教学计划应该根据学科特点和学生的认知规律进行合理设计,以提高教学效果。下面是一些教学计划范文的分享,希望可以对您的教学工作有所帮助。
1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
转化前后各部分间的对应关系。
一、导入新课:
提出问题:
请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)。
思考:
要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)。
生读,教师板书:圆的面积。
二、探索新知:
(一)、先自学课本,小组探讨如下两个问题:(电脑出示)。
1、在推导的过程中你发现圆的什么变了?(板书:形状)。
2、在推导的过程中你发现圆的什么没变?(板书;面积)。
(二)、探讨第一问:
a:多媒体出示16等份圆。
1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。
2、学生小组操作。
3、你会把它变成一个近似长方形吗?学生小组尝试操作。
4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。
5、学生展示操作成果。
b:多媒体出示8等份圆。
2、学生汇报讨论结果。
3、媒体演示8等份。
c:多媒体出示32等份。
1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。
2、眼睛微闭想一想。
3、媒体演示32等份。
d:多媒体演示三幅图综合画面。
1、让学生仔细观察后问:哪一等份更接近长方形?
2、为什么,等份的份数越多就能拼出越接近的长方形。
f:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想。
学生讨论。
(三)探讨第二问:
a:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?
3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)。
板书:长方形面积=长×宽。
b:仔细观察多媒体演示问:
1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)。
2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)。
c:推导出圆的面积并且用字母表示。(教师板书)。
d:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?
三:课堂练习。
1、同座互增一个画好半径的圆,求其面积。
问:先要知道什么条件,再怎样求?
2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?
3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何。
解决此问题?
4、根据下面条件,求出各圆的面积。
c=6。28米r=1分米d=20毫米。
5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。
课堂延伸。
练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。
四、课堂小结。
教学设想:
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
教学过程:
一、创设情景,明确目标。
(板书:圆的面积)。
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法。
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)。
师:它们的面积公式分别是怎样得到的?(学生答略)。
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路。
(学生回答,师板书)。
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)。
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)。
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识。
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r。
师:直径是10米行吗?(指名汇报)。
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径。
师出示深化题,学生练习。
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
一、本课是在学生学习了圆的认识的基础上进行教学的,力求实现变抽象为直观,化静为动,为学生提供丰富的感性材料,促进学生知识的迁移,帮助学生理解公式的推导过程,激发学生的学习兴趣,渗透数学中的转化思想。
教学导入时,我首先以当前的热点话题20xx奥运会切入主题,学生倍感亲切,紧紧抓住了学生的注意力,学生在教师的适时调控下由奥运会主会场鸟巢自然过渡到怎样求圆的面积呢?力求达到衔接自然的教学效果。
二、新授中首先让学生借助学具的操作,把圆形平均分成若干份,通过观察发现每份是近似的三角形,进而把圆分割成若干个三角形,借助三角形的面积公式推导出圆的面积公式,同时向学生渗透极限的思想,分的份数越多,每一份越接近三角形。之后教师引导学生利用分割后的三角形重新拼组成我们学过的长方形,依据它们之间的联系也能推导出圆的的面积公式。以上两种方法,一种是分割法,一种是拼组法,无论哪一种方法都渗透了转化的思想,引导学生找出新旧知识的衔接点,温故而知新,力求达到有效突破教学难点的目的。
三、练习中首先让学生通过一组口头列式,及时巩固所学新知,力求使学生获得成功的喜悦!在此基础上,将导入时怎样求鸟巢的占地面积,补充上条件,让学生利用所学解决实际问题,首尾呼应,力求取得事半功倍的教学效果。最后给学生一个紧密联系实际的数学问题,求学校花坛的面积,激起学生的兴趣,学生在讨论中明确先测量出周长,然后求出半径,再计算花坛的面积,力求使学生在不断的尝试中逐步提高,升华新知!
圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。
1、了解圆的面积的含义,经历圆面积计算公式的.推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
一、回顾旧知,引出新知。
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法。
二、创设情境,提出问题。
1、教师引导观察,说说从中得到那些数学信息?
3、学生回答,老师板书(圆的面积)。
三、探究思考,解决问题。
(1)与同桌说一说你是怎么估的。
(2)汇报,
(3)老师引导有没有更好的方法。
(1)学生操作。
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)。
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公式,并说出你的理由。
(6)总结:
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
四:实践应用。
执教教师:
新课标指出:“学生是数学学习的主人”,教师要“向学生提供充分从事数学活动的机会”,并指出:“动手实践、自主探索、合作交流是学生学习数学的重要方式”。本课例我让学生自己动手来折圆纸片、同学之间合作交流,共同探究圆的一些特征。这样的组织教学,使整节课充满了“做数学”的过程,学生的主体性得到充分展现。
现代信息技术是为教学服务的,其主要功能就是“提供学生学习背景,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。”本课例的教学设计还着力利用信息技术让学生经历体验的过程,将抽象的数学知识形象化。引导学生积极主动的参与学习过程,培养学生的数学意识和数学能力。
教学内容。
(所用教材电子扫描图附后)。
学情与教材分析。
《圆的认识》一课是在学生认识直线图形和面积计算,对圆有了初步的感性认识的基础上进行教学的。它是学生学习曲线图形的开始。学习这部分内容不仅加深学生对周围事物的理解,提高解决简单问题的能力,也为后面学习圆的周长、面积的计算,打好基础,是很重要的一节几何知识的起始课。
小学生的思维多倾向于具体形象的特点,而小学六年级的学生,只具有初步的抽象概括能力,空间观念也正在形成之中,对几何形体的特征感到抽象,虽然在一年级时他们已初步感知过圆,但还没有建立圆的概念,也没有掌握圆的特征。学生对于建立正确的圆的概念以及掌握圆的特征还是比较困难的,因为学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。怎样才能把这些抽象内容变得具体形象呢?我以教材为依据,针对教材特点,联系我班学生动手操作能力较强、自学能力较强、学生具有讨论认真、善于合作学习的好习惯。制定了以下教学目标:
教学目标。
1.使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。
2.通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。
教学准备。
纸圆、剪刀、线绳、课件。
(预设做圆材料有:瓶盖、硬币、绳子、圆规)。
教学过程。
一、创设情境,初步感知圆。
1、引入课题。
(1)提问:对于圆,同学们一定不会感到陌生吧?生活中,你们在哪儿见到过圆形?
(2)欣赏圆。
2、揭示课题。
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题)。
二、自主合作,初步认识圆。
1.做圆。
(1)展示学生做出的圆。
(2)让学生汇报做圆的方法。
2.画圆。
师:现代人们都是用什么工具画圆?你会使用圆规画圆吗?
请大家用圆规随意在纸上画出一个圆,并说说用圆规画圆的方法。
(组织学生交流用圆规画圆的方法:定长、定点、旋转一周)。
3、认识圆各部分名称。
师:请同学们把刚才画的圆剪下来,跟老师一样把圆片对折后,打开,换过一个方向再对折,再打开。将折痕用笔描下来。
(1)认识圆心。
(学生折圆、汇报发现)师:我们把折痕相交的圆中心这一点叫做“圆心”,用字母o表示。(教师在黑板上贴出圆,画出圆心并标出字母o)请大家在你们的圆形纸上标出圆心,并用字母表示出来。
(2)认识直径。
师:如果我们把其中的一条折痕用笔描出来,就可以得到一条线段,这样的线段就是圆的“直径”,用字母d表示。(教师在黑板上画出直径,并标出字母d)请同学们也在你们的圆形纸上画出一条直径,并用字母表示出来。
师:在画直径时应该注意什么,谁能说一说什么样的线段叫做圆的直径?(引导学生概括“直径”概念,强调“圆上、圆内、圆外”的区别)。
(3)认识半径。
(教师在刚才的基础上画出一条“半径”)师:这样的线段就是圆的半径,用字母r表示。(学生画半径,用字母表示,概括半径概念,课件出示,强调“任意一点”。)。
(4)(课件出示)练习:判断下面的线段哪些是直径,哪些是半径?为什么?
