首页 > 范文大全 > 工作总结

初二数学教案一次函数(汇总15篇)

初二数学教案一次函数(汇总15篇)



在编写初二教案时,教师需要充分考虑学生的实际情况和学科特点。接下来,小编为大家分享一些精心准备的初二教案范文,希望能够给大家提供一些新的教学启示。

初二数学一次函数教案

2、过程与方法。

经历探索一次函数的应用问题,发展抽象思维、

3、情感、态度与价值观。

培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值、

1、重点:一次函数的应用、

2、难点:一次函数的应用、

3、关键:从数形结合分析思路入手,提升应用思维、

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的。应用、

y=。

拓展:若a城有肥料300吨,b城有肥料吨,其他条件不变,又应怎样调运?

课本p119练习、

由学生自我本节课的表现、

课本p120习题14、2第9,10,11题、

1、一次函数的应用例:

练习:

数学教案-一次函数

一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

一次函数的应用北师大版数学初二教案

知识与技能:

进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;。

过程与方法。

在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.

情感态度与价值观:

在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.

教学重点。

教学难点。

从函数图象中正确读取信息。

教学过程:

一、情境引入。

一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.

(1)农民自带的零钱是多少?

(2)试求降价前y与x之间的关系。

(3)由表达式你能求出降价前每千克的土豆价格是多少?

二、问题解决。

l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图意填空:

初二数学教案《一次函数》

教学设计思想:

本节主要学习了平行四边形的几种判定方法,以及平行四边形性质、判定的应用——三角形的中位线定理。通过问题情境引入平行四边形判定的研究,首先通过直观猜测判定的方法,再次通过几何证明来证明它的正确性。充分发挥学生的主观能动性。

教学目标。

知识与技能:

1.总结出平行四边形的三种判定方法;。

2.应用平行四边形的判定解决实际问题;。

3.应用平行四边形的性质与判定得出三角形中位线定理;。

4.总结三角形与平行四边形的相互转化,学会基本的添辅助线法。

过程与方法:

1.经历平行四边形判别条件的探索过程,逐步掌握说理的基本方法。

2.经历探究三角形中位线定理的过程,体会转化思想在数学中的重要性。

情感态度价值观:

1.在探究活动中,发展合情推理意识,养成主动探究的习惯;。

2.通过探索式证明法开拓思路,发展思维能力;。

3.在解决平行四边形问题的过程中,不断渗透转化思想。

教学重难点。

重点:1.平行四边形的判别条件;2.应用平行四边形的性质和判定得出三角形中位线定理。

难点:1.灵活应用平行四边形的判别条件;2.合理添加辅助线;3.三角形与平行四边形之间的合理转化。

教学方法。

小组讨论、合作探究。

课时安排。

3课时。

教学媒体。

课件、

教学过程。

第一课时。

(一)引入。

初二数学教案《一次函数》

1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

3.逐步掌握说理的基本方法。

过程与方法目标。

1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

2.鼓励学生用多种方法进行说理。

情感与态度目标。

1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

2.培养学生合作学习,增强学生的自我评价意识。

教材分析。

教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

教学重点:平行四边形的判别方法。

教学难点:利用平行四边形的判别方法进行正确的说理。

学情分析。

初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

教学流程。

一、创设情境,引入新课。

师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

学生活动:学生按小组进行探索。

初二数学教案《一次函数》

一次函数的图像与性质的口诀:

一次函数是直线,图像经过三象限;。

正比例函数更简单,经过原点一直线;。

两个系数k与b,作用之大莫小看,

k是斜率定夹角,b与y轴来相见,

k为正来右上斜,x增减y增减;。

k为负来左下展,变化规律正相反;。

k的绝对值越大,线离横轴就越远。

初二数学一次函数知识点总结

不知道大家有没有过这样的情况:在遇到一个难题的时候,绞尽脑汁的去想解题方法,仍旧解不出来,参照答案之后,才发现,原来是某某定理理解的不到位,某某公式记得不全面。

将笔记上的重点知识标记出,进行一下系统的记忆之后,可以对一个的找一些专题进行一下系统的训练,最好多找一些综合题,因为综合题考查的知识点较多,更能够发现自己的薄弱项。从而进行强化,让自己无懈可击。

