教学计划需要灵活调整,根据实际情况对教学内容和方法进行适当的变动。教学计划范文的多样性和创造性可以帮助教师灵活调整和改进自己的教学设计。
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
(一)在活动中整体感知。
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受。
1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识。
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。
4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识。
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构。
1.寻找:给定的圆中没有标出圆心,半径是多少厘米?
2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?
3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验。
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。
2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。
本节课的教学内容是人教版数学第十一册第五单元《圆》的第一节内容。《圆的认识》主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等,它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法,同时也渗透了曲线图形与直线图形的内在联系。
2、学情分析。
在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低,小组合作意识不强,鉴于以前学习的长方形、正方形、三角形等是直线平面图形时,而圆是平面曲线图形,学生在动手操作、合作探究方面会存在一些困难。
3、课标要求。
学生的学习过程是一个主动建构的过程,教学中力求发挥学生的主体作用,淡化教师的主观影响,激活学生的已有知识经验,激发学生学习热情,让学生自己在实践中产生问题,自己探究、尝试,修正错误、总结规律,从而使学生在经历、体验和运用中真正感悟知识,主动获取知识。
本节课我以学生亲自动手制作的圆形纸片为主线,采用操作、探究、讨论、发现等教学方法,有目的、有意识地安排了让学生折一折、画一画、指一指、比一比、量一量、议议等数学实践活动,启发学生用眼观察、动脑思考、用耳辨析、小组讨论,让学生主动探索、主动交流、主动提问,并通过多媒体将演示、观察、操作、思维与语言表达结合在一起,使学生在动手中认识圆的各部分名称,理解圆的特征,以及教学圆的画法。
4、教学目标。
基于以上的分析,我确定本节课的教学目标是:
(1)通过引导学生观察、实验、猜想等数学活动,认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
(2)通过创设情境,学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
(3)渗透“理论来源于实践又服务于实践”唯物主义观念,通过操作、研讨,培养学生独立探索的能力和创新精神。
【教学重点】认识圆,掌握圆的特征,了解画圆的步骤和方法。
【教学难点】理解圆的半径与直径间的关系。
【教学用具】学生:圆规、剪的圆形纸片、彩笔、直尺、三角板。老师:圆规、圆形纸、直尺、彩笔、课件。
(一)、创设情境,观察积累。
2.其实在前面的学习中我们已经接触过圆这种图形,除了圆你还认识那此图形?
生:长方形、正方形、三角形、平形四边形、、梯形、圆柱、长方体、正方体、球体……。
你你能给这些图形分分类吗?(课件演示)分成立体图形和平面图形,还有不同的分法吗?把平面图形再分成平面直线图形和平面曲线图形。板书:圆是平面上的曲线图形。
【利用学生比较感兴趣的赛车游戏,让学生去观察,发现其中的数学知识,进而抽出——圆,目的在于激发学生探究新知的浓厚兴趣,并为学习新知积累学生的知识表象。生活中,你在那见过圆形的物品?使学生感受到生活中处处有数学。回顾以前所学的有关平面图形和立体图形,进行分类,为学习新知作铺垫】。
(二)、组织学生,操作发现。
1.教学圆各部分的名称及关系。
(1)做圆的方法:昨天我给同学们布置了一个任务,让大家在纸上想办法画一个圆,然后把在纸上画好的圆剪下来,谁愿意告诉大家你是怎么做的?(用圆规或用圆形物印)。
(2)折纸:拿出你剪的圆形纸片,跟老师一起对折---打开---出现一条折痕,为了看得清楚,用直尺和彩笔画出折痕。换个方向再折再画一条。别停下来,继续折,继续画,比比谁折得快、画得多。
师:还能折吗?画得完吗?你发现了什么?这样的折痕有无数条所有的折痕都相交于圆中心的一点。这一点叫做圆心,一般用字母o表示。什么是圆心?(老师帖圆形纸,板书—)。
(3)认识半径、直径及其关系。
其实在折痕里还藏有很多有关圆的知识,下面请大家以小组为单位,通过议一议、量一量、看看书、组内交流等办法来寻找圆的知识。比比看哪个小组发现得多。
小组交流汇报有关直径、半径、直径与半径关系的知识。(配合学生汇报,教师进行动画演示。)。
小组:我们发现这些折痕都通过了圆心并且两端都在圆上,而且这此折痕长度都相等。你是怎么知道这些折痕都想等的?师:我们把圆里面象这样的线段叫直径,你能用自己的话说一说什么叫直径?直径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)。
小组:我们组发现从圆心到圆上可以连接无数条线段,这些线段也都相等。师:我们把圆里象这样的线段就叫做半径。你能用自己的话说一说什么叫半径?半径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)。
图中哪些是半径?哪些是直径?哪些不是?为什么?
