首页 > 范文大全 > 工作计划

三角形面积的教学设计(优质15篇)

三角形面积的教学设计(优质15篇)



教学计划需要精心编写和反复修改,以确保教学的系统性和严谨性。通过阅读以下教学计划范文,相信大家会对编写教学计划有更深入的理解和认识。

《三角形的面积》的教学设计

《义务教育课程标准实验教科书。数学》(西师版)五年级第九册。

(1)使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积。

(2)通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念。

(3)使学生明白事物之间是相互联系,可以转化和变换的。

(1)导入新课时激励学生求新知——诱导自主学习。

(2)探索新知时鼓励学生自学尝试,合作讨论——进行自主学习。

(3)内化新知创新设疑,讨论质疑——创新自主学习。

(4)巩固新知时激励学生自主解答,讲解思路——巩固自主学习。

(5)教师课前准备:多媒体计算机课件,为学生每组准备两个完全一样的直角三角形、两个完全一样的等腰直角三角形,和两个完全一样的钝角三角形。

本课教学总时间为40分钟。教学过程主要围绕三角形面积公式的推导、应用来展开的。教学环节可分为情境创设、操作交流、练习反馈和全课总结。

三角形面积的计算的教学设计

(含资料辑录或图表绘制)。

内容教师活动学生活动。

一、练习。

二、总结。

1、第5题。

可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

2、第6题。

要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

3、第9题。

测量红领巾高时,可以启发学生把红领巾对折后再测量。

4、第10题。

要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

5、思考题。

每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

三角形面积计算的练习教案教学设计北师大版五年级

教学准备。

(含资料辑录或图表绘制)。

教和学的过程。

内容教师活动学生活动。

一、练习。

二、总结。

1、第5题。

可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

2、第6题。

要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

3、第9题。

测量红领巾高时,可以启发学生把红领巾对折后再测量。

4、第10题。

要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

5、思考题。

每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

《三角形的面积》的数学教学设计

《三角形的面积》这节课是青岛版四年级教材下册28、29、30页的内容,这节课是在学生经历了平行四边形面积计算公式的推导过程之后学习的。

这节课的教学目标是:

1.经历探索三角形的面积计算公式的推导过程,掌握三角形面积的计算方法。

2.通过面积公式的推导,培养学生观察、比较及推理能力,渗透转化思想。

3.使学生明白事物之间是相互联系,可以转化和变换的。

学具准备:每人准备六张三角形(相同的锐角、直角、钝角三角形各两张)纸片。

学习重点:探索三角形面积计算公式。

学习难点:理解三角形面积公式的推导过程。

《三角形的面积》这节课在设计时是分课前预习、课堂学习和课外拓展三部分构想的。

在布置学生课前预习时,发给他们预习导引卡,让他们根据预习导引卡进行自学本节课的内容。预习导引卡中的“迁移猜想、操作转化、观察讨论、得出结论”环节给学生一个探究这节课的重难点的扶手,让学生自己通过动手就可以完成三角形的面积计算公式的推导,三道试做题,让他们对自己的预习进行自我检测,利用预习导引卡奏响课堂学习的前奏曲。

课堂学习分为五个环节进行的。首先是专项训练——面积单位间的换算练习;二是确定知识点,检查学生的预习情况;三是交流汇报,突破重难点,探究三角形的面积计算公式的推导过程;四是自主总结、质疑释疑,对本节课学习的内容进行交流、总结,让学生说出自己的遗留困惑,或者说说自己不同的想法;五是自主练习,利用三角形的面积计算公式解决一些生活中的`实际问题。

其中第三个环节:探究三角形的面积计算公式的推导过程,是这节课的重难点,让学生通过动手操作、观察讨论、最后得出结论,体验公式的推导过程,苏霍姆林斯基说:“智慧的双手能创造智慧的头脑。”让学生的小手动起来,让学生的大脑转起来。