同学们可以跟自己的同桌或者同学进行合作,互相出题为难对方,一个会出题的人必定会解题,如果题出的非常严谨,证明你已经升华了。

锻炼出题的能力也可以培养自己对知识、对考试的不同认识,让自己站在出题老师的角度上去思考一道题的解题方法与技巧,视野会更加的开阔。

三元一次方程组北师大版数学初二教案

1、学习什么是三元一次方程和三元一次方程组.(2)会解简单的三元一次方程组.

过程与方法。

通过三元一次方程组的解法练习,培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.培养学生的计算能力、训练解题技巧.

情感态度与价值观。

让学生通过自己的探索、尝试、比较等活动去发现一些规律,体会一些数学思想,从而激发学生的求知欲望和学习兴趣.

教学重点。

使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

教学难点:

针对方程组的特点,选择最好的解法.

教学过程。

一、复习。

二、引入新课。

甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

八年级数学二元一次方程与一次函数教案

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的`图像.

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).

(a)4 (b)5 (c)6 (d)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

一次函数人教版数学八年级教案

11.如图,图中的曲线表示小华星期天骑自行车外出离家的距离与时间的关系,小华八点离开家,十四点回到家,根据这个曲线图,请回答下列问题:

(1)到达离家最远的地方是几点?离家多远?

(2)何时开始第一次休息?休息多长时间?

(3)小华在往返全程中,在什么时间范围内平均速度最快?最快速度是多少?

(4)小华何时离家21千米?(写出计算过程)。

数学教案-二元一次方程与一次函数

1.知识与能力目标。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标。

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点。

教学难点。

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法。

学生操作------自主探索的方法。

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程。

一、故事引入。

迪卡儿的故事------蜘蛛给予的启示。

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

二、尝试探疑。

1、y=x+1。

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程x-y=-1。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x-2。

y=x+1的解。

y=4x-2。

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

解方程组x-2y=-2。

2x-y=2。

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的`方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是x=2有的同学的解是x=2.1y=2.1。

y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用z+z智能教育平台演示一下。

用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四、引申。

方程组x+y=2。

x+y=5解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五、课后小结。

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六、作业。

1.用作图象法解方程组2x+y=4。

2x-3y=12。

2.如图,直线l、l相交于点a,试求出a点坐标。

教学反思。

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

数学教案-二元一次方程与一次函数

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

(一)引入新课。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

初二数学一次函数复习训练题

一,填空题:

1。为鼓励节约用水,某市规定:每月每户用水不超过10立方米,按每立方米1。5元收取水费若每月每户用水超过10立方米,则超过部分每立方米另加收0。5元。设每月每户的用水量为(立方米),应缴水费为(元),试写出当用水量超过10立方米时,水费(元)与(立方米)之间的函数关系式:_____________________。若某户某月交水费25元,则该用户当月用水__________立方米。

2。某市市内电话费(元)与通话时间。

t(分钟)之间的函数关系图象如图。

所示,则通话7分钟需付电话费元。

3,直线可以由直线向平移个单位得到。

二,选择题。

1。汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量q(升)与行驶时间t(小时)之间的函数关系的图象应是()。

(a)(b)(c)(d)。

2。如图,oa,ba分别表示甲,乙两名学生运动的一次函数图象,图中s和t分别。

表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快()。

a,2。5米b,2米c,1。5米d,1米。

3。(四川省)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的关系用图象表示应为()。

abcd。

a。1个b。2个c。3个d。4个。

5两个一次函数和图象的交点坐标是()。

(a)(2,3)(b)(2―3)(c)(―2,3)(d)(―2,―3)。

三解答题;。

1,已知正比例函数的`图像与一次函数的图像交于点p(3,―6)。

(1)求,的值;(2)如果一次函数与轴交于点a,求a点的坐标。

2,先在同一直角坐标系中画出一次函数的图象,并求出这两条直线与横轴围成三角形的面积。

3,已知一次函数的图象与正比例平行,且通过点m(0,4)。

若点(―8,m)和(n,5)在一次函数的图象上,试求m,n的值。

求,的解析式。

求点a,b,c,d的坐标。

一次函数人教版数学八年级教案

正比例函数的概念.

