首页 > 范文大全 > 工作计划

分数的基本性质教学设计一等奖(汇总15篇)

分数的基本性质教学设计一等奖(汇总15篇)



教学计划是教师对教学过程中所需资源和教学环境进行的合理安排,它可以为学生提供良好的学习条件。教学计划的编写需要教师关注学生的兴趣和动机,注重培养学生的学习兴趣和潜能的发展。

分数的基本性质教学设计

1、例2.教学目标:1知识与技能目标:

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、过程与方法目标:

(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。

(3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。

3、情感态度与价值观目标:

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。

教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:

师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。

生:公平,其实他们分得一样多。

师:到底你们的猜想是否正确呢?让我们来验证一下!

二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)。

师:(读要求)现在开始.(学生汇报)师:你们发现了什么?

生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)。

生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)。

2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的'分子和分母变化了,但分数的大小没变。

师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。

生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。

师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。

(出示课件)。

小组汇报:(归纳规律)。

师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。

师:同时乘。

6.8呢?生:不变。

师:那你们能不能根据这个式子来总结一下规律呢?

生1:一个分数的分子和分母同时乘相同的数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......

师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。

生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。

生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)。

师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。

师:同时除以。

6.8呢?生:不变。

师:那你们能不能根据这个式子来总结一下规律呢?

3、强调规律。

师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)。

生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。

生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。

生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。

师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。

师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)。

师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)。

师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)。

师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)。

生:(读题,用手势表示对、错,并说出原因)。

生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。

师:(巡视)请一名学生说出答案,(生说,师出示答案)。

师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。

师:除法里商不变的性质是怎么说的?

生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。

小组讨论。

师:哪一组把讨论的结果汇报一下。

生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)。

师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)。

师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)。

师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:

师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果。

师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!

分数的基本性质教学设计

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

重点难点:

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入。

1、导入课题。

生读故事。

2、明确目标。

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

3、预期效果。

达到教学目标。

二、民主导学。

任务一。

任务呈现。

动手操作验证性质。

自主学习。

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求。

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)。

下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

请一同学回答,生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)。

师板书:或者除以。

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流。

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)。

生:不成立,师:为什么。

生:因为0不能作除数,师:0不能作除数,所以这个式子是错误的。(画叉)。

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)。

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

生:0除外。

师板书0除外。

生:同时和相同的数。

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)。

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二。

任务呈现。

课本76页的例2,请一同学读题。

自主学习。

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流。

每题请二名同学回答,(集体订正答案)。

检测导结。

1、目标练习。

76页“做一做”

练习十四的1、2、6、7题。

2、结果反馈。

生做完后同桌交流,再指名说说结果。

3、反思总结。

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计。

教具课件设计。

小黑板正方形纸数块。

板书设计。

练习和作业设计。

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

分数的基本性质教学设计

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

多媒体课件长方形白纸、圆片,彩色笔等。

一、创设情境,激趣导入。

生1:四、五、六年级分的地一样多。

生2:……。

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知。

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果。

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……。

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)。

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)。

师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)。

生:分数的分子分母发生了变化分数的大小不变。

生:分子分母同时乘2,……。

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)。

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外。

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练。

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)。

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测。

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)。

五:作业练习册2、4题。

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

分数的基本性质教学设计

1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

3.较好实现知识教育与思想教育的有效结合。

理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

板书有关习题的幻灯片。

一、复习。

1.出示。

在括号里填上适当的数:

指名说一说结果,并说一说你是根据什么填的?

二、课堂练习:

1.自主练习第4题。

学生先独立做,教师巡视,并个别指导,集体订正。

教师板书题目中的线段,指名让学生板演。

在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)。

怎样找出相等的分数?

让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

然后要求学生在书上把这几个相应的点找出来。指名板演。

2.自主练习第5题。

先让学生独立做,教师巡视。个别指导。

指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

教师根据学生的回答选择几个题目进行板书。

3.自主练习第6题。

先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

集体订正。指名说一说自己的计算过程和结果。

教师根据学生的回答选择几个题目进行板书。

4.自主练习第7题。

学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

5.自主练习第8题。

学生先独立做。

分数的基本性质教学设计

“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。

学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。

3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的.课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。

基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

1、直接写出得数:

(1)18÷6=(2)120÷40=(3)2÷3=—。

180÷60=12÷4=10÷15=—。

2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)。

3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。

(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)。

1、折一折,画一画。

师:请同学们拿出准备好的三张长方形纸片。

要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。

2)用分数表示阴影部分,

3)将阴影部分剪下来进行比较,看看能发现什么?