在课堂学习过程中,学生们首先在小组内交流,然后进行全班反馈汇报,用两个完全一样的锐角三角形、直角三角形和钝角三角形可以拼成一个平行四边形,将三角形转化成学过的图形,通过动手操作发现三角形的底、高、面积和平行四边形的底、高、面积之间的关系,逐步推导出三角形的面积计算公式。通过小组的合作、交流,可以提高学生的数学思维能力,学生的情感和态度也可以得到发展。

课外拓展是让学生试着去求导圆的面积计算公式,感受数学学习是丝丝相连、环环相扣的,利用转化的思想继续数学研究。由此,把课堂学习引向课外探究。为什么把求导圆的面积计算公式作为课外拓展呢,就是因为在学习了平行四边形的面积计算和梯形的面积计算之后,有学生好奇的问我,怎样求圆形的面积?我看到了他们探究新知的欲望、我也看到了他们体验到了成功后的喜悦,他们对于新知识不再是无动于衷,而是一种主动地态度要求去探索、去深究。

以上是我的教学设想,由于我的教学经验不足,不知道自己有没有达到这个目标,我感觉本节课还存在不少问题。在此,真心希望各位老师提出宝贵意见,以便于我在今后的教学中不断改进,谢谢大家!

附:

六度:教学目标的适切度。

学生学习的参与度。

学习方式的自主度。

小组合作的有效度。

练习设计的层级度。

拓展延伸的合适度。

三角形的面积教学设计锦集

教学目标:

1.知识与技能:

(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:

使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:

让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:

探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

教学关键:

让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:

课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:。

每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:

一、创设情境,揭示课题。

(屏幕出示红领巾图)。

师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。

二、探索交流、归纳新知。

寻找思路:(出示一个平行四边形)。

师:

(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。

(2)观察:沿平行四边形对角线剪开成两个三角形。

师:两个三角形的形状,大小有什么关系?(完全一样)。

三角形面积与原平行四边形的面积有什么关系?

师:你想用什么办法探索三角形面积的计算方法?

(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。

《三角形的面积》教学设计

人教版义务教育课程标准实验教科书五年级上册第84—86页。

(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:三角形面积公式的探索过程。

教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:

(屏幕出示红领巾图)。

师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。

1.寻找思路:(出示一个平行四边形)。

师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。

(2)观察:沿平行四边形对角线剪开成两个三角形。

师:两个三角形的形状,大小有什么关系?(完全一样)。

师:你想用什么办法探索三角形面积的计算方法?

(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。

三角形教学设计

1、认识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题。

2、通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.

一、创设情景,引入新课。

1、说一说相似三角形的判定方法有哪些,相似三角形的性质有哪些?

2、大家都知道矗立在城中的科技大楼是我们这里比较高的楼,那么科技大楼有多高呢?

我们如何用一些简单的方法去测量出科技大楼的高度呢?

二合作交流,解读探究。

导入新课:阅读课本73页例6完成下列任务:

例6中当金字塔的高度不能直接测量时,本题中构造了_______和_______相似,且_______、________、_________是已知或能测量的。

说一说测量金字塔高度的方案并加以证明。

【学法指导】同一时刻太阳光是平行直线,从而得到角相等,得到相似三角形。

例7中河的宽度也是无法直接测量的,本题中构造了_________和________相似,且_______、__________、__________是已知或能测量的。

说一说测量河的宽度的方案并加以证明。

三角形的面积教学设计

三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。

在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。

1、经历三角形面积公式的推导过程,理解公式的意义。

2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。

4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。

理解三角形是同底(长)等高(宽)长方形面积的一半。

一、导入阶段。

通过故事情景产生生活中三角形比较大小的问题:

2、采用哪些方法可以比较呢?

小结:运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?

二、探究阶段。

(一)画三角形。

1、每个学生拿出准备好的长方形纸,按要求画三角形。

操作说明:

(1)以长方形纸的一边作为三角形的底边。

(2)以对边的任意一点作为三角形的顶点。

(3)连接顶点与对面的两个角。

(4)你画了一个什么样的三角形?