2.学习画圆的方法。
画一个3厘米的圆,并标出圆心、半径和直径。(如果你有困难,可以看课本57页中用圆规画圆的方法,也可以向组内的同学请教)。
1.自学并尝试画圆。
2.交流画法。(定圆心、定半径、画圆)。
3.了解半径确定圆的大小,圆心确定圆的位置。
4.画一个直径是10厘米的圆。
(三)、引导学生,总结归纳。
同学们,这节课有什么收获?
完成课本练习二十的1、2题。
一、课时目标:
1、正确、流利、有感情的朗读课文。
2、引导学生感受飞船发射成功时的激动人心的场面,体会人物对话内容。
二、教学进程:
(一)复习导入。
1、朗读课题。
2、朗读课文。
(二)分析课文第一部分。
1、朗读1自然段。强调这是一个不寻常的日子。
2、请同学们读读课文2—5自然段,你从送行的场面中感受到什么?
(1)交流发言,指导学生感受人们为神舟5号送行场面的热烈。
人多壮观:在送行的人中,有“与宇航员朝夕相处的教练、专家”,有“手举鲜花的少先队员”,他们“人人脸上写满了喜悦与自豪”。朗读时引导学生展开丰富的想象,通过朗读把当时的气氛表达出来。
(2)师生朗读,体会喜悦心情。
(3)杨利伟叔叔又是怎样的呢?
(通过“身着乳白色航天服”,“面向五星红旗肃然伫立”等语句,指导学生体会杨利伟严肃庄重的.神情。)。
(4)指导学生读好“总指挥长同志,我奉命执行中国首次载人航天飞行任务,准备完毕,待命出征,请指示”这句话,体会杨利伟同志出征前的坚定意志和必胜信心。
(5)有感情地朗读课文第一部分。
(三)分析课文第二部分。
1、最激动人心的时候马上就要到了,“神舟5号”载人飞船即将载着中国人民的希望发射升空了,读读课文第二部分,其中哪些场面给你留下了深刻的印象,圈圈画画。
2、学生展开自主学习。
3、交流发言。
指导读好“随着发射时间一秒一秒地逼近,人们的心弦都绷得紧紧的,似乎可以听见自己急促的呼吸声”一句想象当时的进展气氛。反复让学生演练“十、九、八......点火......起飞......”读出现场特有的气氛。
4、指导朗读杨利伟的话。
(四)分析课文第三部分。
1、请学生读第三部分。
2、杨利伟的话有两处。第一处是当飞船运行到第七圈,距地面343千米时,杨利伟神情地向地球发回的问候。“向世界全国人民问好!”读这段话时,注意指导学生体会杨利伟当时的激动和难以抑制的豪迈之情。
3、请男同学和女同学轮流朗读。
4、请小组中朗读得最好的同学到台上朗读。
5、而最让我们大家感到兴奋就是在太空看到的景色和我们可爱的地球了!谁来读好这一节,向我们大家介绍介绍!