2、汇报。(师将一份学生作品贴在黑板上),

请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)。

3、师出示例2的三幅图,

4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。

3、算一算。

2)学生先独立思考,后小组里讨论交流想法。

3)汇报。小组派代表汇报,教师根据汇报适当板书。

(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)。

1、师:哪位同学能用一句话把大家发现的规律概括出来呢?

2、师:像右边那样列式行吗?=,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)。

3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)。

(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)。

2、第43页试一试。

3、练一练。第44页第4题。

4、判断对错。

(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。()。

(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。()。

(3)3/4的分子乘3,分母除以3,分数的大小不变。()。

(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。()。

4、数学游戏“你说我对”(图略)。

(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)。

(复习所学知识和方法,加深认识,深化主题)。

1、课本第44页第1、2、3题。(巩固所学知识)。

分数的基本性质教学设计

1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。

2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。

学情分析。

学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑―探索――释疑――应用”这一完整的学习过程。

因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。

教学目标。

能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学重点和难点。

教学过程。

一、复习导入。

二、探究新知。

实践操作,探究规律。

三、课堂练习。

四、课堂小结。

出示复习题口答卡片,复习商不变的规律、分数与除法的关系。1、讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”

提出问题:这些分数都相等吗?

观察这组相等的分数,你发现了什么?把你的发现说给同伴听。

分子、分母都乘或除以一个数,这个数可以是0吗?为什么?

通过这节课的学习、你学会了那些知识。

口答。

小组讨论。

拿出准备好的圆形纸片,折一折,画一画、涂一涂。

小组讨论、交流。

小组讨论、交流。

做练习,完成后集体交流。

复习旧知,为学习新知识作铺垫。

将例1改编成故事提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。

让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。

引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。

在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。

让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。

对本节课的所学知识的回顾,及所学知识点的总结。

板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。

分数的意义和基本性质教学设计

1、了解分数的产生,让学生理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。

2、学生能掌握单位“1”平均分成若干份,表示其中一份或者几份的数,叫分数。

3、能用分数表示部分与整体的关系。

4、学生能知道某一个量是整体的几分之几。

情感态度与价值观:体会数学在日常生活中的应用。

使学生理解“分数”的意义,弄清分母,分子及分数单位的含义.

使学生理解“分数”的意义,弄清分数单位的含义.

课件。

一、板书课题:同学们今天我们一起来学习分数的意义。

二、揭示目标:这节课的目标是什么呢?请看:(出示学习目标),这个目标能当堂达到吗?:

1、什么情况下用分数表示。

2、分数四分之一表示什么。

3、什么叫单位“1”

4、什么是分数单位?

五分钟后比一比,谁自学最认真,谁能做对检测题。

四、先学。

一)看书(看一看)。

学生看书自学,教师巡视,确保每一名学生都在紧张的自学。

(二)检测(做一做):

1、完成课本46页做一做,指明学生板演,其余学生做练习本上。(要求字写的大小适中,字体端正。)。

2、教师巡视发现错例,准备二次备课。

五、后教。

(一)更正:

观察黑板上的题,发现错误的进行更正。(不同颜色的粉笔)。

1、看做一做的第1空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

2、看做一做的第2空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

3、看做一做的第3空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

4、看做一做的第4空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

通过刚才的解答,我们可以看出,(总结)一堆糖可以看作是一个整体,可以把这个整体平均分成若干数,所以分数单位也不相同。(学生一分钟时间记忆)。

六、课堂小结。

今天我们学习了分数的意义,知道了一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。(学生记忆并板书)。

七、当堂训练。

1、课本63面练习十一第1、2、3题。(必做题)。

2、有三个小盒里面装有小棒,我从第一个小盒中拿出一根小棒,这一根小棒是这个整体的五分之一,我从第一个小盒中拿出二根小棒,这二根小棒是这个整体的五分之一,我从第一个小盒中拿出三根小棒,这三根小棒是这个整体的五分之一。你能猜出每个盒子里面原来有几根小棒吗?那你能不能说一说这三个五分之一有什么相同点和不同点吗?(思考题)。

