算的方法与结果。

6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。

说说生活中还有哪些事要通过求平均数来解决一些问题。

通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

三年级数学《平均数》教案

1.使学生进一步掌握平均数的意义和求平均数的方法。

2.懂得平均数在统计学上的意义和作用。

3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。

掌握平均数的意义。

掌握求平均数的方法。

提问:题目的'已知条件和问题分别是什么?

要求平均每一组投中多少个?应该怎样列?

提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?

1、出示教科书第43页的例题2。

提问:从这两张统计表中,大家发现了什么?

在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?

场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。

2、学生动手列式计算。

3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。

1、科书第45页练习十一的第4题:

(1)完成第1小题。提问:什么叫月平均销售量?

要求哪种饼干月平均销售量多?多多少?应该怎样列式?

(2)完成第2小题让学生自由发表看法。

(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。

2、练习十一的第5题。

学生独立完成,集体订正。

本节课学习了什么?你有什么收获?

五年级数学教案:《平均数的再认识》

教学内容:

冀教版数学五年级下册第五单元长方体和正方体的认识。

教学目标:

1.知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

2.通过动手操作,知道长方体、正方体的不同的展开图,加深对长方体、正方体特点的认识。

3.激发学习数学的兴趣,渗透一种转化的思想,及研究方法的学习,体会学科的价值。

教学重难点:

长方体、正方体的特征和长方体、正方体的关系。

教学设备:

幻灯片、一个正方体纸盒、一个长方体纸盒、直尺。

教学过程:

一谈话引入。

出示实物图。让学生找出图中的长方体和正方体物体。(幻灯显示)。

师:同学们请看,这些物体你们认识吗?你能从中找出形状是长方体或正方体的实物吗?

生:墨水瓶的形状是长方体……。

生汇报,教师进行分类。

说出生活中见到的长方体和正方体物体。

师:生活中你还见过哪些物体的形状是长方体或正方体?

生:牙膏盒的形状是长方体,骰子的形状是正方体的。

生:……。

指名发言要更多倾向于差生。

二自主探究。

1.认识面、顶点、棱的特征。

指出面、棱和顶点。

师:生活中这样的物体有很多,拿出你准备的长方体,像老师这样摸一摸你有什么感觉?

生:上面有平平的面,还有边和尖尖的角。

师:这个平平的面我们就叫做长方体的面、面与面之间的边叫做棱,三条棱相交的点叫做顶点。(也可以试着让学生说一说他们的名称)教师板书。

拿出正方体物体:你们能指出面、棱和顶点吗?

再让学生指一指长方体的。

面的特征。

师:数一数长方体有几个面?正方体有几个面?

生:长方体有6个面、正方体有6个面。

师:你是怎么数的?这些面有多少特征?

(让学生按照一定的规律来数)。

生:相对的面的面积相等。

师:你用什么办法验证你的猜测呢?(可以在小组内说一说)。

生用一定的方法验证相对的面的面积相等。

生:我用算的方法来验证……。

生:我用剪的方法验证,是这样做的……。

生:我用画的方法……。

顶点、棱的特征。

师:观察用细棒和珠子做成的正方体和长方体。

师:长方体和正方体分别用了多少根小棒、多少颗珠子?(珠子也就是长方体和正方体的“顶点”,所用的小棒就相当于“棱”。)。

生:正方体用了8颗珠子12根小棒,证明正方体有8个顶点,12条棱。

生:……。

师:说说你是怎么数的?它们的棱各有什么特点呢?

让学生按照一定的顺序来数。

整理特征。

师:刚才我们通过观察找到了长方体和正方体的特征,你能把它们的特征整理在表格中吗?

名称面顶点棱。

正方体6个面,所有的面完全相等。8个顶点12条棱,所有的棱的长度都相等。

长方体6个面,相对的面完全相等。8个顶点12条棱,每组4条棱的长度相等。

学生先自己整理然后在小组内交流。

2.探究长方体和正方体的关系。

师:仔细观察表格,正方体和长方体有哪些相同的地方?哪些不同的地方呢?

生:正方体和长方体都有……,不同的地方是……。

学生汇报得出:正方体是特殊的长方体。

认识长、宽、高。

师:相交于一个顶点有三条棱,这三条棱的长度谁知道叫什么名字呢?你是怎么知道的?

生:……。

师:拿出你准备的长方体,这样放着谁能说出它的长、宽、高?如果这样放呢?(变换不同的方向说出)。

师:你们能看图说出每个长方体的长宽高分别是多少吗?

师:你能测量长方体的长、宽、高吗?

完成练一练第一题。

师:正方体的棱长有什么特点?那正方体每条棱的长度都叫做正方体的棱长。

练一练第二题。

三巩固新知。

练一练的第三题。

三年级数学平均数教案范文

1.知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。

2.能力目标:理解平均数在统计上的意义。

3.情感目标:体会数学与生活的密切联系,培养学生的实践能力。

重点难点。

重点:理解平均数的含义。

难点:初步学会简单的求平均数的方法。

教具准备:多媒体课件。

教学过程。

一、创设情境,提出问题。

上周的作业,有三位同学做得,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)。

师:你们觉得这样分公平吗?怎样才能公平?