2.内容解析。

一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验.

对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征.

本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式.

基于以上分析,确定本节课的教学重点:正比例函数的概念.

二、目标和目标解析。

1.目标。

(1)经历正比例函数概念的形成过程,理解正比例函数的概念;。

(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想.

2.目标解析。

达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念.

达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想.

三、教学问题诊断分析。

正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念.对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度.

因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程.

四、教学过程设计。

1.情境引入,初步感知。

引言。

上一节我们已经学习了关于函数的最基础的知识,知道了变量与函数、函数的图象及函数的三种表示方法,从这节课开始,我们将重点研究一种最基本的具体函数——一次函数,本节课先研究特殊的一次函数——正比例函数.

问题12011年开始运营的京沪高速铁路全长1318km.设列车的平均速度为300km/h.考虑以下问题:

师生活动:教师引导学生分析问题中的数量关系,这是典型的行程问题,数量关系是学生熟悉的“路程=速度×时间”.

设计意图:让学生真切感受数学与实际的联系,即数学理论来源于实际又服务于实际.帮助学生逐步提高将实际问题抽象为函数模型的能力,初步体会函数建模思想.

设计意图:由于自变量t是列车运行时间,作为实际问题,自变量的取值是受限制的,应对其取值范围作出说明.

对问题(2)的分析解答过程让学生回答下列问题:

追问1这个问题中两个变量之间的对应关系是函数关系吗?如果是,试说明理由.

设计意图:让学生感受量与量之间的函数关系,体会函数关系蕴涵在实际问题中,激发学生探究兴趣.对理由的说明学生可能有障碍,此时教师要引导学生回顾函数概念的学习过程,用函数的概念来回答:问题中的两个变量,当其中的变量t变化时,另一个变量y随着t的变化而变化,并且对于变量t的每一个?定的值,另一个变量y都有唯一确定的值与之对应.

追问2请你写出y与t之间的函数解析式,并分析解析式在结构上是什么形式?

追问3对于自变量t和函数y的每一对对应值,y与t的比值,

二元一次方程组北师大版数学初二教案

一、学生起点分析:

学生已了解方程的基本概念和性质,并能熟练解二元一次方程,也能整体系统地审清题意,能从具体问题的数量关系中找出等量关系并列出二元一次方程组;学生也基本能够运用方程的思想解决实际问题。初中二年级的学生,正处于少年期,已具备了初步的抽象、概括和分析问题解决问题能力,要培养他们敢于面对挑战和勇于克服困难的意志.鼓励他们大胆尝试,敢于发表自己的看法,以从中获得成功的体验,激发学习激情.

二、教学任务分析:

基于以上对学生情况的分析,特制定以下教学任务:

1、在具体问题的解决过程中提高学生的解二元一次方程组的技能;。

3、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

4、通过\'鸡兔同笼\',把同学们带入古代的数学问题情景,学生体会到数学中的\'趣\';进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心.

教学重点。

教学难点。

1、读懂古算题;。

2、根据题意找出等量关系,列出方程.

三、教学过程设计。

本节课设计了五个教学环节:第一环节:引入课题;第二环节:典型例题;第三环节:闯关练习;第四环节:反馈练习;第五环节:感悟和收获;第六环节:作业布置.

第一环节:引入课题。

活动内容1:例1今有雉(兔)同笼,上有三十五头,下有九十四足,问雉兔各几何?

提问:

(1)\'上有三十五头\'的意思是什么?\'下有九十四足\'呢?

(2)你能解决这个有趣的问题吗?

写出解题过程,让学生讨论对不对,有没有不同的思路和观点;最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案.)。

相关内容

热门阅读
随机推荐