(1)指名朗读,感受太空的神奇和地球的美丽。
(2)把自己搜集的有关太空知识的图片和资料进行交流。利用网络的优势,将自己搜集到的资料,回复到教师发出的帖子上。
3、展示一部分学生的帖子,评讲。
(五)朗读课文最后一部分。
(六)总结。
课文学到最后,你想对杨利伟叔叔说些什么?对全中国的人民说些什么?对我们的少年儿童说些什么?可以完成一次小练笔,同样也发到教师发出的主题帖子上。
(七)布置作业:
1、朗读课文,选择自己喜欢的段落背诵。
2、搜集有关“神舟六号”飞船发射升空的资料在班级中介绍。
师:今天上课我们学什么?大声地说“学什么”
师:从哪里看到的?只给我看,
生指屏幕。
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规。
生齐:想。
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是。
生齐:有。
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形。
生:长方形。
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形。
生:正方形。
师:还有一个图形。
师从信封里摸出一个三角形。
生:三角形。
师:猜猜还有吗?
师从信封里摸出一个平行四边形。
生:平行四边形。
师从信封里摸出一个梯形。
生:梯形。
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有。
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角。
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑。
师:说的真好。
生齐:曲线。
师:给它一个名称。
生:曲线图形。
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形。
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会。
师:为什么?
生齐:丰满。
师:嘿!瞧,还有一个。
师出示一个椭圆,
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……。
生:瘦瘦的。
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样。
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台。
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了。
生:不是。
师:可以吗?
生齐:可以。
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能。
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了。
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形。
画圆。
生2:我认为是圆的半径变了.
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察。
生4(到黑板前画出远的半径)。
师:对不对?
生:对.
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:o.
师:请在你刚才画的圆上,标出圆心,写出字母o.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等。
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便。
师:请问,在圆上有多少个这样随便的点?
生:无数.
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
生9:因为我们知道所有的半径都相等.
生:有.直径是半径的二倍.
生:半径和直径都相等.
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最的地方和曲线图形圆交融在一起.
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
生15:少了宽度.
生:不是.
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/。
生;不是.要扯开3厘米.
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,。
师:想一想,刚才我们旋转的是什么呀?
生:中心.
生:圆.
师:今天上课我们学什么?大声地说“学什么”
师:从哪里看到的?只给我看,
生指屏幕。
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规。
生齐:想。
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是。
生齐:有。
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形。
生:长方形。
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形。
生:正方形。
师:还有一个图形。
师从信封里摸出一个三角形。
生:三角形。
师:猜猜还有吗?
师从信封里摸出一个平行四边形。
生:平行四边形。
师从信封里摸出一个梯形。
生:梯形。
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有。
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角。
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑。
师:说的真好。
生齐:曲线。
师:给它一个名称。
生:曲线图形。
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形。
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会。
师:为什么?
生齐:丰满。
师:嘿!瞧,还有一个。
师出示一个椭圆,
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……。
生:瘦瘦的。
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样。
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台。
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了。
生:不是。
师:可以吗?
生齐:可以。
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能。
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了。
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形。
画圆。
生2:我认为是圆的半径变了.
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察。
生4(到黑板前画出远的半径)。
师:对不对?
生:对.
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:o.
师:请在你刚才画的圆上,标出圆心,写出字母o.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等。
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便。
师:请问,在圆上有多少个这样随便的点?
生:无数.
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
生9:因为我们知道所有的半径都相等.
生:有.直径是半径的二倍.
生:半径和直径都相等.
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最的地方和曲线图形圆交融在一起.
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
生15:少了宽度.
生:不是.
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/。
生;不是.要扯开3厘米.
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,。
师:想一想,刚才我们旋转的是什么呀?
生:中心.
生:圆.
圆的认识是在学生认识了长方形、正方形、平行四边形、三角形,梯形等平面图形和初步认识圆的基础上进行学习的。这是研究曲线图性的开始。是学生认识发展的一次飞跃。我们应注重从学生的已有经验和知识背景出发,结合具体情景和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆,体会圆的本质特征:到定点的距离等于定长的点的集合。
探索出圆各部分的名称、特征及关系。
通过动手操作体会圆的特征。
(1)六个同学站成一条线。
师问:公平吗?
生:不公平,他们到红旗的距离不一样。(师引导学生用数学语言“距离不相等”)。
(2)八个学生站成一个正方形。
师问:这次公平吗?
生:还是不公平,站在角上的远。
(3)八个同学站成一个圆。
师:这次呢?