学生讨论,指名汇报。

(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)。

很好。谁能给这种方法取个名字?(“移多补少法”。板书)。

(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)。

这种方法也很好!我们也给它取个名字。(“先合再分”板书)。

刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5.

教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数。

通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)。

几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)。

师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。

同学们在生活中还听到过哪些平均数?说一说。(见课件)。

看来平均数的用处还真大,同学们要好好学习哟!

二、寻找方法,解决问题.

同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。

第一小组上月获小红星个数统计表。

单位:个。

叶茹李新吴玉刘超。

14111013。

第二小组上月获小红星个数统计表。

单位:个。

叶雨付涛张新江南夏丽。

15128119。

其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?

生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。

师:那你们说怎么比呢?

生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。

生3:可第一小组比第二小组少了一个人呀!怎么能比?

同学们认为怎样比最合适呢?(平均数)。

对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)。

下面,我们就各显神通,先求出第一小组的平均数吧!

小组讨论、汇报。

(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)。

不错,方法很简洁,他用的什么方法?有不同的方法吗?

(先求出四个人的总个数,再求出平均每人的个数。)。

他用的方法就是——先合再分法。

看来,大家都非常聪明,第二小组的平均个数会求吗?

你们觉得这时我们求平均数用哪种方法比较合适?为什么?

学生在练习本上计算,指名板演,集体订正。

为什么这里求得的总数除以的是5而不是4?

(先合再分法)。

小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。

我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。

看来,平均数帮了同学们的大忙,它最能代表一组数据的总体水平。

所以,虽然叶雨同学的得数最多,可是他们组的平均得数比第一小组少了一个;虽然得数的同学不在第一小组,但他们小组每个人都很努力,所以,他们组的平均得数多。看来,一个团队的胜利光凭一个人的努力是不行的。需要团体的每个人都来付出。同学们觉得呢?你以后打算怎样做?(学生回答)。

三.结合实例,深入理解。

老师调查了几位同学的体重:29千克、31千克、30千克、37千克、28千克。

生1:不会,因为平均数会比较靠近中间的数。

生2:大数必须给小数不一部分,那样,大数变小了,小数变大了,得到的平均数肯定比大数小,比小数大。

那么,它的平均数到底是多少呢?计算一下,验证。

一组数的平均数的大小应该在这组数据的数和最小数之间。

四、应用方法,解决问题。

挑战第一关“明辨是非”(出示课件)。

请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。

1.城南小学全体同学向希望工程捐款,平均每人捐了3元,那么,全校每个同学一定都捐了3元。()。

2.学校排球队队员平均身高是160厘米,李强是该队队员,他的身高不可能是155厘米。()。

3.小明所在班级的平均身高是1.4米,小强所在班级的身高1.5米。小明一定比小强矮吗?()。

闯关小贴士:一组数的平均数是我们计算出的结果,表示这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

挑战第二关合理推测。

三(一)班第一小组同学身高情况统计表。

学号123456。

身高131128132129134126。

单位:厘米。

明明算了他们的平均身高是135厘米,不计算你能不能知道他算的对不对?

闯关小贴士:一组数的平均数的大小应该在这组数据的数和最小数之间。

挑战第三关乐于助人。

2、游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?()。

五、课堂总结。

今天同学们真棒,闯过了一关又一关,这和你们的努力是分不开的,老师奖励你们每人一颗小红星。那么,今天,你学到了哪些关于平均数的知识,谁愿意和大家一起分享?说一说。

今天,老师和同学们一起度过了愉快的一节课,希望同学们能用平均数的知识解决更多的问题。

六、课外拓展(该环节机动)。

出示课本例2:

欢乐队单位:厘米。

王强谢明李雷王小飞刘思。

148142139141140。

杨洋周小杰陶晓卢浩蔡志。

144146142145143。

开心队单位:厘米。

1.从表中可以看出谁?谁最矮?

2.怎样比较两支球队的整体身高?

谁能从中受到启发,来解决老师留下的问题呢?有兴趣的同学可以试一试。

七、布置作业。

八:板书平均数。

移多补少法。

平均数不等于平均分。

先合再分法。

7535。

1411101312反映一组。

1512891111数据的。

293130372831总体情况。

(15+12+8+9+11)÷5(14+11+10+13)÷4。

=55÷5=48÷4。

=11(个)=12(个)。

三年级数学《平均数》教案

(一)知识目标:

1、根据给定信息,会利用计算器求一组数据的平均数。

2、会进行数据的收集、加工与整理。

(二)能力目标:

1、初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。

2、通过对计算器求平均数的探索活动,培养学生对探索能力。

(三)情感目标:在使用计算器求平均数的探索活动中,鼓励学生重于探索,体验数学活动充满着探索与创造,同时通过互相问合作交流,让所有学生都得到发展,达到共同进步。

1、探索用计算器求平均数的方法。

2、用计算器求平均数。

3、从所给条形图中正确获取信息,并能进行加工与整理。

教学难点:会进行数据的收集、加工与整理。

教学方法:合作探索法。

在前几节课里我们分别学习了求算术平均数与加权平均数,在计算过程中,你们体会到有什么困难吗?(引入)。

1、探一探:(新6人为小组)。

(1)自己课桌的宽度,并将各组员的估计结果统计出来(精确"厘米"w:st="on"0.1厘米)。

(2)用计算器求出估计结果的平均值,你是怎么做的?互相交流。

计算器求一组数据平均数的一般步骤是:(以科学计算器为例)。

1、打开计算器,按键进入统计状态。

2、按键清除机器中原有统计数据。

3、输入数据;键入第一个数据并按,完成第1个数据的.输入,重复上述步骤,直至输入了所有的数据为止。

4、显示结果。

5、退出;运算结束后,可按退出统计状态进入计算状态;

也可按来清除所有数据进入下一组数据的统计工作。

大家的做法与以上步骤一致吗?量一量,与实际是否符合?

例1:观察下图,利用就算器就算上海东在鲨鱼篮球队队员的平均年龄。

解:进入统计状态并清除机器中原有数据后,依次按键1、6、m+、18、m+、m+、2、1、m+、m+、m+、m+、2、3、m+、m+、m+、2、6、m+、2、9、m+、m+、3、4、m+完成数据的输入,再按键shift、1、=,则得到结果23.26666667。

练习:

随堂练习1.2。

本节课我们学习了利用计算器求一组数据的平均数。具体的应用步骤有个五个。大家要熟练掌握计算器的应用,这不仅是数学上必须掌握的知识和技能也是其他学科或者生活中应用很广泛的知识。

三年级数学下《平均数的应用》教案

教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,应是与时俱进的。以下就是小编为大家编辑整理的三年级数学下《平均数的应用》教案,更多精彩内容请关注应届毕业生考试网。

  第43页例2

 

1、 使学生掌握平均数的意义和求平均数的方法。

2、 懂得平均数在统计学上的意义和作用。

3、 培养应用所学知识合理、灵活解决简单的实际问题。

使学生掌握平均数的意义和求平均数的方法。

培养应用所学知识合理、灵活解决简单的实际问题。

1、出示两个篮球队的身高统计表,让学生根据统计表说一说谁最高,谁最矮。

2、如果两个篮球队进行身高比较,你认为哪个队队员身高高些?

3、讨论:怎样比较两支球队的整体身高情况。

 

1、合作学习

让学生自己进行平均数计算。

2、提问:142厘米表示什么?它是指欢乐队某个队员的身高吗?

3、144厘米表示什么?它是指开心队某个队员的身高吗?

4、你能告诉我们两个队的总体身高比较情况吗?

出示上两周课堂评分。

[板书: 100分 98]

[板书: 99分 99]

[板书: 98分 99]

[板书: 100分 100]

[板书: 96分 98]

[板书: 98分 100]

你们认为第一周课课堂评分肯定比几分多,比几分少?

师生共同演算:

平均分是多少?

 

全课小结。

第五课时 综合练习

 

第44页至第45页的练习。

应用所学知识合理、灵活解决简单的实际问题。

 

 

本单元我们学过了哪些知识?知道了什么?学会了什么?

 

第一题,是一道实践活动题,要让学生在进行实际调查的基础上,再估算平均身高和平均体重。每个小组计算完了以后,再在小组间对比一下,并和第39页中国10岁儿童身高、体重的正常进行比较,看看能发现什么信息。

第二题,先让学生根据图中的温度记录理解什么是最高温度,什么是最低温度,再把统计表补充完整,最后计算出一周平均最高温度和一周最低温度。

学生了解最高温度、最低温度、一周平均最高温度、平均最低温度等概念后,再让学生实际记录本地一周的气温情况,再计算出一周平均最高温度和平均最低温度。学生记录气温的`方式可以通过广播、电视、报纸、网络等媒体获得信息。

第三题,也是一道实践活动题,通过收集、整理数据、计算平均等过程,进一步培养学生的统计能力。

第四题,让学生根据甲乙两种饼干第一季度的销量统计图,先比较他们第一季度月平均销量的多少,然后分析一下乙种饼干销量越来越大的原因,让学生初步体会统计在实际生活中的作用,挖掘数据背后隐藏的现实原因。第三小题是开放题,让学生根据统计图进一步发现信息,如学生会发现两种饼干二月份的销量是相同的,但甲种饼干的销量逐月下降,乙种饼干的销量逐月上升,也可以预测一下两种下个季度的销售情况。

第五题,让学生明确,王叔叔走的路程分为4段,一共骑了3天,而所求的是平均每天骑的路程,所以除数应是3而不是4。

相关内容

热门阅读
随机推荐