教学计划的持续更新和改进是教师不断提高教学质量的重要保证。小编为大家搜集了一些教学计划的范本,供大家参考和学习,希望能够对大家的工作有所启发。
一、复习导入。
1、怎样计算圆柱的体积?(板书公式)
2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?
3、出示一个圆锥,请学生说说圆锥的特征。
4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)
二、动手测量,大胆猜想。
1、动手测量,找圆锥和圆柱的底和高的关系。
2、学生动手测量,教师巡视。给予指导。
3、交流得出结论:圆柱和圆锥等底等高。
4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?
三、实验操作,推导出圆锥体积计算公式。
1、实验操作。
师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。
2、学生分组实验,教师巡视。
3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?
4、强调等底等高。
5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)
6、练习(出示)
(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。
7、得出圆锥的体积计算公式。
8、用字母表示圆锥的体积计算公式。
三、巩固练习。
1、计算下面圆锥的体积。(只列式不计算)
底面积是6.28平方分米,高是9分米。
底面半径是6厘米,高是4.5厘米。
底面直径是4厘米,高是4.8厘米。
底面周长是12.56厘米,高是6厘米。
2、填空。
a圆锥的体积=(),用字母表示是()。
b圆柱体积的与和它()的圆锥的体积相等。
c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
3、判断。(用手势表示)
a圆柱体的体积一定比圆锥体的体积大()
b圆锥的体积等于和它等底等高的圆柱体的()
c正方体、长方体、圆锥体的体积都等于底面积×高。()
d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
四、全课小结。
师:今天这结课学习了什么?通过今天的学习研究你有什么收获?
五、解决实际问题。
在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。
2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。
3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
1、许多学生在计算过程中常忘记除以3,需要加强练习。
2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。
3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。
4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。
一、复习导入。
1、怎样计算圆柱的体积?(板书公式)。
2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?
3、出示一个圆锥,请学生说说圆锥的特征。
4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)。
二、动手测量,大胆猜想。
1、动手测量,找圆锥和圆柱的底和高的关系。
2、学生动手测量,教师巡视。给予指导。
3、交流得出结论:圆柱和圆锥等底等高。
4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?
三、实验操作,推导出圆锥体积计算公式。
1、实验操作。
师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。
2、学生分组实验,教师巡视。
3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?
4、强调等底等高。
5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)。
6、练习(出示)。
(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的.圆柱的体积是()立方分米。
三、巩固练习。
底面积是6.28平方分米,高是9分米。
底面半径是6厘米,高是4.5厘米。
底面直径是4厘米,高是4.8厘米。
底面周长是12.56厘米,高是6厘米。
2、填空。
b圆柱体积的与和它()的圆锥的体积相等。
c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
3、判断。(用手势表示)。
a圆柱体的体积一定比圆锥体的体积大()。
b圆锥的体积等于和它等底等高的圆柱体的()。
c正方体、长方体、圆锥体的体积都等于底面积×高。()。
d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()。
四、全课小结。
师:今天这结课学习了什么?通过今天的学习研究你有什么收获?
五、解决实际问题。
在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)。
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
圆锥体积公式的理解,并能运用公式求圆锥的体积。
圆锥体积公式的推导
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。
试验探究法 小组合作学习法
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
1课时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景 激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究 合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底 等高
设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用 提升技能
2、口答题:题目内容见多媒体展示独立思考---抽生汇报---学生评议
设计意图通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四 第4、7题
2、坐在作业本上作业:练习四 第3题
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点: 通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
一、复习导入
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么? (指名学生回答)
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)
二、探究新知
课件出示等底等高的圆柱和圆锥
1、引导学生观察:这个圆柱和圆锥有什么相同的地方?
学生回答:它们是等底等高的。
猜想:
(1)、你认为圆锥体积的大小与它的什么有关?
(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
2、学生动手操作实验
(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)、通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)
师:用字母应该怎样表示? (v=1/3sh)
师:在这个公式里你觉得哪里最应该注意?
三、教学试一试
四、巩固练习
1、计算圆锥的体积
2、判一判
3、算一算
4、拓展延伸
五、总结
通过这节课的学习,你有什么收获呢?