八、板书设计。

一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。

一个整体可以用自然数1来表示,通常把它叫做单位“1”。

本课教学的重点就是分数的意义。考虑到如果让我自己概括分数的意义,概念中“一份”我也会把它纳入到“几份”中去,让学生自主、完整地概括出这一概念几乎不可能。因此我主要是引导学生回顾前面各个分数的产生,使学生在回顾的过程中感受、理解、提炼出分数意义的模型,结合教师的板书补充,逐步形成分数的意义。而对于分数单位的教学,我是在分数的意义教学之后,让学生通过看书,再通过尝试回答,去理解。在多次回答“它的分数单位是多少?它里面有几个这样的分数单位?”之后,学生势必会有一些发现,再请学生概括出分数单位、分数单位的个数与分数分子、分母的关系,使学生在数学技能方面得到发展。

在设计练习时,我着重围绕本课重点既分数意义的理解进行安排,既安排了完成书本上的习题,也设计了一道综合性、生活化、渗透数学思想的习题。首先是让学生在具体的实际生活问题中理解把哪个量看作“单位1”,深化对分数意义的理解;其次是使学生感受到同一个分数,“单位1”的量变化,所对应的数量也随之变化。并引导学生通过观察,感受到“单位1”的量的变化是如何影响分数所对应的数量的变化的。二是发展学生数感,培养学生的估计能力,其实也渗透深化学生对分数意义的理解。三是渗透数学思想,极限的思想。引导学生在现实的问题情景中,通过想象,体会到“日取其半,万世不竭”。学生数感的发展需要专项的训练,但更需要教师课堂教学进行长期的、适时地渗透进行,数学思想、数学文化更是如此。这不是一蹴可就的,而是一个长期的、潜移默化的过程。

但是回顾整课的教学,还是存有一些遗憾。比如一些细节上处理还是不够好。在新授部分将许多物品作为整体呈现时还是需要用一些符号使学生深入感受到将它们看作一个整体,在学生看书过程中缺少必要的引导和指导。还有就是练习的量还是较少,学生在技能层面发展不够。

文档为doc格式。

分数基本性质教学设计

教学目标。

1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程。

一、故事情景引入。

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

二、新授。

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)。

2.师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)。

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。

3.师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)。

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

3、2/。

6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)。

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言。

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)。

三、应用。

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

四.总结。

这节课大家有什么收获?

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了“猜想——试验分析——合情推理——探究创造”的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。

《分数基本性质》教学设计

1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。

经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。

本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。

为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

1、媒体准备:白板。

2、资源准备:ppt。

1、导入——课件出示问题-——唤醒旧知。

2、探究新知——ppt课件——突破重点、分解难点。

3、拓展延伸。

一、联系旧知,质疑引思。

1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?

2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?

3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?

【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】。

二、自主操作,验证猜想。

1、初步验证。

(1)提出问题。

(2)汇报方法。

2、深入验证:

(1)在纸上写上一组你认为可能相等的分数;

(2)用你喜欢的方法来证明。

(3)学生操作。

(4)汇报交流。

(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?

(2)归纳概括,总结规律,揭示课题。

4、运用规律,完成例2。

(1)理解题意。

(3)独立完成,交流汇报。

【给学生提供开放的探究空间,满足学生的探索欲望。】。

三、知识应用,巩固提升。

1、判断。

(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。

(2)两个分数的分子、分母都不相同,这两个分数一定不相等。

石泉县城关第二小学。

贾从先的分子乘以3,分母除以3,分数的大小不变。

才能使分数的大小不变?

四、回顾总结,完善认知。

通过本节课的学习,你有什么收获?

1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。

2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。

3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。

分数基本性质教学设计

陈兴丽。

一、教材简析。

《分数的基本性质》是人教版小学数学教材第十册的内容,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。

二、学习目标。

2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

3、培养学生的观察、比较、归纳、

总结。

概括能力。

三、

教学重点。

四、教学难点。

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

五、教学准备。

课件3张同样大小的长方形纸。

六、教学过程。

(一)、故事引人,揭示课题。

1.课件出示故事内容。

2.引入课题,板书课题。3.出示学习目标,齐读。(1)、经历探索分数的基本性质的过程,理解分数的基本性质。

(2)、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

(3)、培养学生的观察、比较、归纳、总结概括能力。

(二)、动手操作,发现规律。

1、拿出各自准备好的三张同样大小的纸对折三次,分别涂出它们的1/。

2、2/。

4、4/8。

2、认真观察涂色部分的大小,这三个分数之间有什么样的关系?