生:公平。因为他们到红旗的距离都相等。(到定点的距离等于定长)。
(4)八个同学围成圈之后不动,再去八个同学插到里面。(多八个人还是这个圆)再去八个(拥挤,但还是这个圆。)。
引导学生感受集合的概念。
让学生拿出事先准备好的圆形物体,让学生先对折,再换不同的方向对折,对折几次后,把交点画出来。并告诉学生,每条折痕都是圆的直径。(引出直径的定义:通过圆心并且两端都在圆上的线段,叫做直径。)。
让学生用直尺量出每条直径的长度。
师:在同一个圆里,直径会有怎样的特点?三人小组讨论后,得出。
生1:在同一个圆里,所有的直径长度都是一样的。生2:在同一个圆里,有无数条直径。
师:在同一个圆里,有无数条直径,所有的直径的长度都是相等的。
师:在同一个圆里,所有的半径又有怎样的特点呢?(引出半径的定义:连接圆心和圆上任意一点的线段,叫做半径)。
生经过自己动手量,得出的结论是:在同一个圆里,有无数条半径,所有的半径都是相等的。
1、利用工具画圆介绍圆规:前面我们用不同的方法画出了圆,但通常我们会借助一个专门的工具来画圆。这个工具就是圆规。圆规有两只脚,一只脚是针尖,另一只脚是用来画圆的笔。两只脚可随意叉开。
2、你能试着用圆规画出一个圆吗?边画边想,圆规画圆一般分哪几步?需要注意什么?
3、交流。
(1)让学生说说自己画圆的过程,教师示范画圆。适时板书:两脚叉开、固定针尖、旋转画圆。
(2)小组交流画圆的情况,以及出现的问题,反思画圆应注意什么。同时出示书中的四幅插图。
(3)小结:画圆时要注意针尖必须固定一点,不可移动,两脚间的距离必须保持不变;要旋转一周。
5、学习圆心、半径和直径。
介绍圆心、半径和直径的同时,在图中画出相应的线段,标出相应的字母。然后让学生在自己画的圆中标出圆心、画一条半径和一条直径,并分别用字母表示。
《圆的认识一》这节课属于概念教学,我在设计本课时想到的是不仅仅要让学生知道圆各部分的名称、掌握圆的特征,更要让学生通过亲身感受去认识圆,我让他们不仅要动脑筋想,动口说,还要动手折、画,提高他们的自学能力和空间观念。
圆是一种常见的图形,在此之前学生就已经对圆有了初步的感性认识。这节课,我根据新课程所倡导的教育理念,利用课程资源,注意教师和学生互动交流,尊重学生已有的生活经验,让学生充分表达自己的意见,在活动中生成知识,使课堂气氛和谐、活跃。但是学生的思维和言语是无法预测的,在把圆对折时,预习过的同学直接把折痕说成了直径,我就马上肯定了他们的说法,问他们什么是直径,这样处理使教学的进行更顺畅,更容易与学生产生共鸣;在研究同一个圆里直径的长度和半径的长度之间的关系时,让学生小组讨论得出结论后,再通过演示让他们直观的感受到在同一个圆里两条半径的长度等于一条直径的长度,加深了他们的理解。
出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)。
1、刚才欣赏到的那些漂亮图片中的物体是什么形状?
2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?
(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)。
请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?
3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)。
1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。
2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)。
3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?
总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。
4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。
1、认识圆规。
让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2、尝试画圆。
1)你能试着用圆规画一个圆吗?学生独立画圆。
2)刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)。
3)说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。
4)学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?
总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。
5)练习画一个两脚之间距离是2厘米的圆。
1、认识圆心、半径、直径。
1)教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母o来表示。找出你刚才所画的圆的圆心,并标上字母o。同桌相互检查一下,有没有标对。
2)教学半径:连接圆心和圆上一点的线段是半径,用字母r表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。
让学生联系画一个半径是4厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。
3)教学直径。
出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?
总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
同学们你们画的圆也有直径,请你画一条圆。
4)闭好眼睛,回想标圆心、画半径与直径的方法。
2、练习,完成练一练的第1题。
说说哪些不是半径或直径,为什么?