2、大组交流。

4、观察已画三角形与长方形之间的特殊关系。

(二)实验。

1、剪拼三角形。

操作说明:

(1)剪下你所画的三角形。

(2)将剩下部分拼到剪成的三角形中。

思考:剩下部分拼成的三角形是否与剪成的三角形一样大?

(3)填写实验报告。

2、学生完成报告后交流。

(三)归纳。

根据学生的实验得出结论:

(1)请学生用一句话来概括。

(2)用数学的方式来表示:三角形面积=相应长方形面积/2。

(3)根据长方形的面积公式,推导三角形的面积公式。

三、运用阶段:

1、教学例1。

(1)分别测出3个三角形的底与高,作好记录。

(3)交流。

拓展:找出下列图形中面积相等的两个三角形,为什么?

四、总结。

这节课我们学习了什么?2、计算三角形面积要知道那些条件?

三角形的面积教学设计

教学内容:人教版义务教育课程标准实验教科书五年级上册第84—86页。

教学目标:

1.知识与技能:

(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:

一、创设情境,揭示课题。

(屏幕出示红领巾图)。

师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。

二、探索交流、归纳新知。

1.寻找思路:(出示一个平行四边形)。

师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。

(2)观察:沿平行四边形对角线剪开成两个三角形。

师:两个三角形的形状,大小有什么关系?(完全一样)。

师:你想用什么办法探索三角形面积的计算方法?

(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。

三角形面积的教学设计

1、在实际情境中,认识计算梯形面积的必要性。

2、在自主探索活动中,经历推导梯形面积公式的过程。

3、能运用梯形面积的计算公式,解决相应的实际问题。

各种梯形各两份,剪刀,课件。

一、揭示课题,明确主题。

1、生活中我们能找到许多平面图形,这个教室里有吗?

3、梯形,四年级的时候我们已经认识它了,谁来介绍一下它。

4、今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)。

二、回忆旧知,建立联系。

1、面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)。

2、回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?

3、同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式、这种思想,这节课我们也要用到。

三、转化梯形,推导公式。

(一)应用的需要引出猜想。

1、同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。

3、同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:

(1)想想能把梯形转化成学过的什么图形。

(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。

(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!

(二)小组活动十分钟。

(三)汇报。

6、在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。

四、加深理解,巩固新知。

1、总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。

2、这个方法你们记住了吗?那老师可要考考你了!(判断题)。

3、通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。

4、梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?

5、梯形面积的计算方法在生活中还有更广泛的应用,小到…、大到…、都会用到它。

五、结语。

转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。

三角形的面积

教材分析:

三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。

学情分析:

在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。

教学目标:

1、经历三角形面积公式的推导过程,理解公式的意义。

2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。

4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。

教学难点:理解三角形是同底(长)等高(宽)长方形面积的一半。

教学过程:

一、导入阶段。

通过故事情景产生生活中三角形比较大小的问题:

1、比三角形的大小用数学语言来表达是比什么?

2、采用哪些方法可以比较呢?

小结:运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?

二、探究阶段。

1、每个学生拿出准备好的长方形纸,按要求画三角形。

操作说明:(1)以长方形纸的一边作为三角形的底边。

(2)以对边的任意一点作为三角形的顶点。

(3)连接顶点与对面的两个角。

(4)你画了一个什么样的三角形?

2、大组交流。

4、观察已画三角形与长方形之间的特殊关系。

(二)实验。

操作说明:

(1)剪下你所画的三角形。

(2)将剩下部分拼到剪成的三角形中。

思考:剩下部分拼成的三角形是否与剪成的三角形一样大?