(这三个分数的涂色部分一样大,说明这三个分数的大小是相等关系,即1/2=2/4=4/8。)。

3、根据自学提示,认真观察,分小组讨论这三个分数的分子和分母是怎样变化的?

自学提示。

4、各小组汇报。

a组:从左往右看,分数的分子乘以2,分母也乘以2,分数的大小不变。

b组:从右往左看,分数的分子除以2,分母也除以2,分数的大小不变。

(三)、概括性质。深化理解。

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

(四)、利用性质,解决问题。:。

课件出示例2:把2/3和10/24化成分母是12而大小不变的分数。

1.教师提问:认真读例2,题中的意思是什么?我们应该注意哪些关键词语?

(分母是12,大小不变。)。

2.指名回答,教师板书。

(五)、达标检测,扩展延伸。1.在下面的括号里填上适当的数。

6/42=6/42÷6=6/7()8/9=8×0/9×0=0()7/8=7+4/8+4=11/12()9/12=9÷3/12÷3=3/4()3.把3/5和16/20化成分母是10而大小不变的分数.(六)、全科总结,谈收获。

1、通过本节课的学习,你学会了哪些知识?你有什么收获?

2、布置作业。

练习十四第6、7、9题。

七、板书设计。

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

分数基本性质教学设计

【教学目标】。

1.知识与技能:使学生经历探索分数约分的过程,初步认识到约分的含义。

2.过程与方法:使学生在已经了解了最大公约数和分数的基本性质之后,能应用分数约分的方法找到最简分数。

3.情感、态度与价值观:使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括的能力,体验数学学习的乐趣。

【教学过程】。

(一)复习。

师:说一说上一节课学习过的分数的基本性质。

12/24师:那现在同学们有没有发现这些分数的分子和分母有什么规律?引导学生对相等的分数作比较发现分子分母都比原来的大。

(二)教学例3出示例3,找学生读题“你能写出和12/18相等,而分子、分母到比较小的分数吗?”师:好,那么就请同学们独立思考一下,看看能不能找出和12/18相等但分子分母都比它小的分数?要是可以找出的话,会有多少个呢,越多越好。(时间2分钟)师:想出来的小组成员之间交流一下,看看其他同学都想到了哪几个分数?是怎么得出来的呢?(时间2分钟)。

师:根据刚才的小组讨论哪位同学能说一说什么叫做约分吗?引导:题目求的是什么啊,与12/18相等,分子、分母都比较小的分数,所以约分应该怎么说?师:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。(ppt)师:大家一起看着前面,把约分的含义读一遍。师:下面找几位同学来做一下,62页的第二题师:通过刚刚的做题,谁能告诉我,我们在约分时要注意些什么呢?(引导学生从含义入手)师:我们来看看同学们整理出来的约分时要注意的事情,1是约分好得到的分数要与原来的分数相等;2是约分后得到的分数的分子分母到要比原来的分数小。师:同学们继续来看屏幕上的这些分数,有一些是不是还可以继续约分啊?看60/45可以约分成12/9,那12/9是不是可以继续约分,所以,60/45能够约分成多少,谁来完整的说一说。

师:所以,我们再约分时要分子和分母同时除以一个数,那这个数就是分子和分母的?师:现在啊,我们知道了约分时要除以分子和分母的公因数,那么我们在进行约分时要怎样书写呢,看屏幕找同学来读一读,(ppt第一种约分方法)在约分时要把分子除以公因数所得的商写在分子的上面,分母除以公因数所得的商写在分母的下面,并把原来的分子、分母用“”划去。

(师:恩,当分子与分母不能再继续约分时它的值是最小的对不对,那分子和分母为什么不能继续约分了呢?有没有同学知道?)。

师:所以当分子和分母只有一个公因数1时,它的分子分母值是最小的,那么在数学领域里我们一般称这样的分数为最简分数。

师:刚刚我们又认识了一个新的定义,最简分数,找同学来复述一下什么是最简分数呢?师:通常,我们再约分时,都要约分成最简分数。

师:那我们再回过头来看看那之前做的那些题,是不是约分成了最简分数了,没有约分成最简分数的,自己在下面更改一下,我要找同学来说一下他的答案。

(ppt)。

1、约分后得到的分数要与原来的分数相等;