六、板书:
圆锥的体积=圆柱的体积×1/3
圆锥的体积=底面积×高×1/3
用字母表示v=1/3sh
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。
新课一开始,我用课件出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后课件演示实验过程,让孩子从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,这样学生对知识的掌握就水到渠成了。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。
当然,教学是一门缺陷艺术,在教学之后我感到遗憾。
的是,没让学生动手实际操作,我想如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。1、探究圆锥体积计算方法的学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
通过本节课的教学,让我真正体会到了让学生通过动手实践去发现新知识的好处,学生自己去发现的新知识,是一种真正的理解,不是老师硬灌输给他的,他们能灵活用知识解决问题,这使我熟悉到新课改提倡的:“动手实践、自主探索、合作交流是学生学习数学的重要方式。“在今后的教学中我将用新课程的理念指导我的教学,提高课堂教学效率。
2、求下列各圆柱的体积。(口答)
(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
2、圆锥的体积怎么算?体积公式是怎样的?
学生分组做实验,老师巡回指导。
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是v=1/3sh。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的.三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?
(2)、求圆锥的体积(看图)
(3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。
2、填空。
(1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。
3、选择
(1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。
(2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。
师:今天,我们学习了什么内容?怎样计算圆锥的体积?
对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。
课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)
1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。
3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。
圆锥的体积计算。
圆锥的体积公式推导。
圆锥的体积是与它等底等高的圆柱体积的三分之一。
多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。
空心圆锥和圆柱实物各一个,沙土若干。
本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。
(一)教学内容分析:
1、教材内容:
本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
2、研读完教材后,自己的几个问题:
(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。
(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?
3、自己的创新认识:
首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。
其次,是要提供给同学们一个可操作的空间。
(二)学情分析:
1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。
2、自己的认识:(结合自己在讲课时发现的问题而谈)
学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。
(三)教学方式与教学手段分析:
根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。
(四)技术准备与教学媒体:
在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。
(一)教学目标:
1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。
3、培养学生的观察、分析的综合能力。
(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积
(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。
圆锥的体积这一部分内容是圆柱体积的迁移。在这节的设计上我主要是采用让学生自主探究----动手实践-----得出结论的模式进行教学的。在操作的过程中,我充分的利用学具,先让学生观察手中的圆柱与圆锥有什么关系,学生观察到他们是等底等高的,我的目的就是为了深化学生对这一个条件的认识。紧接着学生开始尝试用学具研究圆柱与圆锥体积的关系。当他们一切进行的'都很顺利的时候,有一个小组突然提出用“圆柱向圆锥里倒水也是可以的。”话音刚落,另一个小组的学生马上说道:“那样很麻烦的,还得测量出圆柱的体积,计算出来。”显然圆柱与圆锥之间的体积公式的推导过程已经牢牢的印在脑海中,这就已经达到了我所需要的效果了。
记得有位老师曾经说过:老师说了,学生记住了,没有多久就忘了,只有动手操作了,学生记住了,形象的记忆就会产生了。让我们多创造一些动手的机会给他们吧!
将本文的word文档下载到电脑,方便收藏和打印。
《圆锥的体积》是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。
新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,加深学生对形体的认识。然后让学生动手实验,以小组合作学习的方式让每个学生都能参与到探究中去,学生在实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
由于本节课活动单设计合理,问题比较精细,学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出圆锥的体积公式,取得了较好的效果。具体分析如下:
1、探究圆锥体积计算方法的学习过程,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教学案的引导下学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出只有等底等高的圆柱和圆锥才有这样的关系,从而加深了等低等高的印象,进而得出圆锥的体积公式,让每个学生都经历一次探究学习的过程。
3、学生在展示中获得了成功的喜悦,体验了探究的乐趣。
自采用“活动单导学”教学模式以来,学生敢说、愿说、乐说,学生的语言能力及叙述问题的条理性、层次性有了明显的提高。在本节课中学生能够根据教学案中的问题进行思考、讨论,从而大胆展示,能够把动手实践和语言表达结合在一起,从而清楚地展示了圆锥的体积探究的全过程。这点值得充分的肯定。
1、。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。
2、学生在实验时要求不高,导致存在着误差。实验失败。
3、学习困难的学生对于一些需要灵活判断的题目还是不能有较好的把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面。在与圆柱的体积的联系中,思维的灵活度不够。后来也感觉他们有出现一点点厌学的情绪,这是因为在最后他们把自己当成了倾听者。缺少了一种主动思维和思考的愿望。
1、让学生养成良好的学习习惯,做题时认真仔细。
2、鼓励学生利用课余时间间动手做一些学具,不仅会增强学生的动手操作能力,而且可以用到学习中去。
3、教师要认真的去设计教学案,把每一个问题设计精细,小组合作学习才能真正发挥优势。
《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
在教学后感觉到遗憾的是,由于教具准备不足的.关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。
一、引入(2分钟)。
教师:我们在第一单元中认识了一个新的立体图形----圆锥。不知道大家是否还记得圆锥是由什么图形旋转而成的?是直角三角形。圆锥有什么特点?一个顶点,一条高,底面是圆,顶点到底面圆的圆心的距离叫做高。今天这节课,我们继续学习有关圆锥的知识,一起来探讨“圆锥的体积”怎么求(板书课题)。
学生:直角三角形。
二、探究新知(20分钟)。
教师:我们学过哪些立体图形的体积啊?