(3)填写实验报告。

2、学生完成报告后交流。

(三)归纳。

根据学生的实验得出结论:

(1)请学生用一句话来概括。

(2)用数学的方式来表示:三角形面积=相应长方形面积/2。

三、运用阶段:

1、教学例1。

(1)分别测出3个三角形的底与高,作好记录。

(3)交流。

nm。

ac。

b

d3、拓展:找出下列图形中面积相等的两个三角形,为什么?

四、总结。

这节课我们学习了什么?2、计算三角形面积要知道那些条件?

三角形教学设计

1.使学生认识什么样的图形叫三角形,知道三角形的特征和按角分类的方法,掌握三角形的特性。

2.能够识别锐角三角形、直角三角形和钝角三角形,关知道它们三者之间的关系。

3.渗透观察比较、抽象概括和迁移推理等数学思维方法。培养学生发现欣赏的意识,感受生活中数学,激发学习兴趣。

(1)(课件演示)老师给大家准备了一些图片,仔细观察:看看这些事物中都有我们学过的哪些图形?(欣赏两遍)。

(三角形、圆形、梯形……)。

这节课我们来重点研究三角形。

(2)(准备小棒)现在想想三角形是什么样子的?听要求:请用手中的小棒快速地摆一个三角形。(生动手摆三角形,同时老师在黑板上画三角形)。

(1)师拿出准备好的插接长方形,问:这是什么图形?

师拉动长方形,问:你发现了什么?

(长方形变化了,说明它不稳定)。

(2)拉一拉刚才的三角形,你发现了什么?

(没有变化,说明三角形具有稳定性)。

板书:稳定性。

刚才我们动手摆了三角形,还知道了三角形具有稳定性,你认识三角形了吗?

出示:

手势表示哪个是三角形?

根据刚才的学习谁能用一句话简单地说说什么是三角形?

(重点引导学生理解“围成”)。

板书:由三条线段围成的图形叫三角形。

2.三角形的各部分名称。

猜测:围成三角形的每条线段叫什么?(边)三角形一共有几条边?(3条边)。

每两条边线段的交点叫什么?(顶点)三角形一共有几个顶点?(3个顶点)。

仔细观察三角形除了有三条边,三个顶点之外,还有什么?(3个角)。

谁能说说三角形有什么特征?(三角形有3条边,3个顶点,3个角)。

生回答师板书。

1.分类。

看要求:(课件演示)给这些三角形分类:

要求:

(1)给每类三角形取个名字。

(2)小组说说为什么这样取名?

生运用学具小组合作,老师巡回指导。

生汇报,师总结板书:

锐角三角形1个?3个?

3、小游戏:

猜角游戏师只露出一个角,生猜这是什么三角形?

说说什么是锐角三角形、直角三角形、钝角三角形。

四、小结:通过这一节课的学习你学到了什么知识?

考考你:

选择:

(1)由三条()围成的图形叫三角形。

a直线b射线c线段。

a有一个角是锐角b有两个角是锐角c有三个角是锐角。

判断:

(1)有三条线段的图形一定是三角形。

(2)任何三角形里都有两个锐角。

(3)直角三角形中只有一个角是直角。

(4)有位同学看到三角形中有一个锐角,就说这个三角形是锐角三角形。(。

三角形的面积

师:同学们,我们已经学习了平行四边形的面积公式,今天这节课我们要学习三角形的面积计算。(教师板书:三角形的面积计算)。

现在我们手上有一个三角形,(教师出示三角形)有没有办法知道它的面积呢?(学生顿时在下面议论纷纷)请拿出你们课前准备的三角形、方格纸、剪刀,每个同学可以利用你们手上的这些学具和工具,四个同学一组进行讨论,用什么办法可以求出你手上的三角形面积。