2、约分后得到的分数的分子分母都要比原来的分子分母小;

3、在约分时要把分子除以公因数所得的商写在分子的上面,分母除以公因数所得的商写在分母下面,并把原来的分子、分母用“”(手势比划)划去。

4、分数约分时都要约分成最简分数。

《分数基本性质》教学设计

【设计理念】。

根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

【学情与教材分析】。

《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

【教学目标】。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。

【教学过程】。

一、创设情境,激趣导入。

生1:四、五、六年级分的地一样多。

生2:……。

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知。

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果。

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……。

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)。

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)。

师:三个年级分的地一样多,那么你们觉得、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)。

生:分数的分子分母发生了变化分数的大小不变。

生:分子分母同时乘2,……。

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)。

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:同时相同0除外。

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练。

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)。

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测。

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)。

五:作业练习册2、4题。

【板书设计】。

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

【教学反思】。

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

《分数基本性质》教学设计

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

重点难点:

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入。

1、导入课题。

生读故事。

2、明确目标。

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

3、预期效果。

达到教学目标。

二、民主导学。

任务一。

任务呈现。

动手操作验证性质。

自主学习。

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求。

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)。

下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

请一同学回答,

生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)。

师板书:或者除以。

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流。

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)。

生:不成立,

师:为什么。

生:因为0不能作除数,

师:0不能作除数,所以这个式子是错误的。(画叉)。

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)。

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

生:0除外。

师板书0除外。

生:同时和相同的数。

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)。

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二。

任务呈现。

课本76页的例2,请一同学读题。

自主学习。

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流。

每题请二名同学回答,(集体订正答案)。

检测导结。

1、目标练习。

76页“做一做”

练习十四的1、2、6、7题。

2、结果反馈。

生做完后同桌交流,再指名说说结果。

3、反思总结。

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计。

教具课件设计。

小黑板正方形纸数块。

板书设计。

练习和作业设计。

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

文档为doc格式。

分数的基本性质

1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点 使学生理解分数的基本性质。

教学难点 让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程

一、故事情景引入

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

二、新授

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2. 师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的`两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4. 研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)

分数的基本性质。

5. 深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

这节课大家有什么收获?

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了“猜想——试验分析——合情推理——探究创造”的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。

《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,我先引导学生自己动手分月饼,发现三个人分得的月饼同样多,然后得出三个分数同样大,再来观察几组分数的分子、分母发生了怎样的变化,然后在观察与分析中逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位。

分数基本性质教学设计简案

教学。

设计执教者:张汉超教学内容北师大版五年级上册第五单元“分数的意义”第六课时p72。

教学目标1、正确理解和掌握分数的基本性质,能运用分数基本性质解决有关的数学问题。

2、使学生经历“自学—初步发现结论—探究结论—归纳。

总结。

”的过程,培养学生的数学问题意识,发现、分析并解决问题的能力。

3、让学生在快乐的学习探究、倾听过程中体验数学学习的乐趣。

教学重难点1、教学重点:理解和掌握分数的基本性质。

教具准备多媒体课件,学生准备自制的图形、算式等论据。

教学过程一、谈话引入,揭示课题。

1、出示课题。

通过预习,你们发现了什么?2、师小结。

二、探究性质,深化理解。

1、学生小组交流。

2、学生展示汇报方法。

(1)画图直观:看分数值大小相等。

(2)联系旧知:利用商不变的规律。

(3)举例说明:学生举一些相等的分数。

3、归纳性质,提出问题。

4、课堂小结。

三、

联系生活,练习巩固。

1、聪明的孙悟空与可笑的猪八戒。

孙悟空买来一个大西瓜平均分成4块,打算师徒四人每人一块。猪八戒看到只有一块,很不高兴,要求孙悟空多给几块。在师徒四人每人分的同样多的前提下,孙悟空满足了猪八戒要3块的要求。猜一猜猪八戒得到了这个西瓜的几分之几?2、利用分数基本性质找朋友。

和、相等的分数请站到他旁边去,你们就是好朋友。

四、课末总结,提升认识。

1、谈谈本节课的收获。

相关内容

热门阅读
随机推荐