3、研究圆的特点。
我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。
1)出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)。
通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)。
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的直径和半径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
3)学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r)。
4)通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。
1、练习十七的第1题。
填写表格,并说一说半径与直径之间有什么关系?
2、练一练的第2题。
画一个直径是5厘米的圆,并用字母o、r、d分别表示出它的圆心、半径和直径。
教师提问:使用圆规画一个直径是5厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)。
3、判断题。
1)圆有无数条对称轴。
2)直径是半径的2倍。
3)画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。
4)圆的位置由圆心决定。
5)两脚间的距离越大,画出的圆就越大。
谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。
师:感觉怎么样?
师小结:而这,不正是圆的魅力所在吗?
谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!
1、体验用不同的工具画圆。
2、认识圆,了解圆各部分的名称。
3、掌握圆的特征,理解和掌握在同一个圆或者在等圆中半径和直径的关系。
4、培养学生的观察能力,动手操作能力以及抽象概括能力,增强学生的合作意识。
5、让学生感受数学的美以及数学在生活中的应用,了解数学传统文化知识,培养学生的爱国热情。
掌握圆各部分的名称及圆的特征和圆的画法。
多媒体课件、圆规、直尺、线、圆片等。
一、情境导入
师:刚才同学们朗诵的传统文化的片断,非常精彩,今天老师也给你们带来了一些相关的知识,你能从中获取哪些有价值的数学信息呢?(出示课件)。
师:仔细观察这几幅图片,它们都有什么共同特征?
生:它们都有圆。
生:它们都和圆有关。
板书:圆
二、自主探究新知
(一)、画圆
生:想
请同学们拿出画圆的工具,画出自己喜欢的圆。
生:他拿圆规的方法不对。(圆规应该拿在手柄处)
生:他画圆时可能针尖移动了位置。(画圆时针尖的位置一定要固定)
生:他圆规两脚一下近一下远。(对,圆规两脚之间的距离不能变)
(学生边汇报,师边示范用圆规画圆)
其实,同学们刚才说的就是画圆时应注意的地方。
现在请同学们利用圆规画一个标准的圆。
(二)、初步感知圆
同学们,通过你们的努力画出了这么美丽的圆,那在这之前我们还学过哪些平面图形?
生:正方形、长方形、三角形、平行四边形、梯形。(生汇报,师出示相应课件)
这些图形和圆有什么不同的地方?
生:它们的边都是直直的。
对,它们都由线段围成的封闭图形。
师:请拿出课桌里的圆片来摸一摸,有什么感觉?
生:弯弯的。
这样弯弯的线我们称它为曲线。(课件出示曲线)圆就是由曲线围成的封闭图形。(课件演示圆)
(三)、自学圆的概念:圆心、半径、直径
俗话说圆是最美丽的几何图形,你想了解圆的哪些知识呢?
生:我想知道怎样求圆的周长。
生:我想知道怎么求圆的面积。
无论是求圆的面积还是求圆的周长,我们都必须先认识圆。(板书:圆的认识)
(1)引导学习圆心
生:这些折痕相交与一点。
对,这一点呀我们称它为圆心,用字母o表示。(边总结边在黑板上标出圆心)
请同学们标出自己手中那个圆的圆心。
(2)自学半径
其实,在圆里还有半径和直径两个重要的概念,科学家是如何定义它们的呢?这个秘密就藏在数学书56页的例2中,请同学们自学相关的内容并用笔画出相关的概念和重要的词语。
你能用自己的话说说什么是半径吗?
生:从圆心出发至圆边上任一点的线段叫做半径。
师:圆边上任意一点我们叫它圆上任意一点。
请你帮老师找出黑板上这个圆的半径,其他同学标出自己手中那个圆的半径。
(3)自学直径
通过自学你们认识了半径,那你能找出下面图形中的直径来吗?(出示课件)
ab为什么不是直径,它是什么?
生:它虽然通过了圆心,但它只有一端在圆上,所以它不是直径,它是圆的半径。
ef为什么不是直径?
生:它没有通过圆心。
gh为什么不是直径?