(学生熟练地四人围成一组,有一组同学刚围成一组,就急着在猜测答案:“这个三角形面积是24平方厘米。”“不对,是18平方厘米。”“这也不对,好像是12平方厘米”“我们把它放在方格纸上数一数,看看到底是多少?”另一组同学却十分安静地在议论:“把这个三角形剪开来,一小块一小块计算。”“但剪出来还有小三角形怎么办?”“这个办法也不行,那怎么办?”“我有一个办法,把它拼成平行四边形。”“怎么拼呢?”还有一组同学把三角形摆来摆去。“把它与平行四边形比看。”大约3分钟后,教师在巡视各组同学们的讨论后,发现有5组同学已经找到了答案,还有3组同学还在讨论。)。

师:同学们,刚才我在巡视时,已发现有5个小组同学已经知道了三角形的面积,现在我们一起来讨论。

师:你们是怎么知道这个答案的?

生:我们把这个三角形放到平行四边形的上面,发现它的面积是平行四边形的一半。(学生边说,边演示给大家看。如图2―3)。

图2―3。

师:你们怎么知道三角形的面积是平行四边形面积的一半呢?

生:我们刚才把平行四边形沿着对角线剪开,然后把它们叠放在一起,正好能重合。

师:这组同学说得好,答案是12平方厘米。那么还有不同方法吗?

生:我们小组有个简单办法,只要把三角形放在方格纸上,马上就可以数出这个三角形的面积。

师:那么请你在投影仪上演示一下。

生:(走到讲台边的投影仪旁,将方格纸放在投影仪上,然后放上三角形。如图2―4)因为每小方格代表1平方厘米,不满一格的都按半格算,所以我们数出来一共是12格,也就是12平方厘米。

图2―4。

师:这组同学是通过数方格得到答案,还有不同的方法吗?

生:我们小组的方法与上面二组同学不同。我们是把这个三角形剪开来,拼成一个平行四边形。(拿着剪拼的图形进行演示。如图3―5)。

图2―5。

师:那你们怎么知道剪下来的三角形一定可以拼成平形四边形呢?

生2:我们开始剪的时候,也发现拼不成平形四边形,后来剪了几次,发现只要沿着中间的一条线剪,就可以拼成平行四边形。

师:这个小组的办法不错,还有不同的方法吗?

生:我们小组也是数出来的,开始把三角形放在方格纸上,发现数不准确,有好几个答案。后来知道要把三角形的底边的两个顶点与方格纸内的小正方形顶点对齐,就数出12格。

生:在这些方法中一共有两种思路,一种是数格子,还有一种是把三角形转化成平行四边形。

师:说得好。虽然刚才有很多种不同的方法,但把这些方法整理一下,我们就可以发现这些方法的基本思路是两种:一种是数格子,通过一格一格地数,知道了三角形的面积;还有一种是转化成平行四边形,通过计算平行四边形的面积,再得出三角形的面积。

〖案例点评〗。

在本案例中,教师创设了一个学生自主探索三角形面积的平台,课前教师请学生准备了一些三角形、平行四边形、方格纸与剪刀等工具,然后向学生提出了具体的探索要求――计算手上三角形的面积。从课堂学生的表现来看,由于教师放手给学生进行探索,因此,他们探索的各种途径也是不同的,有的通过数格子获得面积,有的通过拼图知道面积,也有的通过剪拼后得到面积,这充分说明,只要放给学生进行探索,相信学生会有能力完成。

〖思考与讨论〗。

三角形教学设计

这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。

1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。

2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。

学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。

1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)。

3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)。

(一)感知三角形。

1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。

2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?

学生操作,教师巡视指导。

3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)。

指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。

4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本第23页的点子图上自己画一个三角形。

5、师在黑板上画出三角形。

6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本第22页下面的图。

学生找出黑板上三角形的三条边、三个角、三个顶点。(师相机板书)。

7、在自己画出的三角形上,标出各部分的名称。

8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。

(二)感受三角形三条边的关系。

1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!

小组活动要求:

a、从四根中任意选三根(小棒的长度分别为:10cm、6cm、5cm、4cm)。

b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。

c、小组讨论有什么发现?