$2$2$2$2$2$2$2$2$2$2。
4、探究圆的特征。
(1)猜想。
师:请你仔细观察手中的圆猜想一下:圆可能会有哪些特征呢?
(2)验证。
$2$2$2$2$2$2$2$2$2$2$2$2$2$2$2(3)结论:在同一圆内(或等圆)有无数条半径,无数条直径,所有的直径都相等,所有的半径都相等,直径是半径2倍,也就是“d=2r或r=”。
(4)(半径、直径关系)练习:课本p60第2题。(课件出示口头练习)。
三、联系实际,初步应用圆。
1、下面的说法对吗?为什么?
(1)所有半径都相等,所有的直径也相等。()。
(2)半径3厘米的圆比直径5厘米的圆小。()。
(3)圆的直径是半径的2倍。()。
(4)两端都在圆上的线段就是圆的直径。()。
2、车轮为什么要设计成圆的?车轴为什么要装在圆心?
四、谈古论今,感受圆文化。
1、古人眼中的圆。
【预设一:一中就是指一个圆心。
预设二:同长指半径一样长,也可能指直径一样长。】。
师:其实我国古代这一发现要比西方整整早一千多年。听到这里。同学们感受如何?
2、现代社会的圆。
总结:从古到今,正因为有了圆而使生活变得格外多姿多彩,我们无法想象生活中如果没有了圆,将会是什么样子,这些不正是圆的魅力所在吗?从今天起,让我们一起走进圆的世界吧!
五、全课总结,反思圆知识。
1、这节课你都学会了什么?
2、学会11个生字,1个多音字,理解33个词语的意思。
3、能理解课文的思路,初步认识插叙的段落,懂得插叙的作用。
4、能辨清反问句,初步理解设问句的作用。
5、感受一个真正的共产党员钢铁般坚强的意志,体会今天幸福生活来之不易,不忘革命先烈的斗争业绩。
教学时间。
3课时。
第一课时。
教学要点。
初读课文,初步了解整篇课文的内容,学习生字和有关词语。
教学过程。
一、揭题,初读全文。
1、揭题,质疑,帮助设疑。
(1)江姐是谁?她是一个怎样的人?
(2)课文写了江姐的什么事?为什么写这些事?
2、自读课文,边读边想上述题(1),并用____划出文中有关江姐身份和品质的句子。
3、检查讨论第(1)题,并随机教学生字彭和词语白区,介绍有关《红岩》和有关的历史背景。
4、听录音,边听边想第(2)题,听后同组讨论交流答案。
5、检查。板书:痛失丈夫、熬受毒刑。
二、轻声朗读全文,读准生字字音,联系上下文理解词义。完成作业本1、3两题,再集体校对。
三、作业。
1、作业本第2题和第4题。2熟读课文。
第二课时。
教学要点。
细读课文,理解通过具体事例说明江姐高贵品质的表达方法。
教学过程。
一、复习检查。
1、检查作业本第4题。
2、说说课文主要写了江姐的哪几件事。
二、学习第一个事例:痛失丈夫。
1、轻声读2、6自然段,找出江姐说的话,齐读。板书:
这算得了什么!
2、联系上下文,默读思考:
(1)这指什么?
(2)是算不得什么吗:
学生朗读有关句子时,教师板书:打击、残酷、强忍悲愤、微微抖动、平静吐出。
(3)出示反问句:这算得了什么?与原句这算不得什么!比较,体会表达的不同感情。
3、消费者:江姐失去了丈夫,失去了她最亲的人,虽然内心痉万分,但她把个人的不幸和安危放在一边,以革命事业、党的利益为重。她,是我们党忠诚的战士!