简单的说,圆的直径必须满足哪几点要求?
生:一要通过圆心,二要两端都在圆上,三要是线段。
(四)、自主探索圆的特征
(1)探究
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。
1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
重点:在观察、操作中体会圆的特征。知道半径和直径的概念。
难点:圆的特征的认识及空间观念的发展。
教具:教学圆规、电化教具、课件。
一、观察思考。
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)。
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆。
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)。
三、认一认。
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认。
四、画一画,想一想。
径呢?(放动画)。
2、以点a为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的`圆。
五、应用提高。
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业。
1、教材第5页练一练。
2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)。
1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆。
2、让学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
在观察、操作、画图等活动中感受并发现圆的特征。
教学难点:
归纳圆的特征,并能准确画出指定大小的圆。
一、情景引入。
出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)。
1、刚才欣赏到的那些漂亮图片中的物体是什么形状?
2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?
(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)。
请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?
3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)。
二、教学新知,初步画圆。
1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。
2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)。
3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?
总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。
4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。
三、认识圆规,掌握用圆规画圆的方法。
1、认识圆规。
让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2、尝试画圆。
1)你能试着用圆规画一个圆吗?学生独立画圆。
2)刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)。
3)说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。
4)学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?
总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。
5)练习画一个两脚之间距离是2厘米的圆。
四、学习圆的各部分名称及特征。
1、认识圆心、半径、直径。
1)教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母o来表示。找出你刚才所画的圆的圆心,并标上字母o。同桌相互检查一下,有没有标对。
2)教学半径:连接圆心和圆上一点的线段是半径,用字母r表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。
让学生联系画一个半径是4厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。
3)教学直径。
出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?
总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
同学们你们画的圆也有直径,请你画一条圆。
4)闭好眼睛,回想标圆心、画半径与直径的方法。
2、练习,完成练一练的第1题。
说说哪些不是半径或直径,为什么?
3、研究圆的特点。
我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。
1)出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)。
通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)。
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的直径和半径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
3)学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r)。
4)通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。
五、巩固练习。
1、练习十七的第1题。
填写表格,并说一说半径与直径之间有什么关系?
2、练一练的第2题。
画一个直径是5厘米的圆,并用字母o、r、d分别表示出它的圆心、半径和直径。
教师提问:使用圆规画一个直径是5厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)。
3、判断题。
1)圆有无数条对称轴。
2)直径是半径的2倍。
3)画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。
4)圆的位置由圆心决定。
5)两脚间的距离越大,画出的圆就越大。
六、欣赏生活中的圆。
谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。
师:感觉怎么样?
师小结:而这,不正是圆的魅力所在吗?
七、全课总结。
谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!
教学目标:
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重点:
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点:
理解圆上的概念,归纳圆的特征。
教材分析:
教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。
学情分析:
圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。
教学过程:
活动一:演示操作,揭示课题。
师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)。
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)。
活动二、动手操作,探究新知。
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)。
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,来认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)。
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)。
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心。
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)。
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)。
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一。
个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的`学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1.p581。
2.填表。
(四)圆的画法。
1.学生自学,看书57页。
2.学生试画。
3.学生通过试画小结用圆规画圆的方法,注意的问题。
4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5.学生练习。
(五)教师提问。
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
活动三、实践与应用。
(一)判断。
1.画圆时,圆规两脚间的距离是半径的长度。()。
2.两端都在圆上的线段,叫做直径。()。
3.圆心到圆上任意一点的距离都相等。()。
4.半径2厘米的圆比直径3厘米的圆大。()。
5.所有圆的半径都相等。()。
6.在同一个圆里,半径是直径的。()。
7.在同一个圆里,所有直径的长度都相等。()。
8.两条半径可以组成一条直径。()。
(二)按下面的要求,用圆规画圆。
1.半径2厘米。
2.半径2.5厘米。
3.直径8厘米。
(三)怎样测量没有圆心的圆的直径?
活动四、全课小结。
这节课我们学习了什么?通过这节课的学习你有什么收获?