学生操作,教师巡视指导。

2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。

3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的两种情况。

4、师:通过刚才的小组活动,老师的演示,你有什么发现?

引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。

5、观察能围成的三角形的三条边,看看有什么发现?

师生共同总结出:三角形两条边长度的和大于第三条边。

2、判断下面的线段能不能围成三角形?(“想想做做”第二题)。

2厘米、4厘米、6厘米。

5厘米、2厘米、5厘米。

6厘米、2厘米、5厘米。

总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。

[设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。

1、师:这节课你对三角形有了什么新的认识?你有那些收获?

2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。

三角形教学设计

1、通过分类活动,认识直角三角形、锐角三角形、钝角三角形等腰三角形和等边三角形,体会每一类三角形的特点。

2、在通过分类活动程中培养学生自主探索、合作交流的能力。动手操作的能力。

3、在数学操作活动中培养学生与人合作,交流的能力,并形成良好的学习习惯。教学重点:认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

通过分类活动,体会每一类三角形的特点。教法:主动探究法。学法:小组合作交流法。

学生、老师剪下附页3中的图1。教学过程。

一、预习检查。

针对预习作业中的题目在小组内进行讨论,特别是做错的题目组内交流订正。

二、情景导入呈现目标。

问题引入:上学期我们学习角的分类,可以把角分为什么?产生质疑,引入新课。

三、探究新知。

(一)、自主学习:完成课本22页的各项要求。

1、我们以前学过那些角?

2、从情境图入手。这是什么图形?是由什么组成的?这些三角形一样吗?

3、你能给这些三角形分类吗?

(二)说一说、认一认。

1、认识笑笑的分法。笑笑为什么这样分呢?

2、观察第三类三角形有什么共同特点。归纳出三个角都是锐角的三角形是锐角三角形。

3、观察第一类让学生发现其中有一个直角,其他两个角时锐角,归纳出有一个角是直角的三角形是直角三角形。

4、观察第二类让学生发现其中有一个钝角,其他两个角时锐角,归纳出有一个角是角的三角形是角三角形。

四、当堂训练。

1、三角形按角分类分为_____三角形、_____三角形和_____三角形;三角形按边分类分为_____三角形、_____三角形和_____三角形。

3、锐角三角形的三个角都是_____角;直角三角形中必定有一个是_____角;钝角三角形中也必定有一个角是_____角。

4、等腰三角形有()条对称轴,等边三角形有()条对称轴,不等边三角形()条对称轴。

5、完成检测题(先独立做,最后组内交流。)。

6、进行找一找、填一填。进行23页练一练第2题。我们来做一个猜一猜的数学游戏。猜一猜被信封遮住的可能是什么三角形。

7、练一练的第一题学生独立完成,师巡视。集体订正。

8、学生独立练习做练一练的第。

3、4题。组内交流、解疑、个别汇报、老师点拨。

五、课堂总结。

通过这节课的学习,你有什么新的收获或者还有什么疑问?独立思索小组交流总结方法教师点拨。

六、拓展提高。

七、布置作业完成数学同步练习册。

板书设计三角形的分类。

按角分类:按边分类:

先独立做,最后组内交流。

1、对教材内容的处理。

(1)运用了动手操作活动,强化学生的生活体验。教材这部分知识所对应的分类现象,学生具有了一定的生活体验,因此在进一步强化这种体验的过程中我进行了思考和认知,使知识从学生的生活中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。

(2)组织学生探究知识形成新的知识。我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析、解决问题的方法,这样既有利于发展学生的理解、分析、概括、想象等创新思维能力,又有利于学生表达、动手、协作等时间能力的提高,促进学生全面发展,力求实现教学过程与教学结果并重,知识与能力并重的目标。也正是由于这些认识来自于学生自身的体验,因此血红色呢过不仅“懂了”,而且信了,从内心上认同这些观点,进而能主动的内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。

相关内容

热门阅读
随机推荐