三、学习第二个事例:熬受毒刑。
1、指名朗读7-8自然段,边听边思考:敌人是怎样折磨江姐的?江姐又是怎么忍受的?
2、指导用先然后最后的句式说说江姐熬受酽刑的经过说话提纲如下:
学生口述江姐受折磨经过时,教师板书:竹签钉指,没有呻吟。结合理解令人心悸。
3、分江姐和特务两条线有感情地朗读9-15自然段。先由师生对读,再让男女生对读。
5、多么顽强的战士啊!(引读第17自然段)当朝霞透过山峰,阳光洒满山谷地,高墙边的黑漆铁门一响,人们聚在风门口张望。只风______________。她熬受一夜的折磨,__________________。
6、严刑拷打,竹签穿指,十指连心哪!江姐是怎样忍受这撕心裂肺的痛楚的呢?
学生回答时教师板书:紧咬牙关、咬破嘴唇。
7、想象:江姐受刑时,紧咬牙关,她当时心里怎么想?
8、小结:是的,无论敌人用了怎样残酷的刑罚,我们的江姐宁死不屈。
四、作业。
抄写生字新词或课文段落。
敌人江姐。
先是疯不能。
然后冷笑倔强。
并又用竹昏。
泼凉水没有。
又泼凉水没有。
第三课时。
教学要点。
有感情地朗读课文,理清课文的层次,懂得插叙的作用,练习背诵难友们给江姐的信。
教学过程。
一、填空练习,创设情境,进入意境。
二、抓住两个具体事例,给课文分段,理清层次。
1、先抓住两个具体事例的起讫,把课文分为四段,并说说其他两段段意。
2、研究第7自然段的.承接过渡作用,不是那一夜发生的,是插叙。为什么要插叙呢?
三、学习文章下、四段,继续体会夜晚提审、关怀慰问两段对表达文章中心的作用。
2、指导朗读难友们的信,重点读好当我们当我们当我们排比句,抒发难友们对江姐的敬爱之情,以及江姐对他们的鼓舞。练习背诵。
4、齐语法第一段,指导读出反问句和设问句中难友们关心的语气。
四、感情朗读课文,作整理和总结。
1、通过本文的,你们学会了什么本领?
2、有感情地齐读全文。
五、作业。
1、背诵难友们的信。
2、听写词语。
3、把江姐的故事说给家人听,课外阅读《红岩》一书。
将本文的word文档下载到电脑,方便收藏和打印。
教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:掌握计算组合图形面积的方法,并能准确计算。
教学难点:对组合图形进行分析。
教学准备:课件、学具、作业纸。
教学过程:
一、创设情景,谈话引入。
1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。
2.课件展示:鸟巢和水立方等建筑,精美的雕窗。
【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。
二、探究新知,解决问题。
1.实践操作(课件出示教材例3中的雕窗插图)。
师:谁能说说这两种设计有什么联系和区别?
预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。
师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。
预设2:都是由圆和正方形这两个图形组成的。
师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?
学生操作,作品展示。
【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。
2.解决问题。
(1)阅读与理解。
师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。
预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。
预设2:需要知道正方形的边长和圆的半径。
师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?
学生思考,尝试练习。
(2)分析与解答。
师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?
预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14m2),等于0.86m2。
师:你是怎么知道正方形的边长的?
根据学生回答课件展示:正方形的边长=圆的直径。
师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?
预设1:可以把右图中的正方形看成两个三角形。
追问:三角形的底和高分别是多少?相当于什么?(底是2m,高是1m,相当于圆的直径和半径。)。
结合学生回答课件展示。
预设2:也可以看成四个三角形。
师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1m,相当于圆的半径。)。
师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)。
【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。
三、回顾反思,理解算法。
师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一算。
左图:。
师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?
