首页 > 范文大全 > 工作总结

等腰三角形的性质教案(模板19篇)

等腰三角形的性质教案(模板19篇)



教案模板的完善和更新是教师不断提高教学水平和教育教学质量的重要途径。以下是小编为大家精心搜集的教案模板,供大家参考。这些模板覆盖了多个学科和教学内容,包括教学目标、教学步骤、教学资源等方面的要求。希望这些教案模板能为广大教师提供一些借鉴和参考,提升教学质量。现在就来看看这些教案模板吧!

三角形的性质教案

1、知道三角形的主要特征,即三角形由三条边,三个角组成。

2、能找出生活中和三角形相似的物体。

3、发展幼儿逻辑思维能力。

4、乐意参与活动,体验成功后的乐趣。

活动准备。

1、小白兔、萝卜、蘑菇图片各一个,

2、图形组成的实物图片4张。

3、孩子人手3个三角形。

活动过程。

一、故事:小白兔过生日今天是小白兔的生日,早晨小白兔高高兴兴的从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小白兔捡起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。

二、观察小白兔的出行路线请一个小朋友将路线用线连接起来,观察像什么图形。

三、引导幼儿观察比较图形,幼儿每人一个三角形。

1、通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

2、老师小结三角形特征,使幼儿获得的知识完整化。

2、观察图形拼图,找出三角形,数一数用了几个三角形?

3、请幼儿在周围环境中找出象三角形的东西。

活动反思:

小班幼儿的思维是具体形象思维,用故事引出开头吸引孩的注意,在拼拼摆摆的过程中加深孩子对三角形的认识,老师及时的小结使孩子获得知识的完整性。由于生活中属于三角形的物体少一些,所以孩子丰富的不是很多。

三角形的性质教案

《三角形的特性》是人教版小学数学四年级下册第五单元中第一课时的内容。

1、知识目标:理解三角形的定义,知道三角形各部分的名称,理解三角形稳定性的特征,并学会给三角形画高。

2、能力目标:培养学生的观察分析和动手操作能力以及对数学知识应用的能力,进一步发展空间观念。

3、情感目标:体验数学与生活的联系,培养学生学习数学的兴趣。

教学重点:理解三角形的定义,三角形稳定性的特征。

教学难点:掌握三角形高的画法。

(一)导入。

2、三角形在我们的生活中有着广泛的应用,这节课我们就来探究一下三角形的特性。(板书课题:三角形的'特性)

(二)操作感知,理解概念。

1、发现三角形的特征。

(1)师生每人画出一个三角形。

小组内展示画的三角形,你发现它们有什么共同点?

(2)让学生在自己画的三角形上尝试标出边、角、顶点。(指生上台板演。)

2、概括三角形的定义。

(1)学生动手摆三角形。思考:什么样的图形叫三角形?(可结合课本理解)

(2)学生回答。

(3)你认为定义中哪些词最重要?(理解“三条线段”“围成”。)

3、用字母表示三角形。

为了表达方便,我们通常把三角形的三个顶点分别用字母a、b、c表示,这个三角形可以称作三角形abc。

4、认识三角形的底和高。

(1)复习过直线外一点做已知直线的垂线段。

(2)小组合作学习三角形高的画法。

自学提示:什么是三角形的高?

作三角形的高用什么学具?

怎样作三角形的高?

(3)小组代表展示问题并演示三角形高的作法。

(4)思考:三角形有几条高?应怎样画它们?

(三)实验解疑,探索特性。

1、提出问题。

(课件出示图)同学们,在生活中三角形有着广泛的应用,仔细观察为什么把物体的这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。

2、实验解疑。

下面,请大家都来做一个实验。

学生拿出三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

实验结果:三角形具有稳定性。

请学生举出生活中应用三角形稳定性的例子。

(四)巩固运用,提高认识。

指导学生完成练习十五1、2、3题。

(五)课堂小结。

通过这节课的学习,你有什么收获?

三角形的特性;

三角形有三个顶点,三个角,三条边;

由三条线段围成的图形叫做三角形;

三角形具有稳定性。

相似三角形的性质教案

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.。

3.进一步培养学生类比的教学思想.。

4.通过相似性质的学习,感受图形和语言的和谐美。

先学后教,达标导学。

1.教学重点:是性质定理的.应用.。

1课时。

投影仪、胶片、常用画图工具.。

[复习提问]。

[讲解新课]。

让学生类比“全等三角形的周长相等”,得出性质定理2.。

同样,让学生类比“全等三角形的面积相等”,得出命题.。

此题学生一般不会感到有困难.。

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.。

解:设原地块为,地块在甲图上为,在乙图上为.。

学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:

2.重点学习了两个性质定理的应用及注意的问题.。

教材p247中a组4、5、7.。

三角形的性质教案

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.。

3.进一步培养学生类比的教学思想.。

4.通过相似性质的学习,感受图形和语言的和谐美。

先学后教,达标导学。

1.教学重点:是性质定理的应用.。

2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.。

1课时。

投影仪、胶片、常用画图工具.。

[复习提问]。

[讲解新课]。

让学生类比“全等三角形的周长相等”,得出性质定理2.。

性质定理2:相似三角形周长的比等于相似比.。

同样,让学生类比“全等三角形的。面积相等”,得出命题.。

性质定理3:相似三角形面积的比,等于相似比的平方.。

此题学生一般不会感到有困难.。

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.。

解:设原地块为,地块在甲图上为,在乙图上为。

[小结]。

2.重点学习了两个性质定理的应用及注意的问题.。

教材p247中a组4、5、7.。

三角形的性质教案

1、面向学生:初中学科:数学。

2、课时:1。

3、学生课前准备:

(2)等腰三角形纸片。

(3)完成课后习题。

察、分析、归纳概括,主动获得知识。

(2)组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。

(3)在教学中,向学生渗透数学思想方法,培养学生说理的能力。

1、等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

2、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

3、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

4、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

5、如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

6、本课对学生的动手能力,观察能力都有一定的'要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

7、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

8、课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。

本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的主体意识。

教学目标:

1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

教学难点:证明过程的书写格式,用规范的符号语言描述证明过程。

教学媒体:多媒体。

(一)回顾知识。

1、什么叫证明?什么叫定理?

2、证明与图形有关的命题,一般步骤有哪些?

(二)创设情境。

观察图片。

百度图片搜索_等腰三角形金字塔的搜索结果。

2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?

3、上述性质你是怎么得到的?(不妨动手操作做一做)。

4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?

(三)探索活动。

1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。

2、思考与讨论:说明你所画的是顶角的平分线。

怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:等腰三角形的两个底角相等,(简称:“等边对等角”)。

等边对等角_百度百科。

bdc4、你能写出上面定理的符号语言吗?

5、总结。

三角形的性质教案

圆心与三顶点连线分辨平分三角。

半径x三边和/2=三角形面积。

三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。

在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。

内切圆的半径为r=2s/c,当中s表示三角形的面积,c表示三角形的周长。

三角形内切圆半径公式。

1、三角形内切圆半径:r=2s/(a+b+c);

2、三角形外接圆的半径:r=abc/4s。

其中,s为三角形的面积,a,b,c分别为三角形的三边。

三角形的性质教案

活动内容:小鱼游(认识三角形)。

活动目标:

1、知道三角形的主要特征,即三角形有三条边三个角。

2、根据三角形的特征在图中找出形状与三角形相似的小鱼。

3、乐意动手操作,提高幼儿的观察力和空间想象力。

活动重点、难点:

知道三角形的主要特征是三角形由三条边和三个角组成。

活动准备:

三角板、小黄兔2只、萝卜1个、蘑菇1个、三角形、正方形、圆形若干、正方形纸每人一张、幼儿每人一个三角形积木活动过程:

1.故事导入:小黄兔过生日。

师:今天是小黄兔的生日,早晨小黄兔高高兴兴地从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小黄兔拔起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。

2、观察小黄兔的出行路线。

请小朋友将路线用线连起来,观察是什么图形(三角形)3、引导幼儿观察比较图形,幼儿每人一个三角形。

(1)通过自己数一数,试一试,感知图形特征,充分让幼儿表述,得出图形的特征。

(2)教师小结:三角形有三条边,三个角组成。

三角形的特征:有三条边,三个角4、引导幼儿动手操作。

幼儿每人一张正方形纸,通过自己对三角形的认识,用正方形的纸折叠成三角形。

(2)观察图形拼图,找出三角形,数一数用了几个三角形?(3)请幼儿在周围环境中找出三角形物品。

(4)完成课本20页《小鱼游》找出小河里三角形的小鱼,并把三角形的小鱼圈出来。

活动延伸:

让幼儿回家后和爸爸、妈妈一起运用各种材料制作一个三角形。课后小结:本节课以《小黄兔过生日》的故事引入课题,通过连接小黄兔所走的路线游戏以及其它操作活动让幼儿认识三角形的特征,知道三角形由三条边三个角组成。

三角形的性质教案

有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。通常用以上几种方法来证明三角形相似,另外平行于三角形的一边且和其他两边(或两边的.延长线)相交的直线,所截得的三角形与原三角形相似。

在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。全等三角形可以看做特殊的相似三角形,这时相似比等于1。

等腰三角形的性质和判定教学计划

3、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

4、等边三角形的各角都相等,并且每一个角都等于60°。

5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的'边也相等(等角对等边)。

6、三个角都相等的三角形是等边三角形。

7、有一个角等于60°的等腰三角形是等边三角形。

1、等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。

3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4、等腰三角形底边上的垂直平分线到两条腰的距离相等。

6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7、一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。