学生:长方体、正方体、圆柱。
教师:他们和圆锥有什么不同?
学生:长方体、正方体、圆柱上下形状相同,圆锥不同。
教师:他们的体积是怎么求的?
学生:底面积*高。
教师:那圆锥的体积会不会也是底面积*高?为什么?
学生:不会,圆锥上下形状不一样。
教师:看来,我们需要找到圆锥和什么图形的体积关系才行。
学生:是圆柱。
学生:底面都是圆,圆柱和圆锥的高和底面相等。
学生:圆柱,圆锥上面是尖的。
学生:2次,3次。
教师:到底多少次就请同学们自己做一做。
学生:用等底等高的圆柱和圆锥进行小组合作实验并完成“实验情况记载表。推出公式为圆锥的体积*3=圆柱的体积。
教师:通过刚才的实验,我们知道圆柱所装的水是圆锥所装的三倍,也就是说,圆锥所装的水是圆柱的。那圆锥的体积等于圆柱体积的。
教师:为什么我们不用长方体来做实验?
答:把圆转化成面积相等的其他图形很麻烦,数学就是为了简便。
圆锥体积=圆柱体积(等底等高)。
v圆锥=sh。
三、实际应用(18分钟)。
学生:对的。
学生:不成。圆锥很小,圆柱很大。
教师:那我们要加上什么条件这句话才对啊?
学生:等底等高。
2、如果小麦堆的底面半径为2米,高为1.5米。你能计算出小麦堆的体积吗?
教师:题目告诉了我们什么条件,问题是什么?
学生:告诉了小麦堆的底面半径和高,求小麦堆的体积。
教师:小麦堆是什么形状?
学生:圆锥。
教师:要求体积需要什么条件?
学生:底面积和高。
教师:底面积和高知道么?
学生:底面积不知道。
教师:知道什么,可以求出底面积吗?
学生:知道半径,可以求出。
教师:请同学们试着做一下。
学生:解:v=sh=*3.14*22*1.5。
教师:注意运用乘法交换率。
本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。
例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,
让学生猜测圆锥的体积也可以借助我们已经学过的图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的`关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。
在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。
充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。
圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。
再上这节课时,我加强了以下几个点的教学,收到了较好的效果。
2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:3.14×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算3.14×32。又如:×3.14×(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算3.14×12。这样就大大地减少了学生计算难度,提高了计算的正确率。
以前教学圆锥的体积时,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳。
学生对“等底等高”这一重要条件掌握并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我在六年级(6)班设计了这样的教学片断:让学生自选空圆柱和圆锥,研究圆柱和圆锥体积之间的关系,学生通过动手操作,得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一的。
思维也出现了激烈的碰撞。这时,我没有评判结果,而是让学生经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是灵活机智地利用“错误”这一资源所产生的效果。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题,让他们去几经碰壁,终于找到解决问题的方法。把思考问题的实际过程展现给学生,让学生经历思维的碰撞。这样做实际上是非常富于启发性的。学生做数学题不仅要学会这道题的解法,而且更要懂得这个解法的来历。
教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,有效利用“错误”这一资源,勇于、乐于为学生创造时机,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验。这样,我们的课堂才是学生成长和成功的乐园!
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/gongzuojihua/500312.html