学生练习,反馈讲评。
右图:。
师:我们可以把题目中的条件=1m代入上述的两个结果算一算,有什么发现?
预设:和之前计算的结果完全一致。
【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。
四、课堂练习,强化认识。
1.基础练习。
师:求不能喷灌到的草坪面积,就是求什么?
师:可以用怎样的方法验证结果是否正确?
2.拓展练习。
在每个正方形中分别作一个最大的圆,并完成下表。
采用四人小组合作的方式完成,小组汇报展示。
师:你发现了什么?如果正方形的边长为,你能得出怎样的结论?
正方形面积为,圆的面积为,面积之比为。
师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。
【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。拓展练习采用小组合作的方式解答,进一步揭示了圆与正方形的面积之间的关系,对于培养学生的合作交流意识、发展数学思维能力等方面具有重要的意义。
五、全课总结,畅谈收获。
通过本节课的学习,你有什么收获?谁来说一说。
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
一、引导估计,初步感知。
2、估计圆面积大小与半径的关系。
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究。
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
追问:课始我们的估算正确吗?
三、应用公式,解决问题。
1、基本训练,练练应用公式,求圆的面积。
2、解决问题。
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算。
(3)交流,突出5平方的计算。
四、巩固练习。
1、练习十九1求课始出示的光盘的面积。
五、这节课你有什么收获?你认为重点的。
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)。
六、课堂作业。
补充习题51页2、3、4题。
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
基于以上的教材和学情分析,我制定了以下的教学目标:
1、认知目标:
提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。
2、能力目标:
培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。
3、情感目标:
通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。
教学重点:
正确掌握圆面积的计算公式。
教学难点:
圆面积计算公式的推导过程。
(一)创设问题情境,激发学生学习兴趣。
1、感知圆的面积:(课件出示一大一小的圆)。
师:圆的大小是由什么决定的?(板书:由半径决定)。
(选择两个面积不同的圆)。
师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。
师:那谁能说说什么叫做圆的面积?
(揭示:圆所占平面的大小叫做圆的面积。)。
[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。
(二)学生合作探索,交流操作经验。
1、初步感悟:
(1)课件出示:书103例7图。
师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?
原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。
通过数圆的面积,得到整圆的面积,然后把表格填完整。
学生填表、计算,汇报。
小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的.计算公式。
2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。
师:那么,这节课我们就来共同找出求圆面积的方法。
3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)。
[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。
师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)。
[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。
你想采用什么方法把圆转化成学过的图形?
[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。
师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。
师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)。
[设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。