8、等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。

9、等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。

等腰三角形和等边三角形的教学反思

本节课的重点是让学生在操作中发现等腰三角形和等边三角形的特征。我没有呈现几个不同类型的三角形,让学生通过测量边的长度从而发现他们的共同点,我在让学生观察常见的一副三角板,说说每个角的度数,然后再找出比较特殊的三角行,从而引出等腰三角形的。然后利用折纸这个活动,来进一步的体会等腰三角形的特点,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,学生做得很好,接着我有让学生在探究本上试着画一个等腰三角形,使学生在画图的过程中进一理解特征。对于等边三角形的教学,基本上也就如此,但是,学生似乎不太理解折纸的方法,因此,我就作了示范,学生才勉强制作出了等边三角形。由于在这个部分,我留给学生的时间比较多,后来连书本上的“想想做做”都来不及解决,因此,我决定明天再增加一节练习课,做一个专项训练,看看学生对知识的综合运用情况。

今天教学了等腰三角形和等边三角形,其实学生通过动手操作对等腰三角形和等边三角形的概念还是很容易掌握的,关键在于灵活运用,所以,在练习的时候,我采取了一题多变的'形式。在“想想做做”中有这样一道题目:一根18厘米长的线,可以围成边长几厘米的等边三角形?这个问题很简单,学生很轻易就解决了,然后我又把题目改成:用一根18厘米长的线围成一个等腰三角形,腰是7厘米,底是多少厘米?用一根18厘米长的线围成一个等腰三角形,底是4厘米,腰是多少厘米?通过这两个问题的练习,学生对等腰三角形的性质有了更深的理解,在做《补充习题》的时候正确率高了不少。所以,书上的练习题还有很多值得我们挖掘的地方。

等腰三角形的判定

本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

本节课方法主要是“以学生为主体的讨论探索法”。在数学中要避免过多告诉学生现成结论。提倡鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程。

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论出来。如果学生提到的不完整,可以做适当的点拨引导。

(3)总结,形成知识结构。

第12页 。

等腰三角形的定义

(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

(2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)。

(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。

(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)。

(5)等边三角形内任意一点到三边的距离之和为定值(等于其高)。

(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)。

等腰三角形教案

本课认识等腰三角形和等边三角形已经它们的特征。教材先给出有两条边相等的锐角三角形、直角三角形和钝角三角形各一个,让学生量一量每个三角形各条边的长,发现它们的共同特点是有两条边相等,然后概括等腰三角形的概念。接着通过用纸对折简出等腰三角形,使学生进一步体会等腰三角形的特征。最后认识等腰三角形各部分的名称,明确等腰三角形的两个底角也相等。认识等边深刻系的编排与等腰三角形类似,其中等边三角形的3个角都相等的特征是让学生在对折中发现的。

认识等腰三角形和等边三角形以及它们的特征

1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

长方形、正方形纸,剪刀、尺等

一、复习:关于三角形,你有那些知识?

1、按角分成三种角

2、三个内角和是180度

二、认识等腰三角形

1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)

有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)

指出:像这种两条边相等的三角形,我们叫它等腰三角形

2、折一折、剪一剪

取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开

观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。)

除了两条边是相等的,还有什么也是相等的?你是怎么知道的?

《等腰三角形的性质》教学反思

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“sss”证明全等;作垂线,用“hl”证明全等;作角平分线,用“sas”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话。

一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的.高相互重合”。

三句话是“1、等腰三角形的顶角平分线平分底边、垂直于底边;2、等腰三角形的底边上的中线平分顶角、垂直于底边;3、等腰三角形的底边上的高平分顶角、平分底边。”

等腰三角形教案

1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

等腰三角形教案

1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

2.通过学生之间的交流活动,培养学生主动与他人合作交流的意识和良好的学习习惯。

一、你知道吗?

课前预习。

sssasaaashl。

2.这条线段的两个端点的距离相等。

3.这个角的两边的距离相等。

4.这样的点有4个。

知识点睛。

1.线段垂直平分线上的点到这条线段的.两个端点的距离相等。

2.角平分线上的点到这个角的两边距离相等。

3.顶角的平分线底边上的中线底边上的高三线合一。

1、填空题。

2、如图,以等腰直角三角形aob的斜边为直角边向外作第2个等腰直角三角形aba1,再以等腰直角三角形aba1的斜边为直角边向外作第3个等腰直角三角形a1bb1,如此作下去。若oa=ob=1,则第个等腰直角三角形的面积。

等腰三角形的定义

(2)三个内角都相等(为60度)的三角形是等边三角形.

(4)两个内角为60度的三角形是等边三角形.

说明:可首先考虑判断三角形是等腰三角形。

首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。

其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

《等腰三角形的性质》八年级数学上学期说课稿

《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

本节课我采用的教法是启发式教学法、动手操作法。

学生的学法是:自主探究法、合作讨论法。

本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

1、复习导入。

通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

2、探究新知。

在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

3、理解与运用。

为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

4、强化巩固。

在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

5、小结。

设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

等腰三角形和等边三角形的教学反思

本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:

1、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。

2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。

3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。

4、这堂课涉及的几何基础知识非常广泛,它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。

在本节复习课教学中我注意到避开以下问题:

(1)以教师思维代替学生思维,忽视学生学习的能动性;。

(2)重习题的机械的练,轻认知策略的教学;。

(3)复习方法呆板,缺少生动性和趣味性;。

(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。

相关内容

热门阅读
随机推荐