在同一个圆里有无数条半径,所有半径的长度都相等。
在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。
1.例1。
例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。
教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。
2.例2及“做一做”。
圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。
教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。
“做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。
教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。
教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。
3.例3及“做一做”。
例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。
教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。
“做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。
4.关于练习十四中一些习题的说明和教学建议。
第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7cm。
第3题,使学生知道两端都在圆上的线段,直径是最长的一条。
第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。
第6题,可先固定一点,然后以此为圆心,用长为5m的绳子绕此点旋转一周即可画出。
第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。
理解和掌握圆的特征。
纸、剪刀、圆规、课件。
(一)、创设情景,激发兴趣。
1、(大屏幕展示高年级同学课间投篮比赛情境图)。
2、师质疑:你们认为安排这样的队形公平吗?大家有什么好的建议?
3、生自由回答,师相机点拨。
4、师:今天我们就来学习有关圆的知识。(板书:圆的认识)。
(二)、恰当引导,自主学习。
1、师:你们认为圆和我们以前学过的平面图形有什么区别?
2、(师板书:圆是一种由曲线围成的封闭图形)。
3、生齐读三遍。理解意思。
(三)、师生交流,感受新知。
1、找身边的圆。
2、师:(出示教具圆规)这是什么?它表面上有圆吗?(生边看边答。)。
3、在你的纸上画一圆。
4、师抽生在黑板上画圆。
(1)没成功:他为什么没画成功?(1是没有固定好有针的那个脚;2是没固定好圆规两脚间的距离;3是可能不太好旋转;4是黑板比较滑,不太好固定)。
5、师示范画圆。
师:刚才同学们总结得很好,看来,用一只手固定住圆规的针尖很关键。看老师画。
师:我们把……统称为圆上【板书:圆上】。
师:只能画这一条吗?生:还能再画!
师:再画一条。还能再画吗?再画一条。还能画吗?到底能画多少条?
师:所画出来的表示圆规两脚间距离的这几条线段,一个端点都在哪?另一个端点呢?
生:一个端点都在圆心,另一个端点都在圆上。
师:我们给这样的线段起个名字吧!
师:【板书:半径(r)】半径一般用字母r表示,在你的圆上标上r。谁能用自己的话说一说什么叫半径。(一个端点在圆心,另一个端点在圆上的线段就叫半径。)。
师:在同一个圆里,半径有多少条?长度怎样?
生:在一个圆里,半径有无数条,长度都相等。
师:既然半径有无数条,那么在围成圆的这条曲线上,像这样的端点能找出多少个?
生:能找出很多(无数)个。
师:(在三个点的旁边紧密地多点几个点)这行吗?
师:正是这无数个点紧紧地手拉手,靠在一起,连接成一条完美的曲线,围成了圆。
师:请同学们拿出剪刀,剪下你所画的圆。
生:一条折痕。【痕迹、印子、折痕】。
师:我们把对折产生的这条线段、这条痕迹统称为折痕。
师:原本平展的圆上,多了很多很多的折痕,在这些折痕里藏着许多许多关于圆的奥秘,同学们想发现吧?请同学们在4人小组里围绕折痕,展开讨论,充分发表自己的见解,然后由组长记下“我们的发现”。汇报发现的`时候,由组长上来发言,组员可以补充。但每一组只能用一句话汇报一个自己认为最精彩的发现,别的组发表过的观点,其他组便不再重复,开始讨论。
1、(小组合作,讨论问题)。
2、各小组汇报讨论结果。
(四)、巩固练习,问题解决。
1、判断直径、半径。
2、[媒体]填一填:
3、[媒体]再请你辩一辩:下面各句话对吗?
4、画圆。
请你画一个半径为4厘米的圆。
师:下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?
问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)。
问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)。
问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)。
师:我已经发现,很多同学都笑了,这说明他心里有底了。每个同学选择一个自己最感兴趣的课题来研究。
(五)、课堂小结,课外延伸。
发挥想象,灵巧操作。
1、给你两枚钉子和一条一定长度的绳子,你有办法画出圆来吗?
〈2〉、任意画出一个圆,再标出圆心、半径、直径。(字母表示。
师:学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/gongzuojihua/309234.html