(三)利用课件演示,呈现经验总结。
[注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。
尊敬的各位评委老师,大家好!我的微型课题目为《xxx》。(0.5分钟)。
上课,同学们好!请坐。(声音洪亮充满教室,有鞠躬动作,表情愉快,目视评委)。
第一环节:创设情境、导入新课(1分钟)。
大家在生活中经常观察到xx现象,为什么会出现这样的现象呢?就让我们共同走进《xx》一课,开启今天的探究之旅。
第二环节:小组合作、探究新知(5分钟)。
大家认真观察老师的演示实验(或请大家观看大屏幕),思考老师给出的问题,认真阅读课本xx页—xx页,从中你获取了哪些知识,小组讨论进行归纳,(尽量有可以动手操作的小实验,要用手指示大屏幕)。
(教师提问)这位同学你来说一下,表达的很好,请坐。还有哪位同学来补充一下,好的,那位男生你来说说,做的真好,大家鼓励一下。(拍拍手)。
(教师总结归纳,板书)归纳出四个知识点:(写在黑板的中间位置,左右两侧各两个,要对称工整,有一些特殊设计,最好画成思维导图形式)。
第三环节:巩固练习、夯实基础(1.5分钟)。
通过上面的学习,我们是否掌握今天所学知识了呢?让我们进入今天的巩固练习,夯实基础的测试环节,请看大屏幕。
(教师提问)这位同学你来解释一下,不错,请坐。
那位男生同学你来说一下这道题目,很好,请坐。
由大家的回答可以看出同学们对今天学习的内容掌握的不错。通过学习你有哪些收获呢?进入今天的归纳总结,颗粒归仓环节。
第四环节:归纳总结、颗粒归仓(1.5分钟)。
大家畅所欲言来谈一谈,这位同学你来说一下,请坐;那边那位女同学你来说一下,很好,请坐。大家总结的都很好,希望大家在课下的时候能够将它们归纳总结为思维导图的形式。
第五环节:作业布置(1分钟)。
为了达到巩固在提升的目的,请大家看大屏幕,将以上作业完成。
俗话说“业精于勤而荒于嬉”,愿我们用自己的努力去点燃明天的辉煌,下课,同学们再见,谢谢各位评委老师。
1、使学生熟练掌握圆的周长、面积的计算方法,能正确的计算圆的周长和面积。
2、使学生能综合运用所学的知识和技能解决有关的问题,增强应用意识。
3、能发现存在的问题,并加以改正。
应用圆的周长和面积的相关知识解决实际生活中的问题。
提问:解决这些问题需要用到和谁有关的知识?
2、这节课我们就对圆的有关知识进行整理和复习(板书课题)。
1.自主整理。
说一说本单元你学习了有关圆的哪些知识?
(1)学生可翻阅课本,并简要记录各节要点。
(2)小组内交流。
(3)整理知识点:
内容。
知识要点。
举例。
圆的认识。
圆的周长。
2.小组汇报。
学生分组汇报整理结果,汇报时其他学生认真听,完善补充。
(1)圆是平面上的()线图形。()决定圆的位置,()决定圆的大小。
(2)画圆时,圆规两脚间的距离就是圆的()。
(3)圆的半径扩大3倍,它的周长扩大()倍,面积扩大()倍。
(4)正方形的边长是2厘米,剪下一个最大圆的半径是()厘米,周长是()厘米,面积是()平方厘米。
学生说出判断的理由,进一步对基础知识进行巩固。
(1)79页的4题:明确场地的直径是8+1+1=10m。
(2)79页的9题:仔细观察图,明确四个扇形合在一起正好是一个半径1m的圆。
(3)79页的10题:
提问:操场跑一圈是多少?
让学生明确圆的周长加上正方形两条边的长度,就是操场的周长。
(1)圆的直径等于半径的2倍。()。
(2)半径2厘米的圆,它的周长和面积相等。()。
(3)一个圆的半径扩大4倍,它的面积扩大8倍。()。
(4)周长相等的长方形、正方形、圆中,圆的面积最大。()。
(5)半圆的面积就是圆面积的一半()。
(6)半圆的周长就是圆周长的一半()。
练习十七的1、2、3、5题。
小组内评价。
教材分析:
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学情分析:
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点:
通过观察操作,推导出圆面积公式及其应用。
教学难点:
极限思想的渗透与圆面积公式的推导过程。
教学过程:备注:
活动一:创设情景,提出问题。
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
活动二:猜想比较:
出示图。
活动三:自主探究,验证猜想。
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:a、剪--怎样剪?剪成几份?b、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)。
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导。
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程。
(3)教师板演圆面积的推导过程。
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)。
活动四:实践运用,体验生活。
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结。
通过本节课的学习你有哪些收获?
板书设计。
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重难点及学具准备。
圆面积的计算公式推导。
圆形纸片、剪刀、多媒体课件等。
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)。
一、开门见山,揭示课题。
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)。
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)。
二、第一次探究,明确思路,体会“转化”的数学思想方法。
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)。
怎样让扇形和三角形的面积接近一些?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)。
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆剪成更多份,能让拼成的图形更接近平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)。
四、第三次探究,深化思维,推导公式。
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)。
五、解决问题。
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)。
(教师组织交流。)。
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12.56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)。
六、小结。
1.指导幼儿在圆形的基础上添画各种物体,使幼儿在添画过程中知道圆能变成各种有趣的东西。
2.发展幼儿的想象力和创造力。
3.培养幼儿的观察、操作、表达能力,提高幼儿的审美情趣及创新意识。
4.尝试大胆添画,能大胆表述自己的想法。
5.培养幼儿的欣赏能力。
1.各种颜色、各种大小的圆。
2.由圆变成的物体范例。
3.一位大班幼儿。
重点:指导幼儿能用一个至几个圆变成各种物体。
难点:引导幼儿发挥想象,制作和别人不同的作品。
1.引起兴趣。
教师:“小朋友,今天我们班里来了一位小客人,(请出大班的小朋友),他的名字叫元元,(小朋友向元元问好)元元特别喜欢圆的东西,请他来说说他喜欢什么圆圆的东西?(大班幼儿说:我喜欢玩圆圆的皮球,爱照圆圆的镜子,爱吃圆圆的饼干,还会变圆的魔术!)。
教师:什么是变圆的魔术呀?你能变给我们中二班小朋友看吗?
2.元元表演变圆魔术。
教师:小朋友你们知道,元元是怎么把红色的圆变成苹果的呀?(在红色圆上画上绿色的叶子就变成苹果了)你们会变吗?你们会变什么呢?怎么变呢?你们真聪明一下子就把元元的变圆魔术学会了。
教师:元元,你还会变什么?元元:我还会变两个圆,三个圆,四个圆,许多圆呢。
元元表演(把两个圆变成了小鸡,三个圆变成了小花,四个圆变成了蝴蝶。)小朋友,你能把两个圆,三个圆,四个圆,许多的圆变成什么呢?请幼儿自由讨论,告诉身边的好朋友。
3.幼儿操作,教师巡回指导。
(1)交代任务:我们今天也来学元元变圆的魔术。老师出示为幼儿准备的材料(老师为小朋友准备了各种颜色,各种大小的圆。请小朋友先想好你想用几个圆变成什么东西,然后找到你所需要的圆,撕去圆后面的双面胶的外面一层,粘在纸上,再把它添画好。我们小朋友把圆变好了,可以互相参观,也可以请客人来参观,告诉客人,你把几个圆变成什么东西了。现在请小朋友去找一个好朋友一起去变圆。
(2)教师巡回指导:
要求幼儿把废纸仍在箩筐里。变出和别人不一样的东西来。帮助能力差的幼儿,鼓励他大胆变圆。
4.评价。
鼓励幼儿大胆的告诉同伴和客人,你用几个圆变成了什么东西。
在区域活动中让幼儿玩各种图形的添画。
为了激发幼儿的学习兴趣,我采用了魔术游戏导入的方法。通过活动培养了幼儿的动手操作能力,开发了幼儿的想象力。
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
通过观察操作,推导出圆面积公式及其应用。
极限思想的渗透与圆面积公式的推导过程。
活动一:创设情景,提出问题。
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
活动二:猜想比较:
出示图。
活动三:自主探究,验证猜想。
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:a、剪--怎样剪?剪成几份?b、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)。
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导。
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程。
(3)教师板演圆面积的推导过程。
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)。
活动四:实践运用,体验生活。
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结。
通过本节课的学习你有哪些收获?
板书设计。
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
通过观察操作,推导出圆面积公式及其应用。
极限思想的渗透与圆面积公式的推导过程。
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
出示图。
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:a、剪--怎样剪?剪成几份?b、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份。.。.。.会是什么情形?(课件演示)。
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导。
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程。
(3)教师板演圆面积的推导过程。
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)。
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
通过本节课的学习你有哪些收获?
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwendaquan/gongzuojihua/208635.html